PROGRESIONES ARITMÉTICAS.-

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROGRESIONES ARITMÉTICAS.-"

Transcripción

1 PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió. TÉRMINO N-ÉSIMO DE UNA PROGRESIÓN ARITMÉTICA.- Si a, a, a 3, a 4, a 5,..., a -, a,...es ua progresió aritmética, cuya diferecia es d, se puede escribir las siguietes igualdades: a = a + d, a 3 = a + d = a + d, a 4 = a 3 + d = a + 3d, a 5 = a 4 + d = a + 4d, a = a - + d = a + ( -)d. El térmio -ésimo de ua progresió aritmética se obtiee sumado al primer térmio la diferecia multiplicada por ( -): a = a + (-)d. a) Hallar el octavo térmio de ua progresió aritmética cuyo primer térmio es 3 y cuya razó es 5. Como a = 3, d = 5 y = 8, se tiee: a 5 = a + (8 -)d = = 38. b) Hallar el primer térmio de ua progresió aritmética que costa de veite térmios, si se sabe que el último es 83 y que la diferecia es 4. Como a 0 = 83, d = 4 y = 0, resulta: 83 = a + (0 -).4 a = = 7. TÉRMINOS EQUIDISTANTES DE LOS EXTREMOS.- Dos térmios a p y a q de ua sucesió limitada so equidistates de los extremos cuado el úmero de térmios que precede a ap es igual al úmero de térmios que sigue a aq. E las progresioes aritméticas limitadas los térmios equidistates de los extremos verifica la siguiete propiedad: La suma de dos térmios de ua progresió aritmética limitada, equidistates de los térmios extremos, es igual a la suma de dichos extremos. E efecto, e la progresió aritmética limitada, de diferecia d: a, a, a 3,..., a, los dos térmios a h+ y a -h so equidistates de los extremos, ya que: al térmio a h+ le precede h térmios; al térmio a -h le sigue h térmios; Aplicado a ambos la fórmula del térmio geeral, resulta: a h + = a + (h + -) d = a + hd; a -h = a + ( -h -)d = a + ( -)d -hd. Sumado miembro a miembro las dos últimas igualdades, se obtiee lo que se desea demostrar: a h+ + a -h = (a + hd) + [a + (-)d-hd] = a + a + (-)d = a + a.

2 a Ejemplo: E la progresió aritmética limitada 3, 7,, 5, 9, 3, se verifica: = = + 5. Nota: Cuado ua progresió aritmética limitada está formada por u úmero impar de térmios, el térmio medio es igual a la semisuma de los térmios extremos, ya que es equidistate de los dos extremos cosigo mismo. SUMA DE LOS TÉRMINOS DE UNA PROGRESION ARITMETICA LIMITADA.- Sea la progresió aritmética limitada, de térmios: a, a, a 3,..., a -, a -, a. Si S represeta la suma de todos los térmios, se tiee: S = a + a + a a - + a - + a Teiedo e cueta la propiedad comutativa de la adició: S = a + a - + a a 3 + a + a. Sumado miembro a miembro, y e columa, ambas igualdades, resulta: S = (a + a ) + (a + a - ) + (a 3 + a - ) (a - + a 3 ) + (a - + a ) + (a + a ). Los sumados etre parétesis correspode a térmios equidistates de los extremos, cuya suma, segú la propiedad aterior, es a + a. Por tato: a+ a (a + a ) La suma de los térmios de ua progresió aritmética limitada es igual a la semisuma de los térmios extremos multiplicada por el úmero de térmios. a) Hallar la suma de los primeros úmeros aturales. Como a =, d =, a = + ( -) = y =, se tiee: + = + b) Hallar la suma de los primeros úmeros pares. Como a =, d =, a = + ( -) = y =, resulta: + S = = + Co las dos fórmulas fudametales obteidas para las progresioes aritméticas, se puede establecer el siguiete sistema: a = a+ ( ) d a+ a E él hay cico variables, a, a, d, y S, relacioadas etre sí de tal maera que, si se cooce tres de ellas, se puede determiar las dos restates. Ejemplo: E ua progresió aritmética limitada, cuyo primer térmio es 67 y cuya diferecia es -6, la suma de los térmios es 408. Cuátos térmios forma la progresió y cuál es el último?

3 Si idica el úmero de térmios y x el valor del último, se puede escribir el sistema: x= 67+ ( )( 6) ( 67+ x) 408= Resolviedo el sistema resulta: = y a = Ejercicios. Forma ua progresió aritmética de ocho térmios co los datos de cada apartado: a) a =, d -3, b) a = 6. d = -, c) a l = ½ d = 4; d) a l = 3/ d = -; e) a = 3 ;d=. Los datos de cada uo de los apartados correspode a ua progresió aritmética. Calcula la diferecia de la progresió e cada caso: a) a l = 3, a l7 = 3; b) a 5 = -0, a l3 = -8; c) a 3 = - 5/3 a 8 = -5; d) a 6 = 3, a 4 = -; 3. Calcula la suma de: a) los cicueta primeros úmeros aturales; b) los veite primeros úmeros pares; c) los cuareta primeros múltiplos de 3; d) los cieto veite primeros úmeros impares; e) los múltiplos de 5 meores que 80; f) los doce primeros múltiplos de 7; g) los veiticico primeros múltiplos de 9; h) los múltiplos de 6 compredidos etre 00 y 000; 4. Resuelve los problemas siguietes, cuyos datos e icógitas correspode a progresioes aritméticas: a) Dados a l = 4, d = y = 8, halla a y S; b) Dados a l = 3, a = y S = 0, calcula d y ; c) Dados a l = 3, d = - y S = 40, averigua a y ; d) Dados a = 0, d = 5 y S = 0, halla a l y ; e) Dados a l = 0, d = y S = 780, determia a y ; f) Dados a l =, d = y S = 7 744, halla a y ; g) Dados a = 56, d = 3 y S = 56, calcula a l y. 5. Dada la progresió aritmética 9,..., 6, de 5 térmios, calcula d y S. 6. Dada la progresió aritmética,4, 6, 8, l0,..., de 00 térmios, averigua a y S. 7. Dada la progresió aritmética 0,4; 0,6; 0,8;...; de 50 térmios, determia a y S. 8. La suma de los térmios segudo y oveo de ua progresió aritmética es -8 y la suma de los térmios quito y décimo es -8/3. Halla el primer térmio. 9. La suma de los térmios tercero y cuarto de ua progresió aritmética es y el sexto térmio es l. Forma la progresió, sabiedo que tiee seis térmios. 0. E ua progresió aritmética la suma de los térmios primero y oveo es 6. El térmio udécimo excede al octavo e uidades. Halla la diferecia de la progresió.. E ua progresió aritmética la suma de los térmios primero y segudo es -5 y la suma del tercero y del cuarto es 9. Forma la progresió, sabiedo que tiee cico térmios.. La suma de tres úmeros e progresió aritmética es y su producto es 63. Averigua esos úmeros. 3. La suma de tres úmeros e progresió aritmética es 8 y su producto es 6. Calcula esos úmeros. 4. Las edades de cuatro hermaos forma ua progresió aritmética, cuya suma es 3 años. El mayor tiee 6 años más que el meor. Averigua los años de los cuatro hermaos. 5. La suma de tres úmeros que forma progresió aritmética es 9 y la suma de sus cuadrados es 35. Halla los tres úmeros. 3

4 6. E ua progresió aritmética, cuyo primer térmio es 3, la razó etre el oveo térmio y el cuarto es igual a la razó etre el decimosexto y el séptimo. Forma la progresió. 7. Calcula los térmios quito y sexto de ua progresió aritmética e la que el octavo térmio es el cuádruple del primero, sabiedo que la suma de los ocho primeros térmios es PROGRESIONES GEOMÉTRICAS.- Ua progresió geométrica es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, es igual al aterior multiplicado por ua costate r, que se deomia razó de la progresió. a) La sucesió,, 4, 8, 6,...es ua progresió geométrica ilimitada de razó r =. b) La sucesió, -,, -,, -,...es ua progresió geométrica ilimitada de razó r = -. c) Los úmeros 4, -,, -~, + forma ua progresió geométrica limitada de razó r = -/. Cuado la razó de ua progresió geométrica es positiva, todos los térmios tiee el mismo sigo; cuado es egativa, los térmios tiee alterativamete sigo positivo y egativo (o viceversa). TÉRMINO N-ÉSIMO DE UNA PROGRESIÓN GEOMÉTRICA.- Si a, a, a 3, a 4, a 5,..., a -, a,...es ua progresió geométrica de razó r, se puede escribir las igualdades siguietes: a = a r, a 3 = a r = a r, a 4 = a 3 r = a r 3, a 5 = a 4 r = a r 4,.. a = a - r = a r -. El térmio -ésimo de ua progresió geométrica se obtiee multiplicado el primer térmio por la razó elevada al expoete ( -): a = a r TÉRMINOS EQUIDISTANTES DE LOS EXTREMOS.- El producto de dos térmios de ua progresió geométrica limitada, equidistates de los térmios extremos, es igual al producto de dichos extremos. E efecto, e ua progresió geométrica limitada, de razó r: los dos térmios a h + y a -h so equidistates de los extremos, ya que al térmio a h+ le precede h térmios y al térmio a -h le sigue h térmios. Aplicado a ambos la fórmula del térmio geeral, resulta: ( h+ ) h a = a r = a r a h+ h = a r ( h) ( ) h h h ( ) = a.r Multiplicado miembro a miembro las dos últimas igualdades, se obtiee lo que se desea demostrar: a h+ a - h = (a r h ). (a r -h ) = a.a Ejemplo: E la progresió geométrica limitada,, 4, 8, 6, 3, se verifica: 3= 6=4.8. Nota: Cuado ua progresió geométrica limitada está formada por u úmero impar de térmios, el térmio medio es igual a la raíz cuadrada del producto de los térmios extremos, ya que es equidistate de los dos extremos cosigo mismo. = a r : r = a r 4

5 PRODUCTO DE LOS TÉRMINOS DE UNA PROGRESIÓN GEOMÉTRICA LIMITADA.- Sea la progresió geométrica limitada, de térmios: a, a, a 3,..., a -, a -, a Si P represeta el producto de todos los térmios, se tiee: P = a a a 3.. a - a - a O tambié, por la propiedad comutativa de la multiplicació: P = a a - a - a 3 a a Multiplicado miembro a miembro, y e columa, ambas igualdades, resulta: P = (a.a.)(a a - ).(a 3 a - )(a - a 3 ). (a - a )(a a ) Los factores etre parétesis correspode a térmios equidistates de los extremos, cuyo producto, segú la propiedad aterior, es a a. Por tato: P= a a P = (a a) ( ) El producto de los térmios de ua progresió geométrica limitada es igual a la raíz cuadrada del producto de los extremos elevado a u expoete igual al úmero de térmios.. Halla el producto de las primeras potecias (de expoete atural) de b. Como a = b, r = b, a = b b - = b y =, resulta: P = ( b b ) = b ( + ). Calcula el producto de los cico primeros térmios de cada ua de las siguietes progresioes geométricas: 4 8 a), 6, 8,...; b) 5, 0, 80,...; c),,,... d), 8, 6, SUMA DE LOS TÉRMINOS DE UNA PROGRESIÓN GEOMÉTRICA LIMITADA.- Sea la progresió geométrica limitada, de térmios y de razó r, escrita e fució del primer térmio y de la razó: a, a r, a r,., a r -3, a r -, a r - Si S es la suma de sus térmios, se tiee: S = a + a r + a r a r -3 + a r - + a r -. Multiplicado los dos miembros de la igualdad por r, resulta: Sr = a r + a r + a r a r - + a r - + a r. Restado de esta última igualdad la primera, se obtiee: Sr-a r -a S(r-)=a (r -) a(r ) 5

6 Fórmula que permite calcular la suma de los térmios de ua progresió geométrica limitada, coociedo el primer térmio, la razó y el úmero de térmios. Teiedo e cueta que a = a r -, se puede escribir: ar a = S Fórmula que permite hallar la suma de los térmios de ua progresió geométrica limitada, coociedo el primer térmio y el último yl a razó. a) Hallar la suma de los diez primeros térmios de la progresió geométrica: 8, 9 4, 3 9, 3,,... Respuesta: SUMA DE LOS TÉRMINOS DE UNA PROGRESIÓN GEOMÉTRICA ILIMITADA.- Sea la progresió geométrica ilimitada de razó r, escrita e fució del primer térmio y de la razó: a, a r, a r,., a r,.. La suma de sus primeros térmios se puede calcular por: ar a a ar a r S = S = S = a r r r Cuado crece idefiidamete, e el cálculo de la suma S puede darse tres casos distitos, segú el valor de la razó r:. Si la razó, e valor absoluto, es mayor que la uidad ( r > ), r crece idefiidamete e valor absoluto y el valor absoluto de la suma será mayor que cualquier úmero K, por grade que sea. Es decir, la suma tiede a más o meos ifiito.. Si la razó, e valor absoluto, es meor que la uidad ( I rl < ), el valor absoluto de r decrece idefiidamete y se hace meor que cualquier úmero ε > 0, por pequeño que sea. Es decir, r tiede a cero, co lo que el segudo sumado de la última fórmula se aula y la suma queda: a Por tato: La suma de los térmios de ua progresió geométrica ilimitada decreciete es igual al primer térmio dividido por ( -r). 3. Si la razó, e valor absoluto, es igual a la uidad (Irl = ), hay que cosiderar dos posibilidades: a) Que r =, co lo que la suma tiede a más o meo ifiito, segú sea positivo o egativo el sigo de a. b) Que r = - co lo que la suma es igual a a o a cero segú sea impar o par EJERCICIOS. Calcula los térmios que se idica e las siguietes progresioes geométricas: a),,4,8, 6,...,a ; b),3,9,7,8,...,a 5 : c),4, 6,64,56,..., a 0 ;. El sexto térmio de ua progresió geométrica es 97 y la razó es 3. Halla el primer térmio. 3. Cuál es el oveo térmio de ua progresió geométrica si el primero es 9 y la razó es/3? 6

7 4. Cuál es el séptimo térmio de ua progresió geométrica cuyo primer térmio es y cuya razo es 6? 5. Cuál es el sexto térmio de ua progresió geométrica cuyo primer térmio es 0,73 y cuya razó es 0,0? 6. Calcula la suma de los: a) seis primeros térmios de la progresió geométrica 6,, 4,...; b) siete primeros térmios de la progresió geométrica:,,,...; c) cico primeros térmios de la progresió geometca:, (+), (+),. d) las diez primeras potecias (de expoete atural) de /. 7. Los datos de cada uo de los apartados correspode a ua progresió geométrica. Calcula las icógitas que se idica e cada uo de ellos: a) a l = 3, r = 4 y = 5, halla a y S; b) = 6, r = 4 y S = 730, calcula a l y a ; 7 c) a l =, r =, y = 8, averigua a y S; d) a =, r = y = 8; halla a y S 5 5 e) r =, = 7 y S = 635, determia a l y a; f) r = 4, = 6 y S = 365, halla a l y a ; g) a l = 3, r = y S = 765, calcula y a 8. Halla la suma de los térmios de cada ua de las siguietes progresioes geométricas ilimitadas: a) 3,, /3, /9, ; b) 6,3, 3/, 3/4,.; c), /0, /00, /000,.; 7

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

3Soluciones a los ejercicios y problemas PÁGINA 79

3Soluciones a los ejercicios y problemas PÁGINA 79 Solucioes a los ejercicios y problemas PÁGINA 79 Pág. P RACTICA Sucesioes formació térmio geeral Escribe los cico primeros térmios de las siguietes sucesioes: a) Cada térmio se obtiee sumado 7 al aterior.

Más detalles

Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10

Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10 SUCESIONES I. Determiar el térmio que cotiúa e cada ua de las siguietes sucesioes: 1. ; 5; 11; 0; 4. - ; 5; - 9 ; 19; A) 8 B) - 7 C) 7 D) - 8 E) 14 A) 8 B) 0 C) D) 1 E) 5. 5 4 7 6 9 8 ; ; ; ; ; ;... 4

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

1. Sucesiones página 217. 2. Idea intuitiva de límite de una sucesión página 222. 3. Operaciones con sucesiones. página 224

1. Sucesiones página 217. 2. Idea intuitiva de límite de una sucesión página 222. 3. Operaciones con sucesiones. página 224 Límite y cotiuidad E S Q U E M A D E L A U N I D A D.. Térmio geeral de ua sucesió págia 7.. Progresioes aritméticas y geométricas págia 7. Sucesioes págia 7. Idea ituitiva de límite de ua sucesió págia..

Más detalles

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los

Más detalles

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos. CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió

Más detalles

OBJETIVO: RESOLVER PROBLEMAS DE PROGRESIÓN ARITMETICA APLICANDO FORMULA ULTIMO TÉRMINO Y DE LA SUMA

OBJETIVO: RESOLVER PROBLEMAS DE PROGRESIÓN ARITMETICA APLICANDO FORMULA ULTIMO TÉRMINO Y DE LA SUMA I. Muicipalidad De Providecia Corporació De Desarrollo Social Liceo Polivalete Arturo Alessadri Palma A Nº Depto. de Matemática Profesor: Pedro Campillay GUÍA MEDIO COEFICIENTE DOS MODULO MATEMATICO NOMBRE:

Más detalles

TEMA IV. 1. Series Numéricas

TEMA IV. 1. Series Numéricas TEMA IV Series uméricas. Ídice. Series uméricas. 2. Propiedades geerales de las series. 3. Series de térmios positivos. Covergecia. 4. Series alteradas. 5. Series de térmios arbitrarios. 6. Ejercicios

Más detalles

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales. Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,

Más detalles

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja, que se reproduce

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43 TEMA. SUCESIONES DE NÚMEROS. LOGARITMOS SOLUCIONES DE LAS ACTIVIDADES Págs. a Págia. a) Es la sucesió de los úmeros impares:, 5, 7 b) Se suma al valor absoluto del úmero y se cambia de sigo: 7, 0, c) Se

Más detalles

9 SUCESIONES. LÍMITES DE SUCESIONES

9 SUCESIONES. LÍMITES DE SUCESIONES 9 SUCESIONES. LÍMITES DE SUCESIONES EJERCICIOS PROPUESTOS 9. Co ua calculadora, forma térmios de las siguietes sucesioes y estudia a qué valores tiede. a) a b) b c) c 5 a) a a 8 5,6 a 0 00,98 a 0 00 0

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS EJERCICIOS DE PROGRESIONES PROGRESIONES ARITMETICAS 1. Hallar los términos que se indican de las siguientes progresiones aritméticas: a) El término 20 en: 1, 6, 11, 16... b) El término 6 en: 3, 7, 11,

Más detalles

CAPÍTULO 3: SUCESIONES. 1. SUCESIONES DE NÚMEROS REALES

CAPÍTULO 3: SUCESIONES. 1. SUCESIONES DE NÚMEROS REALES 3 CAPÍTULO 3: SUCESIONES.. SUCESIONES DE NÚMEROS REALES.. Defiicioes Ua sucesió de úmeros reales es ua secuecia ordeada de úmeros. Las siguietes secuecias so sucesioes: a),, 3, 4, 5, 6, b), 4, 6, 8, 0,,

Más detalles

(finitas o infinitas)

(finitas o infinitas) Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43 TEMA. SUCESIONES DE NÚMEROS. LOGARITMOS SOLUCIONES DE LAS ACTIVIDADES Págs. a a 8 + ( ); Y fialmete: a 7 8 + (7 ) 86 0 7 + 0. S 0 Págia 7 [ ( 7 + 9 5) ] 95. a) 6 : pero 0 : 6,6 o es PG b) 6 : ( ) : 6 :

Más detalles

TEMA 19 Cálculo de límites de sucesiones*

TEMA 19 Cálculo de límites de sucesiones* CURSO -6 TEMA 9 Cálculo de límites de sucesioes* Propiedades aritméticas de los límites de sucesioes. b tales que : a = a b = b, dode ab, R Sea las sucesioes { } a y { } Etoces podemos obteer su suma,

Más detalles

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,

Más detalles

ACTIVIDAD INTEGRADORA Nº PROGRESIONES ARITMÉTICAS

ACTIVIDAD INTEGRADORA Nº PROGRESIONES ARITMÉTICAS ACTIVIDAD INTEGRADORA Nº 5-7 PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS PROGRESIONES ARITMÉTICAS Teemos: Diferecia d = a - a -1 Térmio geeral de ua progresió aritmética: a = a k + ( - k)d Iterpolació de térmios:

Más detalles

2 Halla la diferencia de una progresión aritmética sabiendo que el segundo término es 8 y el quinto 17.

2 Halla la diferencia de una progresión aritmética sabiendo que el segundo término es 8 y el quinto 17. EJERCICIOS EXTRA PROGERSIONES ARITMETICAS Y GEOMETRICAS 1 15 Halla la suma de los 1 primeros térmios de la progresió aritmética: 8,, 7,... Halla la diferecia de ua progresió aritmética sabiedo que el segudo

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

Progresiones Aritméticas: Apunte teórico-práctico

Progresiones Aritméticas: Apunte teórico-práctico Progresioes Aritméticas: Apute teórico-práctico Ua progresió aritmética (P.A.) es ua sucesió tal que cada térmio de obtiee sumado u úmero costate al aterior. Este úmero costate se llama razó de la P.A.

Más detalles

SUCESIONES DE NÚMEROS REALES. PROGRESIONES

SUCESIONES DE NÚMEROS REALES. PROGRESIONES www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ALGEBRA I GUÍA DE PROGRESIONES Y TEOREMA DEL BINOMIO Profesor: David Elal OLivero Primer año Pla Comú de Igeiería Primer Semestre

Más detalles

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino i quieres que lgo se hg, ecárgselo u perso ocupd Proverbio chio hht ttpp: ://ppeer rssoo..wddoooo..eess/ /ti iimoomt tee Noviembre 006 PROGREIONE DEFINICIÓN DE UCEIÓN NUMÉRICA U sucesió uméric es u cojuto

Más detalles

ALGEBRA ELEMENTAL AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES.

ALGEBRA ELEMENTAL AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. ALGEBRA ELEMENTAL INDICE AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. Ley asociativa... Ley distriutiva... 1.- EXPONENTES Y RADICALES...

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

Ejercicios de Sucesiones y Progresiones

Ejercicios de Sucesiones y Progresiones Ejercicios de Sucesioes y Progresioes 1. Escribe los siguietes térmios de estas sucesioes: a) 5,6,8,11,15, b) 0,20,10,0, c) 7,14,21,28,... d) 1,5,25,125,.. Qué criterio de formació ha seguido cada uo?

Más detalles

SUCESIÓN. La colección de números que definen a una sucesión permite clasificar a éstas en:

SUCESIÓN. La colección de números que definen a una sucesión permite clasificar a éstas en: UCEIÓN CPR. JORGE JUAN Xuvia-Naró Ua sucesió, (a ), de úmeros reales es ua fució que hace correspoder a cada úmero atural, excluido el cero, u úmero real, la cual viee defiida segú: f: N* R a a i a Número

Más detalles

Resuelve. Unidad 2. Sucesiones. BACHILLERATO Matemáticas I. Una hermosa curva. Página 55

Resuelve. Unidad 2. Sucesiones. BACHILLERATO Matemáticas I. Una hermosa curva. Página 55 Uidad. Sucesioes Resuelve Págia Ua hermosa curva La curva de la derecha está costruida co ocho arcos de circuferecia. Los siete primeros so de u cuarto de circuferecia. El octavo, es solo u trocito. a)

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

En el siglo XVIII muchos matemáticos buscaban, sin demasiado éxito, el valor de la expresión

En el siglo XVIII muchos matemáticos buscaban, sin demasiado éxito, el valor de la expresión Defiició y propiedades 5 5. Defiició y propiedades 6 5. Covergecia absoluta e icodicioal 65 5.3 Criterios de covergecia para series de térmios o egativos 66 5.4 Otros criterios 69 5.5 Suma de series 69

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006 Estalmat. Real Academia de Ciecias. Curso 5/6 Diámica compleja Cojutos de Julia y Madelbrot. Método de Newto. Miguel Reyes Mayo 6 Los úmeros complejos Los úmeros complejos so los úmeros de la forma dode

Más detalles

CAPÍTULO V. SUCESIONES Y SERIES

CAPÍTULO V. SUCESIONES Y SERIES (Aputes e revisió para orietar el apredizaje) CAPÍTULO V. UCEIONE Y ERIE DEFINICIÓN. Ua sucesió ifiita, o simplemete sucesió, es ua fució cuyo domiio está costituido por el cojuto de los úmeros aturales

Más detalles

Progresiones aritméticas y geométricas

Progresiones aritméticas y geométricas Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

Sumatoria, Progresiones y Teorema del Binomio

Sumatoria, Progresiones y Teorema del Binomio Capítulo Sumatoria, Progresioes y Teorema del Biomio.. Símbolo Sumatorio Es u símbolo muy útil y coveiete que permite escribir sumas e forma abreviada. Este símbolo se represeta mediate la letra griega

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,...

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,... SUCESIONES Y SERIES. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean ESTADÍSTICA Estadística: Es ua rama de la matemática que comprede Métodos y Técicas que se emplea e la recolecció, ordeamieto, resume, aálisis, iterpretació y comuicació de cojutos de datos. Població:

Más detalles

TEMA 2 SUCESIONES SUCESIONES Y TÉRMINOS. Solución: a) a 2 = ; a10 =

TEMA 2 SUCESIONES SUCESIONES Y TÉRMINOS. Solución: a) a 2 = ; a10 = 1 TEMA 2 SUCESIONES SUCESIONES Y TÉRMINOS EJERCICIO 1 : Si el térmio geeral de ua sucesió es a = 2 10 2 a) Halla el térmio segudo y el décimo. b) Hay algú térmio que valga 5? Si hay decir que lugar ocupa

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - Curso de Verao 016 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c y

Más detalles

EJERCICIOS PENDIENTES 3º E.S.O. PROGRESIONES ARITMÉTICAS

EJERCICIOS PENDIENTES 3º E.S.O. PROGRESIONES ARITMÉTICAS 3º E.S.O. PROGRESIONES ARITMÉTICAS (a + a ) RECUERDA: E ua progresió aritmética: a a + ( )d, S ) Escribe el térmio geeral de las siguietes progresioes aritméticas: a) a -3, d 5; b) a 3, d ; c) a 5, d )

Más detalles

CAPÍTULO XIII. SUCESIONES

CAPÍTULO XIII. SUCESIONES CAPÍTULO XIII SUCESIONES NUMÉRICAS SECCIONES A Sucesioes covergetes y límites de oscilació Sucesioes moótoas y acotadas B Sucesioes recurretes C Ejercicios propuestos 59 A SUCESIONES CONVERGENTES Y LÍMITES

Más detalles

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1 TEMA : Potecias y raíces Tema : Potecias y raíces ESQUEMA DE LA UNIDAD.- Cocepto de potecia..- Potecias de expoete atural..- Potecias de expoete etero egativo..- Operacioes co potecias..- Notació cietífica...-

Más detalles

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5 UNIDAD 3 a Escribe los cico primeros térmios de las sucesioes: a.1) a 2, a 3 1 2 a a a 1 2 a.2 b 2 + 1 b Halla el térmio geeral de cada ua de estas sucesioes: b.1 3, 1, 1, 3, 5,... b.2 2, 6, 18, 54,...

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas).

ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas). ÁLGEBRA ELEMENTAL 1.- EXPRESIONES ALGEBRAICAS (GENERALIDADES) 1.1.- Alguas defiicioes Ua epresió algebraica es ua epresió matemática que cotiee úmeros, letras que represeta úmeros cualesquiera sigos matemáticos

Más detalles

Capítulo 2. Series de números reales. 2.1 Convergencia de una serie de números reales.

Capítulo 2. Series de números reales. 2.1 Convergencia de una serie de números reales. Capítulo 2 Series de úmeros reales Defiició 2.0. Dada ua sucesió a, a 2, a 3,,, de úmeros reales, la sucesió S, S 2, S 3,, S, dode: S = a S 2 = a + a 2 S 3 = a + a 2 + a 3 S = a + a 2 + a 3 + + se dice

Más detalles

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5 Aexo 4 Calculadora La proliferació de las calculadoras e la vida cotidiaa obliga a profesores y padres a replatearse su uso. Los profesores debemos eseñar a los alumos su utilizació. Pero será los profesores

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

Tutorial MT-b3. Matemática Tutorial Nivel Básico. Potencia y Raíces

Tutorial MT-b3. Matemática Tutorial Nivel Básico. Potencia y Raíces 14568901456890 M ate m ática Tutorial MT-b Matemática 006 Tutorial Nivel Básico Potecia y Raíces Matemática 006 Tutorial Potecias y raíces Marco teórico: Potecias 1. Defiició: Ua potecia es el resultado

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

an = 4n - 3 a 4 =4. -3 = a 13= a0 = an =an-1 + an-2 con a1 = 1 y a2 = 1 a 3 =

an = 4n - 3 a 4 =4. -3 = a 13= a0 = an =an-1 + an-2 con a1 = 1 y a2 = 1 a 3 = TEMA 3: PROGRESIONES CONCEPTO DE SUCESIÓN Ua sucesió es u cojuto de úmeros ordeados segú ua ley, de modo que se puede umerar: primero, segudo, tercero,. Los elemetos de ua sucesió se llama térmios y se

Más detalles

Tema 12. Límites de sucesiones

Tema 12. Límites de sucesiones Aálisis IES Complutese Tema Límites de sucesioes Resume Alguas características y propiedades de las sucesioes Sucesió creciete Ua sucesió es creciete si cada térmio es mayor o igual que el aterior: a a

Más detalles

GUÍA SUCESIONES Y SERIES. a n 1 1. a) La suma de los 5 primeros términos de la sucesión. b) La suma de los 10 primeros términos de la sucesión.

GUÍA SUCESIONES Y SERIES. a n 1 1. a) La suma de los 5 primeros términos de la sucesión. b) La suma de los 10 primeros términos de la sucesión. ESCUELA DE GOBIERNO Y GESTIÓN PÚBLICA UNIVERSIDAD DE CHILE GUÍA SUCESIONES Y SERIES. Escriba los cico primeros térmios de la sucesió dada a) a = + b) a = ( ) c) b = (+) d) c = - (-). Sea a la sucesió defiida

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

Nota: Los coeficientes de los términos equidistantes son b. Contado de derecha a izquierda: iguales. + 1 (x + a) 0 1 (x + a) 1 1 1

Nota: Los coeficientes de los términos equidistantes son b. Contado de derecha a izquierda: iguales. + 1 (x + a) 0 1 (x + a) 1 1 1 Biomio de Newto I Itroducció al Biomio de Newto (para expoete etero y positivo ZZ + ) Teorema Sea: x; a 0 y ZZ + (x + a) = Desarrollado los iomios: C x -.a 0 (x + a) 1 = x + a (x + a) = x + xa + a (x +

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPONENTES Y RADICALES

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPONENTES Y RADICALES MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPONENTES Y RADICALES POTENCIACIÓN Y RADICACIÓN (Tomado de: Stewart, James. "Precálculo". Quita Edició. Secció 1..) Si a; x R; ua expresió

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

/ n 0 N / D(f) = {n N / n n 0 }

/ n 0 N / D(f) = {n N / n n 0 } Liceo Nº 10 016 SUCESIONES Primera defiició Ua sucesió de úmeros reales es ua fució cuyo domiio es el cojuto de los úmeros aturales (N) y cuyo recorrido está coteido e el cojuto de los úmeros reales (R).

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común:

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común: PERIODO I FACTORIZACIÓN Factorizar es escribir o represetar ua expresió algebraica como producto de sus factores: Ejemplo: x 4 = (x + ) (x ) = (x + ) (x + ) (x ) Ua expresió queda completamete factorizada

Más detalles

) = Ln(1 + 1 n ) 1 n. Ln( n ) n tiene términos positivos y si 0 < lím n n bn. < entonces ambas series divergen o bien ambas series convergen

) = Ln(1 + 1 n ) 1 n. Ln( n ) n tiene términos positivos y si 0 < lím n n bn. < entonces ambas series divergen o bien ambas series convergen Criterio de Comparació Si a 0 y b 0. Si existe ua costate C > 0 tal que a Cb etoces la covergecia de b implica la covergecia de a. Ejemplo.- Sabemos que la serie coverge a, pero como (+), etoces la serie

Más detalles

Algoritmos y Estructuras de Datos II, Segundo del Grado de Ingeniería Informática, Test de Análisis de Algoritmos, marzo Test jueves.

Algoritmos y Estructuras de Datos II, Segundo del Grado de Ingeniería Informática, Test de Análisis de Algoritmos, marzo Test jueves. Algoritmos y Estructuras de Datos II, Segudo del Grado de Igeiería Iformática, Test de Aálisis de Algoritmos, marzo 017. Test jueves. Para cada problema habrá que justificar razoadamete la respuesta que

Más detalles

Conjunto de números dispuestos uno a continuación de otro: a 1, a 2, a 3,..., a n. Sucesión inversible o invertible. a n 1 a n.

Conjunto de números dispuestos uno a continuación de otro: a 1, a 2, a 3,..., a n. Sucesión inversible o invertible. a n 1 a n. Sucesioes Tema 8.- Sucesioes y Límites Cojuto de úmeros dispuestos uo a cotiuació de otro: a, a, a 3,..., a Operacioes a =a, a, a 3,..., a b =b, b, b 3,..., b Suma Diferecia (a )+(b )=(a +b )= a +b, a

Más detalles

( ) ( )( )( ) ( ) ( )( )

( ) ( )( )( ) ( ) ( )( ) Algebra uiversitaria UNIDAD III. POLINOMIOS 3.. Técicas elemetales para buscar raíces Recordado la defiició de raíz U poliomio P(x) tiee ua raíz r si y solo si P(r) = 0. Recordar el teorema de factorizació

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

Eje I: Números y Operaciones

Eje I: Números y Operaciones Colegio Provicial de Educació Secudaria Nº Gregorio Álvarez Maestro Patagóico C I C L O Eje I: Números y Operacioes L E C T I V O 0 1 8 ALUMNO: PROFESORA: MARÍA ELISA PALMAS Eje I: Números y Operacioes

Más detalles

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14 GUIA DE TRABAJO PRACTICO Nº 4 PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 4 OBJETIVOS: Lograr que el Alumo: Resuelva correctamete aritmos y aplique sus propiedades. Resuelva ecuacioes epoeciales.

Más detalles

ACTIVIDADES NO PRESENCIALES

ACTIVIDADES NO PRESENCIALES E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Grado e Igeiería Mecáica Este documeto cotiee las actividades o preseciales propuestas al termiar la clase del día que se idica. Se sobreetiede

Más detalles

Fracciones. Prof. Maria Peiró

Fracciones. Prof. Maria Peiró Fraccioes Prof. Maria Peiró Recordemos Las partes de ua divisió so Dividedo Residuo divisor Cociete Defiició Ua fracció o querado, es ua divisió de la uidad e u determiado úmero de partes, de las cuales

Más detalles

Álgebra I Práctica 4 - Números enteros (Parte 1)

Álgebra I Práctica 4 - Números enteros (Parte 1) Divisibilidad y úmeros primos Álgebra I Práctica 4 - Números eteros (Parte 1) 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z: i) a b c a c y b c, ii) 4 a 2 2 a, iii) 2 a b 2 a ó

Más detalles

Potencias y raíces de números enteros

Potencias y raíces de números enteros Potecias y raíces de úmeros eteros Objetivos E esta quicea aprederás a: Expresar multiplicacioes de u mismo úmero e forma de potecia. Realizar operacioes co potecias. Trabajar co potecias de base 0. Expresar

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS

6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM. 6. SUCESIONES Y SERIES NUMÉRICAS 6... Sucesioes de úmeros reales 6.. SUCESIONES NUMÉRICAS Se llama sucesió de úmeros reales a cualquier

Más detalles

Solución: Se observa que en su perímetro e interior, el primer cuadrilátero tiene cinco puntos y además 5 = 1+

Solución: Se observa que en su perímetro e interior, el primer cuadrilátero tiene cinco puntos y además 5 = 1+ Problema. E el diagrama se preseta los tres primeros cuadriláteros de ua secuecia que iicia e u puto e el cetro del tablero crece desde ese puto hacia fuera, cuál es el úmero de putos que está e el perímetro

Más detalles

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z <

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z < Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD La distribució ormal: La distribució ormal, campaa de Gauss o, curva ormal, tambié defiida por De Moivre. Características y propiedades: La siguiete fórmula

Más detalles

X Olimpiada Matemática Valencia 1999

X Olimpiada Matemática Valencia 1999 X Olimpiada Matemática Valecia 999 Fase Autoómica Valecia año 999. CATEGORÍA 4-6 AÑOS PROBLEMA. Números. Halla u úmero de cuatro cifras que cumpla las siguietes codicioes: La suma de los cuadrados de las

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles