R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series."

Transcripción

1 R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de formació. Para referiros a ua sucesió cualquiera escribimos a, a, a, a 4,... a. El térmio a, que ocupa el lugar, se llama térmio geeral. Si el Térmio geeral viee expresado mediate ua fórmula, etoces se puede hallar tatos térmios de la sucesió como queramos. Cada ua de las siguietes sucesioes tiee su térmio geeral expresado por ua fórmula: a =- ; 5; 8; ;... a = ; /; /5; /7;... a = ; 4; 9; 6; 5; 6;... b = ; 8; 7; 64; 5; 6;... No todas las sucesioes tiee térmios geeral. Por ejemplo, e la sucesió de los úmeros primos ; ; 5; 7; ; ; 7; 9; ;... o hay igua fórmula que exprese el térmio geeral. Este térmio geeral es coocido como Termio eésimo y es la ley mediate la cual se obtiee u térmio cualquiera de la sucesió, e fució de los ateriores. Otra maera de defiir ua sucesió es por medio de ua relació, por ejemplo la sucesió de Fiboacci se forma así: ; ; ; ; 5; 8; ;,. Dode u u, u u u Alguos ejemplos so los siguietes: a) U U ; U ;... - b) {(-) } ; ; ; ; ; c) { ( ) } 0 d) { }.;.0;.00;.000;.0000;... ; 9 ; 8 ; 65 ; 6 ; Escribir los cuatro primeros térmios de las sucesioes: a) { } b) - { } ( ) c) { } ; ; ; 4 ; 5 ; ; ; 5 ; 7 ; 9 ; ; ; 4 ; 8 ; 6 ;

2 R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. Hallar el térmio eésimo de las sucesioes siguietes: a) ; ; ; 4 ; 5 ; { } b) ; ; 5 ; 7 ; 9 ; { } c) d) ; 4 ; 8 ; 6 ; ; ; ; 8 ; 5 ; 4 ; { } { } Ejemplo : E la sucesió (a ) el primer térmio es y los demás térmios se obtiee sumado 5 al térmio aterior. Hallar los 5 primeros térmios de la sucesió. Solució Ejemplo : Hallar la expresió del térmio geeral de la sucesió (a ) =, 5, 7, 9,,... Solució SUCESIONES MONOTONAS Ua sucesió es acotada si existe u úmero positivo M idepediete de, tal que: u M para,,,4, a) ; ; ; ; ;... es acotada o excede a a { } 4 5 ( )(-) b) ; 4 ; 5 ; 6 ; 7 ;...es acotada o excede a a { c) ; 4; 6; 8;0;... o acotada {} Ua sucesió moótoa es creciete cuado la siguiete proposició es verdadera u u para toda,,,4,... De forma aáloga ua sucesió es moótoa decreciete si se cumple lo siguiete u u para toda,,,4,... Ejemplo, coteste Si/No para los siguietes casos; Sucesió Acotada Moótoa creciete Moótoa decreciete ;.5; ;.5; 4; 4.5;.. NO NO ; -; ; -; ; -; ; SI NO NO ;.;.;.; SI SI NO.;.. /0; /; /; /; SI NO SI a }

3 R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. ; ¾; ; 4/5; ; 5/6; ;. SI NO NO Si los térmios de ua sucesió {S} se acerca a u úmero L, se dice que la sucesió es Covergete a L. O bie, que el límite de S tiede a L. Es decir: Lim S L E caso cotrario se dice divergete o S L cuado Para los ejemplos ateriores. - b) {(-) } ; ; ; ; ;... coverge a c) { ( ) }.;.0;.00;.000;.0000;... Coverge a 0 d) { } Problemas. ; 9 ; 8 ; 65 ; 6 ;... Divergete Estudiar la covergecia de las sucesioes cuyos térmios geerales so los siguietes a) S 5 b) S c) S SUCESIONES ARITMÉTICAS Se llama sucesió aritmética al cojuto de elemetos e la cual cada térmio, después del primero, es igual al aterior más ua catidad costate, llamado razó o diferecia. Esa catidad costate que diferecia a dos térmios cosecutivos. Se llama razó y se represeta por d La sucesió: S 5; 8;;4;... Tiee la razó o diferecia d = 8 5 = 8 = 4 = La sucesió: S 8;; 8; ; ; 7 es ua progresió aritmética de seis térmios Ua sucesió aritmética es creciete si su razó es positiva. e la cual cada térmio, a partir del segudo, se obtiee añadiedo al aterior ua catidad costate igual a -5 d = 8 = 8 = 8 = - = -5 S 5;0;5; 0; 5;... d 5 Por lo cotrario, ua sucesió aritmética es decreciete si su razó es egativa.

4 R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. S ; 7; ; ; 55;... d 4 Para ecotrar el térmio eésimo de ua sucesió aritmética, podemos deducirlo de lo siguiete: Sea la progresió aritmética: a=a, a, a, a 4, a 5,..., a Por la defiició de sucesió aritmética podemos deducir lo siguiete: a = a a = a + d = a + d a = a + d = (a +d)+d = a+d a 4 = a + d = (a + d)+d = a+d a 5 = a 4 + d = (a + d) + d = a+4d a = a + ( ) d Esta fórmula os permite determiar el térmio eésimo e ua sucesió aritmética, y los compoetes a, y d, como veremos e el siguiete ejemplo: Hallar el vigésimo térmio de la progresió aritmética: -5, -, -9, -6,... Para este caso los parámetros so: a = -5 ; d = - (-5) = = = 0 a =? a = a + ( ) d= -5 + (-) = Fialmete el térmio eésimo a= -8 Para = 0, por ejemplo; tedremos a 0 = (0)-8=60-8=4 Ejemplos:. El primer térmio de ua p.a. es 5 su diferecia escribir los cuatro primeros térmios. Datos: a = 5 d = Icógitas: a, a, a, a 4, Como cada térmio es igual al aterior más la diferecia será: a = 5; a = 5 + = 7; a = 7 + = 9; a 4 = 9 + = Los cuatro térmios de la progresió será: 5, 7, 9, Se trata de ua progresió aritmética creciete 4

5 R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series.. El séptimo térmio de ua sucesió aritmética. es su diferecia es - Determiar el primer térmio. Datos: a 7 = d = - = 7 Icógita: a Se trata de ua progresió aritmética decreciete al ser egativa la diferecia A partir de la fórmula del térmio eésimo a = a + ( - )d, sustituimos los datos = a + (7 - ) (-) = a - 8 de dode + 8 = a por lo tato a =. Los térmios tercero y séptimo so, respectivamete, 0 y 4. Determiar el primer térmio y escribir los tres térmios siguietes. Datos: a = 0; a 7 = 4 Icógitas= a y a,a, a 4 Sustituimos e a = a + ( - )d, los datos para el º y séptimo térmio. Es decir teemos ecuacioes que al sustituir para el tercer y séptimo térmio os queda lo siguiete: a = a + ( - )d para el tercer térmio 0 = a + d a 7 = a + (7 - )d para el sétimo 4 = a + 6d Que costituye u sistema de dos ecuacioes co dos icógitas que resolvemos restado a la seguda ecuació, la primera (método de reducció) Resultado 4 = 4d de dode d = 4/4 = 6; luego d = 6 Sustituyedo este valor e la primera ecuació resultará: 0 = a + x 6 de dode a = 0 - = - Luego a = - y d = 6 Co estos valores podemos escribir los tres térmios siguietes: a = a + d = = 4 a = a + d = = 0 a 4 = a + d = = 6 Problemas. ) Si e ua sucesió aritmética el décimo séptimo es y el primero es, hallar la razó. ) Cuátos térmios tiee ua sucesió aritmética fiita, cuyo eésimo térmio es, la razó es y su térmio es? ) cuatos múltiplos de 5 hay etre y 58? 4) Si el séptimo térmio de ua sucesió aritmética es 6 y el décimo quito térmio es, escribir los cico primeros térmios de esta sucesió. 5) Cuál es el décimo térmio de la sucesió aritmética 5,, 9,...? 6) El primer térmio de ua sucesió aritmética es y su duodécimo térmio es 44. Hallar la diferecia Comú. 5

6 R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. Sucesioes geométricas: Dada ua sucesió, a= a ; a ; a ; a 4; a 5; a 6; tal que térmio cualquiera puede obteerse multiplicado el aterior por la razó costate r. Por ejemplo dada la secesió geométrica creciete a= 5, 0, 0, 40 E dode la razó o multiplicador de cada térmio es. Se puede observar que cada térmio se obtiee por la multiplicació del térmio aterior por. Es decir, a = 5 a = a x= 5x= 0 a = a x= 0x= 0.. Etc E forma geeral teemos; a = ra a = ra = rra =a r a 4 = ra = ra r =a r y así sucesivamete. Etoces el térmio eésimo a se formará de acuerdo a la siguiete regla: a = a r - dode a = al térmio eésimo = úmero atural que expresa el úmero de térmios r = la razó o cociete de dos térmios cosecutivos. Se observa que u térmio cualquiera puede obteerse multiplicado el aterior por la razó costate r, así: a = r a - Tambié puede obteerse observado la ley de formació. Cada térmio es igual al primero multiplicado por la potecia de r cuyo expoete es igual a los térmios que le precede así: a = a r - Ejemplos y ejercicios de Sucesioes geométricas:. El primer térmio de ua sucesió geométrica. es 5; su razó ; escribir los cuatro primeros térmios. Datos: a = 5 r = 6

7 R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. Icógitas: a, a, a, a 4, Como cada térmio es igual al aterior multiplicado por la razó, será: a = 5; a = 5 x = 0; a = 0 x = 0; a 4 = 0 x = 40 Los cuatro térmios de la sucesió será: 5, 0, 0, 40. Se trata de ua sucesió geométrica creciete. El quito térmio de ua sucesió geométrica es 486 su razó es. Determiar el primer térmio. Datos: a 5 = 486 r = = 5 Icógita: a Se trata de ua sucesió geométrica creciete al ser la razó mayor que. Escribimos la fórmula del térmio geeral: a = a r - e ella sustituimos los datos 486 = a 5- operado resulta: 486 = a 4 = 8 a de dode a = 486 / 8 =6. Los térmios tercero y quito de ua sucesió geométrica so, respectivamete, 8 y. Determiar el primer térmio y escribir los tres térmios siguietes. Datos: a = 8; a 5 = Icógitas= a y a,a, a 4 A partir de la fórmula del térmio geeral. a = a r - e ella sustituimos los datos aplicádosela al º y séptimo térmio así: a = a r - Que se trasforma e 8 = a r a 5 = a r 5- Que se trasforma e = a r 4 Que costituye u sistema de dos ecuacioes co dos icógitas que resolvemos elimiado ua icógita y ua ecuació, (método de reducció), dividiedo miembro a miembro ambas ecuacioes resultará: 4 = Traspoiedo térmios: r = ---- r 4 Despejado, r será igual a ± ¼ = ± ½ Sustituyedo e la primera ecuació: 8 = a r resultará 8 = a (± ½) = a (/4) de dode a = Como teemos dos solucioes para la razó, tedremos dos solucioes para el problema: Solució ª para r = ½: a = ; a = 6; a = 8; a 4 = 4 Solució ª para r =-½: a = ; a = -6; a = 8; a 4 =- 4 7

8 R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. E el primer caso la sucesió es decreciete por cumplir la desigualdad: 0 < r < E el segudo caso la sucesió es alterada por cumplir la desigualdad: r < 0 SERIES Ua serie es la suma de los térmios de ua sucesió y el valor de dicha suma, si es que tiee alguo es S Lim S E ecoomía estamos iteresados a estudiar las series geométricas ifiitas, de la forma: a La cual se obtiee a partir de u térmio iicial multiplicado por ua catidad costate Pogamos u ejemplo: Ua empresa agrícola que produce u determiado producto ha teido como beeficios el último año por 50,000 pesos y espera que crezca e u % aual para los próximos 8 años. Cuáles so los beeficios previstos para el décimo año y cuales los beeficios totales a lo largo del período? Año Beeficios 0 50, (+.) =50000(.) 50000(.)(+.) = 50000(.) 50000(.) (+.) =50000(.) (.) 7 La suma de esta serie de catidades es la ecuació que escribimos ates. 4 S a Esta serie se llama como hemos dicho SERIE GEOMÉTRICA fiita de razó k. Para ecotrar la suma de la serie, la multiplicamos ambos miembros de la ecuació por la costate k y después despejamos: ks

9 R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. efectuamos la resta de esta última co la aterior despejamos S ( k) a lo que os deja S - S S a a( k ), ( k) k Si K= la suma sería S =a (a+a+a+a+a+a+a..) E resume, la suma de ua serie geométrica ifiita será igual a a 4... a( k ), ( k) k Para el ejemplo aterior teemos los siguietes datos; a=50000, k=. y =8. Por lo tato da (.) (.) Series geométricas ifiitas (. ) (.) 4,04,89.6 Supogamos ua sucesió ifiita de úmeros como la siguiete:, ½; ¼, /8, /6 /; E dode para cada térmio de la sucesió se forma dividiedo por a su predecesor, de tal forma que el eésimo térmio es / -. La razó de esta serie es ½, y el primer térmio es a=. Por lo tato teemos la siguiete serie geométrica... E el caso de series geométricas ifiitas para poder ecotrar la suma de la serie cuado tiede a ifiito, es decir para el ejemplo aterior; Lim Cuado más crezca el valor de el térmio tederá a ser cero, por ejemplo para u valor grade como de =00, el termio es aproximadamete 7.8x0 -, u valor muy cercao a cero. E forma geeral para el caso de series ifitas: S a( k ), ( k) k cuado, depede de k Si el valor de K esta etre -< k < el limite tiede cero. Mietras que; si k ó k o tiee límite. 9

10 R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. E resume, si k <, la suma de los térmios de S tederá al límite a cuado (- k) tiede a ifiito. Este límite es por defiició la suma ifiita, y esta es covergete. Por lo cotrario si k, la serie ifiita es divergete. Problemas.. Ecuetre la suma de las serie S.... Estudiar la covergecia de las series geométricas siguietes y calcular la suma de las que tega. a.... p p p k=/p b.... x ( x) ( x) k=/(+x) Bibliografía Herádez, Héctor, Núñez Luis. Sucesioes y Series: ocioes básicas. Notas Prelimiares, [e líea] Uiversidad de los Ades, Mérida, José Darío Sáchez Herádez, SUCESIONES Y SERIES, [e líea] SUCESIONES Y SERIES. México. 0

R. Urbán Ruiz (notas de clase)

R. Urbán Ruiz (notas de clase) R. Urbá Ruiz (otas de clase) Fucioes E las ciecias Ecoómicas las fucioes so de mucho valor para resolver problemas dode haya que relacioar variables; como por ejemplo, la producció, la oferta, la demada,

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

SUCESIONES DE NÚMEROS REALES. PROGRESIONES

SUCESIONES DE NÚMEROS REALES. PROGRESIONES www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos

Más detalles

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5 UNIDAD 3 a Escribe los cico primeros térmios de las sucesioes: a.1) a 2, a 3 1 2 a a a 1 2 a.2 b 2 + 1 b Halla el térmio geeral de cada ua de estas sucesioes: b.1 3, 1, 1, 3, 5,... b.2 2, 6, 18, 54,...

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

La sucesión de Lucas

La sucesión de Lucas a sucesió de ucas María Isabel Viggiai Rocha Cosideramos la sucesió umérica { } defiida por: - - si 3 y y 3. Esta sucesió es coocida como la sucesió de ucas y a sus térmios se los llama úmeros de ucas.

Más detalles

Problemas de Sucesiones

Problemas de Sucesiones Capítulo Problemas de Sucesioes Problema. Calcular los siguietes ites: l se i e + 3 ii 5 iii l iv + + + Solució: l se i [ escala de iitos se acotada ] 0 acotada 0. e + e ii 5 + [ úmero meor que uo 5 ]

Más detalles

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números. Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales. Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos. CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

Tema 5 Series numéricas

Tema 5 Series numéricas Tema 5 Series uméricas Objetivos 1. Defiir series co wxmaxima. 2. Calcular sumas parciales de ua serie. 3. Iterpretar la defiició de suma de ua serie. 4. Calcular la suma de ua serie geométrica. 5. Calcular

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

(finitas o infinitas)

(finitas o infinitas) Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.

Más detalles

TEMA IV. 1. Series Numéricas

TEMA IV. 1. Series Numéricas TEMA IV Series uméricas. Ídice. Series uméricas. 2. Propiedades geerales de las series. 3. Series de térmios positivos. Covergecia. 4. Series alteradas. 5. Series de térmios arbitrarios. 6. Ejercicios

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18 Los úmeros reales.. Los úmeros reales El cojuto de los úmeros reales está formado por los úmeros racioales y los irracioales. Se represeta por la letra Los úmeros racioales so los úmeros eteros, los decimales

Más detalles

Convergencia absoluta y series alternadas

Convergencia absoluta y series alternadas Tema 11 Covergecia absoluta y series alteradas Ua vez que dispoemos de diversos criterios de covergecia para series de térmios o egativos, abordamos el estudio de la covergecia de series de úmeros reales

Más detalles

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14 GUIA DE TRABAJO PRACTICO Nº 4 PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 4 OBJETIVOS: Lograr que el Alumo: Resuelva correctamete aritmos y aplique sus propiedades. Resuelva ecuacioes epoeciales.

Más detalles

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

CAPITULO 2. Aritmética Natural

CAPITULO 2. Aritmética Natural CAPITULO Aritmética Natural Itroducció 1 Sumatorias Iducció Matemática Progresioes Teorema del Biomio 1. Coteidos. Itroducció 1) Asumiremos que el cojuto de úmeros reales R, +,, ) es u cuerpo ordeado completo.

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

CAPÍTULO V. SUCESIONES Y SERIES

CAPÍTULO V. SUCESIONES Y SERIES (Aputes e revisió para orietar el apredizaje) CAPÍTULO V. UCEIONE Y ERIE DEFINICIÓN. Ua sucesió ifiita, o simplemete sucesió, es ua fució cuyo domiio está costituido por el cojuto de los úmeros aturales

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Sucesiones y series de números reales 1. Sucesiones de números reales

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Sucesiones y series de números reales 1. Sucesiones de números reales - Ferado Sáchez - - 7 Sucesioes Cálculo I y series de úmeros reales Sucesioes de úmeros reales 20 205 De maera similar a como se hizo para sucesioes de úmeros racioales, se defie ua sucesió de úmeros reales

Más detalles

SUCESIONES Y SERIES DE FUNCIONES

SUCESIONES Y SERIES DE FUNCIONES CAPÍTULO XV. SUCESIONES Y SERIES DE FUNCIONES SECCIONES A. Campo de covergecia. Covergecia uiforme. B. Series de potecias. Itervalos de covergecia. C. Desarrollo de fucioes e series de potecias. D. Aplicacioes

Más detalles

1 EXPRESIONES ALGEBRAICAS

1 EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

a 1, a 2, a 3, a 4,..., a n,... La sucesión {a 1, a 2, a 3,...}también se denota mediante a n n 1 a n 1 n n 1 a n sn 3, n 3 a n cos n 3, 4 125, 6

a 1, a 2, a 3, a 4,..., a n,... La sucesión {a 1, a 2, a 3,...}también se denota mediante a n n 1 a n 1 n n 1 a n sn 3, n 3 a n cos n 3, 4 125, 6 . SUCESIONES Se puede cosiderar que ua sucesió es ua lista de úmeros escritos e u orde defiido: a, a 2, a 3, a 4,..., a,... El úmero a recibe el ombre de primer térmio, a 2 es el segudo térmio y, e geeral,

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Cálculo para la ingeniería Tomo II. Salvador Vera

Cálculo para la ingeniería Tomo II. Salvador Vera Cálculo para la igeiería Tomo II Salvador Vera 9 de eero de 5 ii Copyright c by Salvador Vera Ballesteros, 998-4. Ídice geeral 7. Series Numéricas 7.. El sigo del sumatorio: Sigma Σ... 7... Propiedades

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10

Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10 SUCESIONES I. Determiar el térmio que cotiúa e cada ua de las siguietes sucesioes: 1. ; 5; 11; 0; 4. - ; 5; - 9 ; 19; A) 8 B) - 7 C) 7 D) - 8 E) 14 A) 8 B) 0 C) D) 1 E) 5. 5 4 7 6 9 8 ; ; ; ; ; ;... 4

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Resolución de ecuaciones no lineales

Resolución de ecuaciones no lineales Resolució de ecuacioes o lieales Solucioa ecuacioes o lieales tipo f()= Normalmete cada método tiee sus requisitos Métodos so iterativos Métodos iterativos para resolver f()= E geeral métodos iterativos

Más detalles

Sucesiones y ĺımite de sucesiones

Sucesiones y ĺımite de sucesiones Tema 3 Sucesioes y ĺımite de sucesioes Ídice del Tema Sucesioes........................................ 60 Progresioes....................................... 63 3 Covergecia......................................

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

MATEMÁTICAS PARA LOS GRADOS EN ECONOMÍA Y EMPRESA. Cálculo Diferencial Ejercicios y Problemas resueltos

MATEMÁTICAS PARA LOS GRADOS EN ECONOMÍA Y EMPRESA. Cálculo Diferencial Ejercicios y Problemas resueltos MATEMÁTICAS PARA LOS GRADOS EN ECONOMÍA Y EMPRESA Cálculo Diferecial Ejercicios y Problemas resueltos Juliá Rodríguez Ruiz (Catedrático de Ecoomía Aplicada. UNED) Mariao Matilla García (Profesor Titular

Más detalles

CAPÍTULO XIII. SUCESIONES

CAPÍTULO XIII. SUCESIONES CAPÍTULO XIII SUCESIONES NUMÉRICAS SECCIONES A Sucesioes covergetes y límites de oscilació Sucesioes moótoas y acotadas B Sucesioes recurretes C Ejercicios propuestos 59 A SUCESIONES CONVERGENTES Y LÍMITES

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

MATE1214 -Calculo Integral Parcial -3

MATE1214 -Calculo Integral Parcial -3 MATE114 -Calculo Itegral Parcial -3 Duració: 60 miutos 1. Cosidere la curva paramétrica descrita por = te t, y = 1 + t. Halle la pediete de la recta tagete a esta curva cuado t = 0.. Calcular la logitud

Más detalles

Apuntes sobre series numéricas: preguntas frecuentes y ejemplos resueltos. 1) Preguntas frecuentes. Conceptos, teoremas y ejemplos básicos

Apuntes sobre series numéricas: preguntas frecuentes y ejemplos resueltos. 1) Preguntas frecuentes. Conceptos, teoremas y ejemplos básicos Cálculo I ( o de Grado e Iformática, 202-3) Aputes sobre series uméricas: pregutas frecuetes y ejemplos resueltos ) Pregutas frecuetes. Coceptos, teoremas y ejemplos básicos P-. Ua serie ifiita es ua suma

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES MATEMÁTICA I - 0 - Capítulo 6 ------------------------------------------------------------------------------------ CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES Las matrices iversas se puede usar

Más detalles

9 SUCESIONES. LÍMITES DE SUCESIONES

9 SUCESIONES. LÍMITES DE SUCESIONES 9 SUCESIONES. LÍMITES DE SUCESIONES EJERCICIOS PROPUESTOS 9. Co ua calculadora, forma térmios de las siguietes sucesioes y estudia a qué valores tiede. a) a b) b c) c 5 a) a a 8 5,6 a 0 00,98 a 0 00 0

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

Tema 4 Sucesiones numéricas

Tema 4 Sucesiones numéricas Tema 4 Sucesioes uméricas Objetivos 1. Defiir sucesioes co wxmaxima. 2. Calcular elemetos de ua sucesió. 3. Realizar operacioes co sucesioes. 4. Iterpretar la defiició de límite de ua sucesió. 5. Calcular

Más detalles

1. Sucesiones página 217. 2. Idea intuitiva de límite de una sucesión página 222. 3. Operaciones con sucesiones. página 224

1. Sucesiones página 217. 2. Idea intuitiva de límite de una sucesión página 222. 3. Operaciones con sucesiones. página 224 Límite y cotiuidad E S Q U E M A D E L A U N I D A D.. Térmio geeral de ua sucesió págia 7.. Progresioes aritméticas y geométricas págia 7. Sucesioes págia 7. Idea ituitiva de límite de ua sucesió págia..

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

Práctica 1.- Sucesiones y series

Práctica 1.- Sucesiones y series Práctica.- Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y, que os permitirá, e la mayoría

Más detalles

2 Halla la diferencia de una progresión aritmética sabiendo que el segundo término es 8 y el quinto 17.

2 Halla la diferencia de una progresión aritmética sabiendo que el segundo término es 8 y el quinto 17. EJERCICIOS EXTRA PROGERSIONES ARITMETICAS Y GEOMETRICAS 1 15 Halla la suma de los 1 primeros térmios de la progresió aritmética: 8,, 7,... Halla la diferecia de ua progresió aritmética sabiedo que el segudo

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

INTEGRALES DE RIEMANN

INTEGRALES DE RIEMANN NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES DE RIEMANN Ig. Jua Sacerdoti Departameto de Matemática Facultad de Igeiería Uiversidad de Bueos Aires 00 INDICE.- INTEGRAL..- INTRODUCCIÓN..-

Más detalles

PRÁCTICAS DE ANÁLISIS DE UNA VARIABLE

PRÁCTICAS DE ANÁLISIS DE UNA VARIABLE PRÁCTICAS DE ANÁLISIS DE UNA VARIABLE Departameto de Aálisis Matemático Curso 00/003 Profesores resposables Oscar Blasco Atoio Galbis Jesús García Josep Martíez Aíbal Moltó Carme de las Obras Sergio Segura

Más detalles

PRÁCTICA POLINOMIOS DE TAYLOR. RESTO DE LAGRANGE CURSO Práctica 6 (5- XI-2014)

PRÁCTICA POLINOMIOS DE TAYLOR. RESTO DE LAGRANGE CURSO Práctica 6 (5- XI-2014) PRÁCTICA POLINOMIOS DE TAYLOR. RESTO DE LAGRANGE CURSO 04-05 Prácticas Matlab Práctica 6 (5- XI-04) Objetivos Represetar ua sucesió de térmios Itroducir el cocepto de serie como suma ifiita de los térmios

Más detalles

Funciones de variable compleja

Funciones de variable compleja Tema 10 Fucioes de variable compleja 10.1 Fucioes complejas de variable compleja Defiició 10.1 Ua fució compleja de variable compleja es ua aplicació f: A C dode A C. Para cada z A, fz) C, luego fz) =

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a.

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a. Arquitectura del Computador 4 ALGEBRA DE BOOLE 4. Itroducció. El álgebra de Boole es ua herramieta de fudametal importacia e el mudo de la computació. Las propiedades que se verifica e ella sirve de base

Más detalles

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna, Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

1. Sucesiones y series numéricas

1. Sucesiones y series numéricas ITINFORMÁTICA CÁLCULO INFINITESIMAL BOLETÍN CON SOLUCIONES DE LOS EJERCICIOS CURSO 005-06 Sucesioes y series uméricas Escribir ua expresió para el -ésimo térmio de la sucesió: +, + 3 4, + 7 8, + 5 6, 3,

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A IES Fco Ayala de Graada Modelo del 015 (Solucioes) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO DEL 015 OPCIÓN A EJERCICIO 1 (A) 1-1 Sea las matrices A = 0 1-1, B = 1 1, C = ( 1),

Más detalles

Cálculo de límites. 3.1. Sumas, productos y cocientes. Tema 3

Cálculo de límites. 3.1. Sumas, productos y cocientes. Tema 3 Tema 3 Cálculo de ites El presete tema tiee u iterés emietemete práctico, pues su pricipal fialidad es aportar los ejemplos que se echaba de meos e el tema aterior. Empezaremos estableciedo las reglas

Más detalles

Mó duló 21: Sumatória

Mó duló 21: Sumatória INTERNADO MATEMÁTICA 16 Guía del estudiate Mó duló 1: Sumatória Objetivo: Coocer y aplicar propiedades para el cálculo de sumatorias. Para calcular alguas sumatorias es ecesario coocer sus propiedades

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

Cap ³tulo 6. Series Num ericas. Problemas resueltos. 6.1 Series num ericas. De niciones. Salvador Vera Ballesteros

Cap ³tulo 6. Series Num ericas. Problemas resueltos. 6.1 Series num ericas. De niciones. Salvador Vera Ballesteros Cap ³tulo 6 Series Num ericas. Problemas resueltos Salvador Vera Ballesteros www.satd.uma.es/matap/svera 6. Series um ericas. De icioes De ici o 6. (Serie) Dada ua sucesi o um erica i ita: fa g fa ;a ;a

Más detalles

TEMA 19 Cálculo de límites de sucesiones*

TEMA 19 Cálculo de límites de sucesiones* CURSO -6 TEMA 9 Cálculo de límites de sucesioes* Propiedades aritméticas de los límites de sucesioes. b tales que : a = a b = b, dode ab, R Sea las sucesioes { } a y { } Etoces podemos obteer su suma,

Más detalles

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica. págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS 4º ESO º Trimestre Autor: Vicete Adsuara Ucedo INDICE Tema : Vectores e el Plao.. Ejercicios Tema 9 Tema : Depedecia Lieal...7 Ejercicios Tema. 0 Tema 3: El Plao Afí...... Ejercicios

Más detalles

Números reales Números. irracionales. Figura 3.1. Construcción del conjunto de los números complejos.

Números reales Números. irracionales. Figura 3.1. Construcción del conjunto de los números complejos. Números Complejos El cojuto de los úmeros complejos La supremacía de los úmeros reales como cojuto umérico máximo duró poco; o existe u úmero real a que satisfaga la ecuació x 2 + a = 0. Para ello, es

Más detalles

MATEMÁTICAS I 1º Bachillerato Capítulo 3: Sucesiones LibrosMareaVerde.tk

MATEMÁTICAS I 1º Bachillerato Capítulo 3: Sucesiones LibrosMareaVerde.tk MATEMÁTICAS I º Bachillerato Capítulo : Sucesioes www.aputesmareaverde.org.es Autora: Ferada Ramos Rodríguez Ilustracioes: Baco de Imágees de INTEF 0 Sucesioes Ídice. SUCESIONES DE NÚMEROS REALES.. DEFINICIONES..

Más detalles

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES.

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES. Tema 6 Derivada de ua ució e u puto Fució derivada Derivadas sucesivas Aplicacioes TEMA 6 DERIVADA DE UNA FUNCIÓN EN UN PUNTO FUNCIÓN DERIVADA DERIVADAS SUCESIVAS APLICACIONES ÍNDICE INTRODUCCIÓN DERIVADA

Más detalles

MODULO PRECALCULO QUINTA UNIDAD

MODULO PRECALCULO QUINTA UNIDAD www.mateladia.org MODULO PRECALCULO QUINTA UNIDAD Límites Cotiuidad y Derivada.... y cotiuó Alicia:

Más detalles

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Capítulo INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Problema Calcula las partes real e imagiaria de los siguietes úmeros complejos: a) i + + i, b) + i i + i + i + i, c) d) + i), + ), + i e) f) ) + i 04, i +

Más detalles

Práctica 1.- Sucesiones y series

Práctica 1.- Sucesiones y series Práctica.- Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y, que os permitirá, e la mayoría

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles