1 SISTEMA DE NUMEROS COMPLEJOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1 SISTEMA DE NUMEROS COMPLEJOS"

Transcripción

1 UNIVERSIDAD DEL VALLE FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMATICAS Prof DORIS HINESTROZA SISTEMA DE NUMEROS COMPLEJOS Sea C el cojuto de parejas ordeadas (a, b) deúmeros reales, esto es C = {(a, b) :a, b R} Diremos que dos complejos so iguales, esto es (a, b) =(c, d) siysólo si a = c y b = d E este cojuto C defiimos la suma y el producto de dos úmeros complejos como: (a, b)+(c, d) = (a + c, b + d), (a, b)(c, d) = (ac bd, ad + bc) Podemos deducir fácilmete que los úmeros complejos satisface la propiedades comutativas, asociativas y distributivas que se da e los úmeros reales Podemos idetificar aturalmete los úmeros complejos cuya seguda compoete es cero como úmeros reales y e este setido los reales los podemos ver como u subcojuto de los úmeros complejos Así podemos expresar el úmero complejo (a, 0) por el úmero real a Sobre el cojuto podemos observar lo siguiete: si λ R etoces λ (a, b) =(λa, λb) El cojuto C, sólo co la operació + es u grupo Defiiedo la multiplicació por escalares reales C se covierte e el cojuto vectorial sobre R, R 2 Claramete el úmeroceroec es (0, 0) y lo represetaremos por 0 y el elemeto uo es (, 0) Si (a, b) C co (a, b) 6= (0, 0) (esto es a 6= 0ob 6= 0 Vamos a hallar el iverso de (a, b), esto es hallar el complejo (c, d) talque (a, b)(c, d) =(ac bd, ad + bc) =(, 0), oseaque ac bd = y ad + bc =0 Este sistema lo podemos expresar matricialmete como Ã!Ã! Ã! Ã a b c a = Tomado A como la matri A = b a d 0 b b a! co det(a) =a 2 +b 2 6=0 teemos que Ã! Ã c a = d b b a! Ã 0! = Ã a b det A b a!ã 0! = a a 2 + b 2 b a 2 + b 2

2 Así eliversode(a, b) que deotaremos por (a, b) es dado por (a, b) = µ (a, b) = a a 2 + b 2, b a 2 + b 2 Si llamamos i al complejo (0, ) esto es i =(0, ), teemos que todo úmero complejo (a, b) lo podemos expresar como (a, b) =a(, 0) + b(0, ) = a + ib Observemos que ii =, oseaquei es solució de la ecuació 2 + = 0 e C Claramete 2 +=( + i)( i) o 2 + w 2 =( + iw)( iw) Defiimos la parte real e imagiaria de u úmero complejo = a + ib como Re = a, Im = b El úmero cojugado de, que deotamos por está dado por = a ib Claramete teemos que Re = + yim = 2 2i Tambié defiimos, la orma del úmero complejo = a + ib como Claramete Co todas estas defiicioes teemos que: = p a 2 + b 2 2 = = a 2 + b 2 + w = + w y w = w, w = w y =, R si y s lo si = Puesto que 2 = etoces = 2 ( 6= 0) o = 2 Observado que siempre es u úmero real y mayor o igual que 0 Observemos que si teemos el cociete de dos complejos w co w =(c + id) y =(a + ib) 6= 0 teemos que w = w = (c + id)(a ib) a 2 + b 2 = ac + bd bc a 2 + iad + b2 a 2 + b 2 Plao Complejo El úmero complejo (a, b) = a+ib lo podemos represetar como u puto e el plao xy de coordeadas (a, b) La orma = a 2 + b 2 os represetaria la distacia de dicho puto desde el orige de coordeadas Cuado utiliamos el plao xy para represetar úmeros complejos, el plao toma el ombre de plao Argad, e hoor a Jea Argad ( ), matemático suio que e 806 propuso esta represetació para los úmeros complejos 2

3 y (x,y) y (x,y) Puto P=(x,y) que Represeta a =x+iy x x Obsevemos que el úmero complejo, geométricamete lo podemos ver como la reflexió de respecto al eje x El proceso de sumar tiee ua iterpretació muy simple e térmios vectoriales como se muestra e la figura: 3

4 + 2 2 Co el fi de iterpretar geometricamete la multiplicació compleja itroduciremos la represetació polar de los complejos Represetacio Polar Dado (xy) R 2, (xy) 6= (0, 0) Sea (r, θ) sus coordeadas polares Así podemos escribir = r(cos θ + ise θ), dode r = y el úmero θ, llamado argumeto de, tiee diferetes posibilidades para θ U úmero complejo tiee ifiitos argumetos, cualquier dos de ellos difiere e múltiplos de 2π Vamos a deotar todos estos argumetos por arg Defiimos el argumeto pricipal de como el úico argumeto que está defiido e el itervalo ( π, π], y que deotaremos por Arg ; así π <Arg π Co esta otació es claro que arg = Arg +2kπ, k Z Observemos que si y = r (cos θ + ise θ ) 2 = r 2 (cos θ 2 + ise θ 2 ) etoces 2 = = r r 2 {[cos θ cos θ 2 se θ se θ 2 ]+i[se θ se θ 2 + se θ se θ 2 ])} = r r 2 [cos (θ + θ 2 )+ise( θ + θ 2 )] Claramete teemos que arg( 2 ) = θ + θ 2 +2kπ, k Z arg( ) = θ +2π, Z arg( 2 ) = θ 2 +2mπ, m Z Por otro lado Así θ + θ 2 +2kπ = θ +2π +(θ 2 +2(k )π) arg( 2 )=arg( )+arg( 2 ) Nota : No siempre es cierto que Arg( 2 )=Arg() +Arg( 2 ) Observemos por ejemplo que si = y = i, etoces Arg = π y Arg = π/2, etoces 4

5 Arg( )+Arg( 2 )= 3 2 π Por otro lado Arg( 2 )=Arg( i) = π/2 Luego Arg( 2 ) 6= Arg( )+ Arg( 2 ) Nota 2: Si = r(cos θ + ise θ) etocesi = = r(cos(θ + π/2) + ise (θ + π/2)) Como podemos observar i se obtiee rotado geometricamete el vector e setido positivo u águlo π/2, si cambiar la logitud i π / 2 θ Nota 3: Si = r(cos θ + ise θ) 6= 0, etoces = r (cos( θ)+ise ( θ)), puesto que = Así teemosque = r [cos (θ θ 2 )+ise( θ θ 2 )], 2 6=0 2 r 2 Claramete arg( )=arg( ) arg( 2 ) 2 Ecuació biomial Si a = r(cos θ + ise θ), a6= 0 teemos que Para =0, teemos que a 0 = y puesto que a = r (cos θ + ise θ) = r (cos θ + ise θ) a = (cos( θ)+ise ( θ)), r la fórmula de potecias es válida tambié para los eteros egativos E particulas si <0, defiimos a =(a ) Claramete si r =, teemos la fórmula de Moivre (cos θ + ise θ) = (cos θ + ise θ), lo cuál os dá ua fórmula que os permite calcular la ecuació Si escribimos = ρ(cos ϕ + ise ϕ) Etoces, = a, a 6= 0 ρ (cos ϕ + ise ϕ) =r(cos θ + ise θ) 5

6 Lo cual implica que ρ = r, osea Observemos que ρ = r /, ϕ = θ +2kπ, k Z ϕ k = θ + 2kπ,k Z Los úicos valores que da distitos k tales que k = a so k =0,,, Así teemos: µ θ k = r µcos / + 2kπ µ θ + ise + 2kπ, k =0,,, E el caso que a =, la ecuació se covierte e =, cuyas raíces está dadas por µ µ 2kπ 2kπ k =cos + ise, k =0,,, Si hacemos w =cos 2π + ise2π, teemos que o = w o = = w 2 = w 2 = w, Asílasraíces de la uidad so,w,w 2,,w, dode w = Esto os uestra que si a es cualquier raí sima de a, etoces w k a, k =0,,, ³ so todas las ráices, Puesto que w k a = a Plao Complejo extedido y proyecció estereográfica Cuado usamos los úmeros reales, empleamos el cocepto de ifiito y cosideramos los simbolos + y Porjemplodecimosquelasucesió, 2, 3,,diverge a + y la sucesió, 2, 3,,diverge a Co úmeros complejos tambié se hace importate hablar del cocepto del ifiito y deotaremos el símbolo e el caso complejosi quisieramos represetar el ifiito e el plao, tedríamos problemas para represetarlo Podríamos pesar el ifiito cuado aumeta si límite, siguiedo ciertas trayectoria e el plao complejo, por ejemplo 6

7 y x Co el objetivo de hacer más tagible este puto del ifiito usaremos lo que se cooce como proyecció estereográfica Cosideramos el plao provisto de u tercer eje perpedicular al plao Cosideraremos ua esfera cetrada e el orige de radio x

8 lo cual implica que x = x, y y = x 2 x 3 x 3 Por lo tato el úmero complejo asociado al puto P =(x,x 2,x 3 )está dado por Observemos que Despejado x 3 teemos que Igualmete observemos que x = x( x 3 )= = x + ix 2 x 3 2 = x2 + x2 2 ( x 3 ) 2 = x2 3 ( x 3 ) 2 = +x 3 x 3 x 3 = , x 2 = y( x 3 )= i( + 2 ) fácilmete deducible por cuato x 3 = = + 2 ( 2 ) = + 2 Completamos la correspodecia asigado al puto e el ifiito el puto N =(0, 0, ) Así podemos cosiderar la esfera como la represetació del plao complejo extedido Observemos que el hemisferio x 3 < 0, correspode a los valores de tales que < yelhemisferiox 3 > 0, correspode a los valores de tales que > Esta esfera es coocida como esfera de Riema Los putos (x, y, 0), (x,x 2,x 3 )y(0, 0, ) está e líea recta Esta proyecció es llamada proyecció estereográfica que podemos deotar por la fució dada por ϕ : S C ϕ(x,x 2,x 3 ) = x + ix 2 x 3, ϕ(0, 0, ) = La iversa es defiida por ϕ () = Ã! + + 2, i( + 2 ), ϕ ( ) = (0, 0, ) ( ) Por la proyecció estereográfica cada u circuferecia sobre S que pasa por el puto (0, 0, ), se trasforma geometricamete e ua líea recta e el plao y viceversa Más geeralmete podemos mostrar que cada circuferecia e la esfera se trasforma e ua circuferecia o e ua líea recta e el plao Observemos que cada circuferecia e la esfera está determiada por la itersecció de la esfera co u plao Así podemos asumir que ua circuferecia yace e el plao λx +µx 2 +νx 3 = p, p 0,x 2 + x2 2 + x2 3 = y dode podemos supoer que λ2 + µ 2 + ν 2 =pdebe ser meor que, para poderlo itersectar co la esfera 8

9 De acuerdo co ( ) λ µ i( + 2 ) + v = p, o λ( + ) µi( )+ν( 2 ) = p( 2 +) λ( + ) µi( )+ν( 2 + 2) = p( 2 +) ()( 2 +) = λ( + ) µi( ) 2v Reorgaiado los térmios teemos Así teemosque ()(x 2 + y 2 +)=2λx +2µy 2v y observemos los siguietes hechos: Si p = v, etoces la circuferecia se trasforma e la recta 2(λx+µy v) = 0 Observemos que e este caso la ecuació del plao es dada por λx +µx 2 +νx 3 = p = v o λx +µx 2 +ν(x 3 ) = 0, plao que pasa por el puto N(0, 0, ) Mostrado que las circuferecias que pasa por el polo se trasforma e rectas Si p 6= v, etoces la circuferecia se trasforma e ua circuferecia dada por ()(x 2 + y 2 +) 2λx 2µy = 2v x 2 + y 2 + 2λ x 2µ y = 2v x 2 + y 2 2λ x 2µ 2v y = = p + v Completado cuadrados teemos que µ x λ 2 µ + y µ Distacia estereográfica 2 λ2 () 2 µ2 () 2 µ = p + v, x λ 2 + µ y µ 2 = p + v + λ2 + µ 2 () 2 = p + v + v2 () 2 = v2 (p + v)() () 2 = p2 () 2 Dados dos putos del plao extedido defiimos para, 0 ua distacia defiida de la siguiete forma d(, 0 ) = d(ϕ (),ϕ ( 0 0 )) = 2q+ 2q, d(, ) = d(ϕ (),ϕ ( )) = 2 q + 2 (Probar este resultado) 9

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Tema 1: Números Complejos

Tema 1: Números Complejos Números Complejos Tema 1: Números Complejos Deició U úmero complejo es u par ordeado (x, y) de úmeros reales Éste puede iterpretarse como u puto del plao cuya abscisa es x y cuya ordeada es y El cojuto

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

Números complejos Susana Puddu

Números complejos Susana Puddu Números complejos Susaa Puddu 1. El plao complejo. E el cojuto C = IR IR defiimos la suma y el producto de dos elemetos de C de la siguiete maera a, b + c, d = a + c, b + d a, b.c, d = ac bd, ad + bc Dejamos

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

Los números complejos ( )

Los números complejos ( ) Los úmeros complejos (15.06.016) 1. Itroducció Estas otas se propoe u doble objetivo. Co los apartados a 8 se pretede dar uas ocioes básicas sobre los úmeros complejos que ayude a fijar los coceptos expuestos

Más detalles

1. Definiciones y propiedades básicas - C como extensión de R.

1. Definiciones y propiedades básicas - C como extensión de R. Facultad de Ciecias Exactas, Igeiería y Agrimesura Departameto de Matemática - Escuela de Ciecias Exactas y Naturales ÁLGEBRA y GEOMETRÍA ANALÍTICA I Liceciatura e Física - 2015 Equipo docete: Viviaa del

Más detalles

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Capítulo INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Problema Calcula las partes real e imagiaria de los siguietes úmeros complejos: a) i + + i, b) + i i + i + i + i, c) d) + i), + ), + i e) f) ) + i 04, i +

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

Unidad 1: Números Complejos

Unidad 1: Números Complejos Uidad 1: Números Complejos 11 Itroducció Además de los cojutos de úmeros aturales, eteros, racioales y reales existe el cojuto de úmeros complejos que juega u rol importate o solo e matemáticas sio e las

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Aplicaciones del cálculo integral vectorial a la física

Aplicaciones del cálculo integral vectorial a la física Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua imarrero@ull.es Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el

Más detalles

Números reales Números. irracionales. Figura 3.1. Construcción del conjunto de los números complejos.

Números reales Números. irracionales. Figura 3.1. Construcción del conjunto de los números complejos. Números Complejos El cojuto de los úmeros complejos La supremacía de los úmeros reales como cojuto umérico máximo duró poco; o existe u úmero real a que satisfaga la ecuació x 2 + a = 0. Para ello, es

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

MATE1214 -Calculo Integral Parcial -3

MATE1214 -Calculo Integral Parcial -3 MATE114 -Calculo Itegral Parcial -3 Duració: 60 miutos 1. Cosidere la curva paramétrica descrita por = te t, y = 1 + t. Halle la pediete de la recta tagete a esta curva cuado t = 0.. Calcular la logitud

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

Funciones de variable compleja

Funciones de variable compleja Tema 10 Fucioes de variable compleja 10.1 Fucioes complejas de variable compleja Defiició 10.1 Ua fució compleja de variable compleja es ua aplicació f: A C dode A C. Para cada z A, fz) C, luego fz) =

Más detalles

La sucesión de Lucas

La sucesión de Lucas a sucesió de ucas María Isabel Viggiai Rocha Cosideramos la sucesió umérica { } defiida por: - - si 3 y y 3. Esta sucesió es coocida como la sucesió de ucas y a sus térmios se los llama úmeros de ucas.

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse.

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse. Núeros coplejos 1. Cuerpos U cuerpo coutativo es u cojuto de úeros que puede suarse, restarse, ultiplicarse y dividirse. Los úeros racioales, esto es, los úeros que puede escribirse e fora de fracció,

Más detalles

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números. Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2)

21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2) EJERCICIOS de POTENCIAS º ESO opc. B RECORDAR a m a a m m ( a ) a b a a (a b) a m a a b m a m+ b a a - a b a - b a Tambié es importate saber que algo ( base egativa) par (- ) ( base egativa) impar (- )

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

Tema 1.1: El cuerpo de los números complejos. Módulo y argumento de un número complejo

Tema 1.1: El cuerpo de los números complejos. Módulo y argumento de un número complejo Tema 1.1: El cuerpo de los úmeros complejos. Módulo y argumeto de u úmero complejo Facultad de Ciecias Experimetales, Curso 2008-09 Erique de Amo, Uiversidad de Almería Notació. N deotará el cojuto de

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006 Estalmat. Real Academia de Ciecias. Curso 5/6 Diámica compleja Cojutos de Julia y Madelbrot. Método de Newto. Miguel Reyes Mayo 6 Los úmeros complejos Los úmeros complejos so los úmeros de la forma dode

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles

Tema 3.- Números Complejos.

Tema 3.- Números Complejos. Álgebra. 200-2005. Igeieros Idustriales. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Tema 3.- Números Complejos. Los úmeros complejos. Operacioes. Las raíces de u poliomio real. Aplicacioes

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

SUCESIONES Y SERIES DE FUNCIONES

SUCESIONES Y SERIES DE FUNCIONES CAPÍTULO XV. SUCESIONES Y SERIES DE FUNCIONES SECCIONES A. Campo de covergecia. Covergecia uiforme. B. Series de potecias. Itervalos de covergecia. C. Desarrollo de fucioes e series de potecias. D. Aplicacioes

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

MODULO PRECALCULO QUINTA UNIDAD

MODULO PRECALCULO QUINTA UNIDAD www.mateladia.org MODULO PRECALCULO QUINTA UNIDAD Límites Cotiuidad y Derivada.... y cotiuó Alicia:

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPONENTES Y RADICALES

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPONENTES Y RADICALES MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPONENTES Y RADICALES POTENCIACIÓN Y RADICACIÓN (Tomado de: Stewart, James. "Precálculo". Quita Edició. Secció 1..) Si a; x R; ua expresió

Más detalles

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad Tema 4.4: Teorema de Riema de sigularidades evitables. Ceros de ua fució holomorfa. Pricipio de idetidad Facultad de Ciecias Experimetales, Curso 2008-09 E. de Amo Comeamos e este tema extrayedo las primeras

Más detalles

Figura 1. Se dice que un subespacio vectorial F de E es A-invariante si los vectores u de F siguen estando en F al transformarse por A, esto es,

Figura 1. Se dice que un subespacio vectorial F de E es A-invariante si los vectores u de F siguen estando en F al transformarse por A, esto es, VALORES Y VECORES PROPIOS Y LA REDUCCION DE CÓNICAS A) EL PROBLEMA PROPIO oda matriz cuadrada A de orde co elemetos (reales o complejos) es u operador lieal que actúa sobre el espacio vectorial E, dimesioal,

Más detalles

NÚMEROS COMPLEJOS: UNA PRESENTACIÓN GRÁFICA

NÚMEROS COMPLEJOS: UNA PRESENTACIÓN GRÁFICA NÚMEROS COMPLEJOS: UNA PRESENTACIÓN GRÁFICA José Luis Soto Muguía Departameto de Matemáticas Uiversidad de Soora. INTRODUCCIÓN. Desde los primeros años de la escuela, el estudiate se efreta e matemáticas

Más detalles

TEMARIO DE MATEMÁTICAS [ ]

TEMARIO DE MATEMÁTICAS [ ] TEMARIO DE MATEMÁTICAS [2015-16] TEMA 9: NÚMEROS COMPLEJOS. APLICACIONES GEOMÉTRICAS. I. NÚMEROS COMPLEJOS I.1. PLANO COMPLEJO I.1.A. INMERSIÓN DE ú EN I.1.B. UNIDAD IMAGINARIA I.1.C. REPRESENTACIÓN GEOMÉTRICA

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

Teoría de la conmutación. Álgebra de Boole

Teoría de la conmutación. Álgebra de Boole Álgebra de Boole Defiicioes y axiomas Propiedades Variables y fucioes booleaas Defiicioes Propiedades Formas de represetació Fucioes booleaas y circuitos combiacioales Puertas lógicas Puertas lógicas fudametales

Más detalles

CÁLCULO DE PROBABILIDADES :

CÁLCULO DE PROBABILIDADES : CÁLCULO DE PROBBILIDDES : Experimeto aleatorio. Espacio muestral. Sucesos. Álgebra de sucesos. Frecuecias. Propiedades. Probabilidad. Resume de Combiatoria. Probabilidad codicioada. Teoremas. PROBBILIDD

Más detalles

SUCESIONES DE NÚMEROS REALES. PROGRESIONES

SUCESIONES DE NÚMEROS REALES. PROGRESIONES www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos

Más detalles

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos. CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5 Aexo Calculadora La proliferació de las calculadoras e la vida cotidiaa obliga a profesores y padres a replatearse su uso. Los profesores debemos eseñar a los alumos su utilizació. Pero será los profesores

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

0.1 VALOR ABSOLUTO. Ejemplos:

0.1 VALOR ABSOLUTO. Ejemplos: Como es usual, R desiga el cojuto de úmeros reales y R~, a pla~ ~juto de pares ordeados (x, y), e dode x e y so úmeros reales. 0. VALOR ABSOLUTO O.. DEFINICION. Si x es u úmero real se defie: x sir20 x

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Juan José Font Ferrandis. Salvador Hernández Muñoz. Sergio Macario Vives

Juan José Font Ferrandis. Salvador Hernández Muñoz. Sergio Macario Vives CÁLCULO Jua José Fot Ferradis Salvador Herádez Muñoz Sergio Macario Vives Ídice geeral. Campos Numéricos.. El úmero real.......................... 2... Desigualdades....................... 2..2. Valor

Más detalles

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a.

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a. Arquitectura del Computador 4 ALGEBRA DE BOOLE 4. Itroducció. El álgebra de Boole es ua herramieta de fudametal importacia e el mudo de la computació. Las propiedades que se verifica e ella sirve de base

Más detalles

TEMA 19 Cálculo de límites de sucesiones*

TEMA 19 Cálculo de límites de sucesiones* CURSO -6 TEMA 9 Cálculo de límites de sucesioes* Propiedades aritméticas de los límites de sucesioes. b tales que : a = a b = b, dode ab, R Sea las sucesioes { } a y { } Etoces podemos obteer su suma,

Más detalles

Olimpiadas Matem aticas, U. de A.

Olimpiadas Matem aticas, U. de A. OLIMPIADAS DE MATEMATICA, 04 Uiversidad de Atioquia Cotextos AVISO: Los textos aquí publicados so resposabilidad total de sus creadores Estos so materiales e costrucció Errores y/o cometarios por favor

Más detalles

Prácticas de Física Aplicada a las Ciencias de la Salud Curso 2015/16. Óptica geométrica

Prácticas de Física Aplicada a las Ciencias de la Salud Curso 2015/16. Óptica geométrica Óptica geométrica. Objetivos Familiarizar al alumo co coceptos básicos e óptica geométrica, tales como los feómeos de reflexió, refracció o reflexió total. Comprobació de la Ley de Sell. Características

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

Universidad acional de Salta Facultad de Ingeniería U IDAD 1 ÚMEROS REALES

Universidad acional de Salta Facultad de Ingeniería U IDAD 1 ÚMEROS REALES U IDAD 1 ÚMEROS REALES Cojutos Defiició: U cojuto es ua colecció bie defiida de objetos. Deotaremos los cojutos co letras mayúsculas A, B, C, etc. Los objetos que compoe el cojuto recibe el ombre de elemetos

Más detalles

TEMA 7 Trenes de Engranajes

TEMA 7 Trenes de Engranajes Igeiería Idustrial. Teoría Máquias TEMA 7 Trees de Egraajes Haga clic para modificar el estilo de subtítulo del patró Objetivos: Itroducir el mudo de los trees de egraajes, aalizado los diversos tipos

Más detalles

Diferencial Total. se define. en el punto x

Diferencial Total. se define. en el punto x Dierecial Total El propio ombre derivada parcial os debiera idicar que e cotraposició al caliicativo parcial eiste otro que lo complemeta Tal ombre el correspodiete cocepto eiste se le llama dierecial

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

8 Funciones, límites y continuidad

8 Funciones, límites y continuidad Solucioario 8 Fucioes, límites y cotiuidad ACTIVIDADES INICIALES 8.I. Copia y completa la siguiete tabla, epresado de varias formas los cojutos uméricos propuestos. Gráfica Itervalo Desigualdad Valor absoluto

Más detalles

Semana 08[1/93] Sumatorias. 18 de abril de 2007. Sumatorias

Semana 08[1/93] Sumatorias. 18 de abril de 2007. Sumatorias Semaa 08[1/93] 18 de abril de 2007 Semaa 08[2/93] Sumas dobles Veremos a cotiuació u caso particular de suma, e el que la que el térmio geeral a k es a su vez ua suma, para cada k Es decir, veremos cómo

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

Tema 6. Sucesiones y Series. Teorema de Taylor

Tema 6. Sucesiones y Series. Teorema de Taylor Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació

Más detalles

Tema 5 Series numéricas

Tema 5 Series numéricas Tema 5 Series uméricas Objetivos 1. Defiir series co wxmaxima. 2. Calcular sumas parciales de ua serie. 3. Iterpretar la defiició de suma de ua serie. 4. Calcular la suma de ua serie geométrica. 5. Calcular

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

Sistemas de Segundo Orden

Sistemas de Segundo Orden Apute I Departameto de Igeiería Eléctrica Uiversidad de Magallaes Aputes del curso de Cotrol Automático Roberto Cárdeas Dobso Igeiero Electricista Msc. Ph.D. Profesor de la asigatura Este apute se ecuetra

Más detalles

Problemas de Sucesiones

Problemas de Sucesiones Capítulo Problemas de Sucesioes Problema. Calcular los siguietes ites: l se i e + 3 ii 5 iii l iv + + + Solució: l se i [ escala de iitos se acotada ] 0 acotada 0. e + e ii 5 + [ úmero meor que uo 5 ]

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

Figura 8.1: Ejemplos de conjuntos de índices.

Figura 8.1: Ejemplos de conjuntos de índices. Capítulo 8 Cojuto de ídices Defiició 8.1 (Cojuto de ídices) Sea I u cojuto, tal que para cada i I se tiee u cojuto A i U. El cojuto I se deomia cojuto de ídices y cada i I es u ídice. (a) Los ídices so

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

(finitas o infinitas)

(finitas o infinitas) Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.

Más detalles

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros

Más detalles

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS 4º ESO º Trimestre Autor: Vicete Adsuara Ucedo INDICE Tema : Vectores e el Plao.. Ejercicios Tema 9 Tema : Depedecia Lieal...7 Ejercicios Tema. 0 Tema 3: El Plao Afí...... Ejercicios

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía

Más detalles

CÁLCULO DIFERENCIAL. 1.- Estudia la continuidad de las siguientes funciones:

CÁLCULO DIFERENCIAL. 1.- Estudia la continuidad de las siguientes funciones: ejerciciosyeamees.com CÁLCULO DIFERENCIAL.- Estudia la cotiuidad de las guietes fucioes: - + f() = ; g()= ; h()= + - ( - )(+) + - - - - - < < 0 i()= e j()= - k()= - > cos 0 = 0 + se l()= m()= = 0 = 0 Sol:

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

Números complejos. 1.1 Introducción

Números complejos. 1.1 Introducción Itroducció 1 1.1 Itroducció 1 1.2 Forma biómica de u úmero complejo 3 1.3 Represetació gráfica. Cojugado y módulo de u úmero complejo 1. Forma polar y argumeto de u úmero complejo 5 1.5 Fucioes elemetales

Más detalles

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales. Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,

Más detalles

Profr. Efraín Soto Apolinar. Área bajo una curva

Profr. Efraín Soto Apolinar. Área bajo una curva Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura

Más detalles

Apuntes sobre series numéricas: preguntas frecuentes y ejemplos resueltos. 1) Preguntas frecuentes. Conceptos, teoremas y ejemplos básicos

Apuntes sobre series numéricas: preguntas frecuentes y ejemplos resueltos. 1) Preguntas frecuentes. Conceptos, teoremas y ejemplos básicos Cálculo I ( o de Grado e Iformática, 202-3) Aputes sobre series uméricas: pregutas frecuetes y ejemplos resueltos ) Pregutas frecuetes. Coceptos, teoremas y ejemplos básicos P-. Ua serie ifiita es ua suma

Más detalles

Figuras geométricas y números enteros. Introducción

Figuras geométricas y números enteros. Introducción Revista del Istituto de Matemática y Física Figuras geométricas y úmeros eteros Juaa Cotreras S. 6 Claudio del Pio O. 7 Istituto de Matemática y Física Uiversidad de Talca Itroducció Etre las muchas relacioes

Más detalles

a. Tetraedro: Tiene 4 caras (triángulos equiláteros), 4 vértices, 6 aristas.

a. Tetraedro: Tiene 4 caras (triángulos equiláteros), 4 vértices, 6 aristas. POLIEDROS Y VOLUMEN POLIEDRO: Cuerpo liitado por cuatro o ás polígoos dode cada polígoo se deoia cara, sus lados so aristas y la itersecció de las aristas se llaa vértices. PRISM: Poliedro liitado por

Más detalles

ANEXO I ANEXO I CONCEPTOS SÍSMICOS BÁSICOS

ANEXO I ANEXO I CONCEPTOS SÍSMICOS BÁSICOS AEXO I COCEPTOS SÍSMICOS BÁSICOS E este aeo se compila alguos de los coceptos sísmicos básicos pero ecesarios. Se itroduce los tipos de movimietos vibratorios, así como su descripció y otació matemática.

Más detalles