Apéndice Números Complejos
|
|
|
- Alejandro Crespo González
- hace 8 años
- Vistas:
Transcripción
1 Aédice Números Comlejos 1 Números comlejos. Geeralidades. Oeracioes co úmeros comlejos Potecia y raíz de úmeros comlejos. 4 Fució exoecial y forma exoecial. E.U.Politécica de Sevilla. Fudametos Matemáticos de la Igeiería. Esecialidad Mecáica y Electricidad. Curso Números comlejos. Geeralidades. El úmero comlejo. Llamaremos úmero comlejo a toda exresió de la forma a + bi, dode a y b so úmeros reales; i es la uidad imagiaria, defiida i = i = or: 1 o -1. a es la arte real y b es la arte imagiaria del úmero comlejo. Sea z = a+ bi u úmero comlejo, su cojugado es z = a bi. Si a = 0, el úmero comlejo 0 + bi = bi es u úmero imagiario uro. Dos úmeros comlejos a + bi y a + b i so iguales si: a = a y b = b Si a+ bi = 0, etoces a = 0 y b = 0.
2 Reresetació gráfica. a+ bi ( a, b) θ r ( ab, ) (, r θ ) r módulo θ argumeto a b = rcosθ = r se θ r = a + b tg θ = b a a+ bi = r(cos θ + i se θ ) Forma trigoométrica z = a+ bi r = z = a+ bi Forma trigoométrica z = a+ bi = r(cos θ + i se θ ) Todo úmero real uede escribirse e forma trigoométrica a = a (cos 0 + i se 0), si a > 0 a = a (cos π + i se π), si a < 0 El cero se escribiría del siguiete modo 0 = 0 (cos θ + i se θ), 0 = 0. Forma olar z = r θ
3 .- Oeracioes co úmeros comlejos. Suma ( + ) + ( + ) = ( + ) + ( + ) a bi a b i a a b b i Producto or u úmero real ( ) λ a+ bi = λa+ λbi Producto ( + ) ( + ) = ( ) + ( + ) a bi a bi aa bb ba ab i Divisió a + bi a a + bb a b ab = + i a b i a b a b Oeracioes co úmeros comlejos. Forma trigoométrica. z = r(cos θ + i se θ ) z = r(cos θ + i se θ) Producto ( θ θ ) ( θ θ ) z z = rr cos + + i se Divisió z z r = cos + se r 1 1 ( θ θ ) i ( θ θ ) 1 1
4 .- Potecia y raíz de úmeros comlejos. Potecia (Fórmula de Moivre) Sea z = a+ bi = r(cos θ + i se θ ) y, se verifica: z = r (cos θ + i se θ) Nota: Si r = 1, (cos θ + i se θ) = cos θ + i se θ Si =, (cos + i se ) = cos + i se θ θ θ θ (cos + i se ) = cos + i cos se cos se i se θ θ θ θ θ θ θ θ ( cos θ cos θ se θ) i ( cos θse θ se θ) = + cos cos cos se θ = θ θ θ θ θ θ θ se = cos se se Raíz Sea z = a+ bi = r(cos θ + i se θ ), ua raíz sima de z es u úmero comlejo z= ρ(cos ϕ + i se ϕ) tal que ρ ( cos ϕ + i se ϕ)= r(cos θ + i se θ) ρ =, r ϕ = θ + kπ θ + kπ ρ= r, ϕ = dode k = 0,1,..., 1
5 Ejemlo : Calcula 1. E este caso 1= cos0 + i se 0, 0+ kπ ρ= 1, ϕ = dode k = 0,1, Las raices edidas so: 1, 1, 1. 0 π π ρ=1, ϕ = 0,,. 1 =1(cos 0 + i se 0)=1 (raiz ricial) 0 π π 1 1 =1( cos + i se ) = + i π 1 1 =1( cos + i se ) = i 4.- Fució exoecial y forma exoecial. Sea z = x+ yi. Si x e y so variables reales, z es ua variable comleja. Se defie la exoecial comleja como sigue: z x+ yi x w= e = e = e (cos y+ i se y) Ejemlo : π z π π e e Sea z = + i, e = e (cos + i se ) = + i Proiedades 1 Si z y z so úmeros comlejos, se verifica: z1+ z z z 1) e = e e. z1 z z z ) e = e / e. z ( ) mz ) Si m es u úmero etero, e = e. z+ πi z z 4) e = e (cos + i se ) = e. π π m
6 Fórmula de Euler x+ yi x Sea e = e (cos y+ i se y), si hacemos x = 0, se obtiee: yi e = cos y+ i se y (1) exresió coocida como fórmula de Euler. yi Si se cambia y or y se obtiee: e = cos( y) + i se( y) yi e = cos y i se y () e + e e e A artir de (1) y (): cos y =, se y = i yi yi yi yi Forma exoecial Sea z = a+ bi = r(cos θ + i se θ ), a artir de la fórmula de Euler se verifica: e iθ iθ = cos θ + i se θ z = re Nota : iθ iθ1 iθ Dados z = re, z = re y z = re, se verifica: 1 1 a) z z = re re = rre iθ1 iθ i(θ1+ θ ) re r b) z / z e iθ = = iθ re r i(θ -θ ) 1 i c) z = r e siedo etero ositivo. θ iϕ θ + kπ k d) z = re, ϕk = dode k= 0,1,..., 1
7 Nota : ( ) ( ) E forma olar, z = r, z = r y z = r θ 1 1 θ 1 θ a) ( ) ( ) ( ) ( ) ( ) z z = r r = rr 1 1 θ θ 1 θ +θ ( r ) ( r ) θ θ r 1 1 b) z1 / z = = r θ θ +θ 1 c) z = r siedo etero ositivo. θ + kπ d) z = r, ϕk = dode k = 0,1,..., 1 ϕk
8 ESCUELA UNIVERSITARIA POLITÉCNICA Igeiería Técica Idustrial. Esecialidades Mecáica y Electricidad FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA NÚMEROS COMPLEJOS 1.- Escribir e forma olar y e forma exoecial los siguiete úmeros comlejos. a) 1 + i b) 5 5i c) + i d) 5 e) 6i f) 5 + 5i g) 1 i h) + i i) 1 i j) i 5.- Escribir e forma biómica los siguiete úmeros comlejos..- Calcular: a) 4 b) 4 c) i d)5e e) e 4 i f) e 7i g) 4e 5i=6 h) e i= i) e i j) 1 ei=4 a) ( i) i(1 d) ( i)( + i) 4i i) b)8 + ( + 4i)5i + 9i g) 5e i= + e i=6 h) 1 + i 6 c)( + i)( i)( i) e) ( i) 5 f) (5e i= )(e i=6 ) i) 1 + i e 4 i 4.- Ecotrar la forma olar y cartesiaa de los comlejos: a) 5.- Calcular: a) i 0 i 19 b) (1 i) 5 c) 1 i 7 d) i + + i e 4 i 11 e) b) 6e i 1 i i f) 1 i 6.- Calcular: a) i b) 4 + 4i c) 4 81 d) 5 1 e) + i f) 5 e i 7.- Calcular: a) r i 1 i i b) (1 + i) i 8.- Hallar todas las solucioes de las ecuacioes: a) z 6 1 = 0 b) z + z + 6 = 0 c) z (6 + 8i) z + (1 + 0i) = 0 d) (1 + i)z i = Exresar e fució de se x y cos x las siguietes exresioes: a) se x; cos x: b) se 4x; cos 4x: 10.- Es cierto que z = e 4 i se exresa e forma biómica como z = (1 + i)? 11.- Dados z 1 = + i y z = 1 + i: Exresar e forma exoecial: a) z 1 y z b) z 1 z c) z 1 =z : 1.- Hallar las raices de la ecuació 1 x i = + i 1.- Demostrar que el roducto de las raices -simas de la uidad vale 1 ó 1: 14.- Resolver la siguiete ecuació: z 6 iz 1 = 0
Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi
u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo
Tema 1: Números Complejos
Números Complejos Tema 1: Números Complejos Deició U úmero complejo es u par ordeado (x, y) de úmeros reales Éste puede iterpretarse como u puto del plao cuya abscisa es x y cuya ordeada es y El cojuto
con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,
Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes
Los números complejos
Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació
INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS
Capítulo INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Problema Calcula las partes real e imagiaria de los siguietes úmeros complejos: a) i + + i, b) + i i + i + i + i, c) d) + i), + ), + i e) f) ) + i 04, i +
Los números complejos ( )
Los úmeros complejos (15.06.016) 1. Itroducció Estas otas se propoe u doble objetivo. Co los apartados a 8 se pretede dar uas ocioes básicas sobre los úmeros complejos que ayude a fijar los coceptos expuestos
1 SISTEMA DE NUMEROS COMPLEJOS
UNIVERSIDAD DEL VALLE FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMATICAS Prof DORIS HINESTROZA SISTEMA DE NUMEROS COMPLEJOS Sea C el cojuto de parejas ordeadas (a, b) deúmeros reales, esto es C = {(a, b)
AMPLIACIÓN DE MATEMÁTICAS APLICACIONES.
AMPLIACIÓN DE MATEMÁTICAS APLICACIONES. Ejemplo 1. La ecuació poliómica x 2 + 2x + 2 = 0, co coeficietes reales, tiee dos solucioes complejas cojugadas: 1 + i y 1 i. Este o es u hecho aislado. Proposició
Números reales Números. irracionales. Figura 3.1. Construcción del conjunto de los números complejos.
Números Complejos El cojuto de los úmeros complejos La supremacía de los úmeros reales como cojuto umérico máximo duró poco; o existe u úmero real a que satisfaga la ecuació x 2 + a = 0. Para ello, es
Unidad I: Números Complejos
Uidad I: Números Complejos INTRODUCCIÓN Desde Al'Khwarimi (800 DC), quie fuera precursor del Álgebra, sólo se obteía las solucioes de las raíces cuadradas de úmeros positivos El matemático italiao Girolamo
1. Definiciones y propiedades básicas - C como extensión de R.
Facultad de Ciecias Exactas, Igeiería y Agrimesura Departameto de Matemática - Escuela de Ciecias Exactas y Naturales ÁLGEBRA y GEOMETRÍA ANALÍTICA I Liceciatura e Física - 2015 Equipo docete: Viviaa del
Funciones de variable compleja
Tema 10 Fucioes de variable compleja 10.1 Fucioes complejas de variable compleja Defiició 10.1 Ua fució compleja de variable compleja es ua aplicació f: A C dode A C. Para cada z A, fz) C, luego fz) =
MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan
MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes
MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja
Matemática D y D MATEMÁTICA D y D Módulo I: Análisis de Variable Compleja Unidad 0 Números Complejos Mag. María Inés Baragatti Números complejos. Generalidades Un número complejo es un par ordenado de
Límite y Continuidad de Funciones.
Límite Cotiuidad de Fucioes. Eleazar José García. [email protected]. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por
SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.
CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio
IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11
IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como
6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES
6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,
(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),
NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria
DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:
DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució
Números complejos Susana Puddu
Números complejos Susaa Puddu 1. El plao complejo. E el cojuto C = IR IR defiimos la suma y el producto de dos elemetos de C de la siguiete maera a, b + c, d = a + c, b + d a, b.c, d = ac bd, ad + bc Dejamos
2.- ESPACIOS VECTORIALES. MATRICES.
2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces
Números complejos ( 1)(25) =
Números complejos 1. Introducción Podemos pensar en las progresivas ampliaciones de los conjuntos numéricos como el método necesario para resolver ecuaciones algebraicas progresivamente complicadas. Así,
UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior
UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que
MATE1214 -Calculo Integral Parcial -3
MATE114 -Calculo Itegral Parcial -3 Duració: 60 miutos 1. Cosidere la curva paramétrica descrita por = te t, y = 1 + t. Halle la pediete de la recta tagete a esta curva cuado t = 0.. Calcular la logitud
Técnicas para problemas de desigualdades
Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,
Intervalos de Confianza basados en una muestra. Instituto de Cálculo
Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza
INTERÉS SIMPLE COMO FUNCIÓN LINEAL.
INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por
FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y
CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos
Números Complejos Matemáticas Básicas 2004
Números Complejos Matemáticas Básicas 2004 21 de Octubre de 2004 Los números complejos de la forma (a, 0) Si hacemos corresponder a cada número real a, el número complejo (a, 0), tenemos una relación biunívoca.
Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx
.7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )
CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.
CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió
2. El conjunto de los números complejos
Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más
AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1
AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga
Problemas resueltos. 1. Expresa en forma binómica los siguientes números complejos: b) w = 1+i3 (1 i) 3 c) u = 1. = 5 5i. 1 3i 3i 2 i 3 = 1 i
Problemas resueltos 1. Expresa en forma binómica los siguientes números complejos: a) z = ( + i)(1 i) +i b) w = 1+i (1 i) c) u = 1 1+i + 1 1 i a) z = ( + i)(1 i) +i = 5 5i +i (5 5i)( i) = ( + i)( i) =
PROGRESIONES ARITMETICAS
PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.
APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.
APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de
La sucesión de Lucas
a sucesió de ucas María Isabel Viggiai Rocha Cosideramos la sucesió umérica { } defiida por: - - si 3 y y 3. Esta sucesió es coocida como la sucesió de ucas y a sus térmios se los llama úmeros de ucas.
3. Volumen de un sólido.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos
Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas
Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales
Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.
UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios
CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007
CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y
21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2)
EJERCICIOS de POTENCIAS º ESO opc. B RECORDAR a m a a m m ( a ) a b a a (a b) a m a a b m a m+ b a a - a b a - b a Tambié es importate saber que algo ( base egativa) par (- ) ( base egativa) impar (- )
Medidas de Tendencia Central
1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida
Números complejos ( 1)(25) =
Números complejos Introducción Podemos pensar en las progresivas ampliaciones de los conjuntos numéricos como el método necesario para resolver ecuaciones algebraicas progresivamente complicadas. Así,
TEMA 4: POLINOMIOS EN UNA INDETERMINADA.
I.E.S. Salvador Serrao de Alcaudete Deartameto de Matemáticas º ESO 0 / TEMA : POLINOMIOS EN UNA INDETERMINADA.. Eresioes Algebraicas. Las EXPRESIONES ALGEBRAICAS se usa ara traducir al leguaje matemático,
FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.
FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma
1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora):
EJERCICIOS de RADICALES º ESO académicas FICHA : Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a x x a x x (Añadir estas fórmulas al formulario, juto co la
INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.
INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad
TEMA 2: LOS NÚMEROS COMPLEJOS
Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado
Aplicaciones del cálculo integral vectorial a la física
Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua [email protected] Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el
NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS
NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN La ecuación x + 1 0 no tiene solución en el cuerpo de los números reales R ya que no existe un número real x tal que x 1. Necesitamos un conjunto que contenga a R, que
INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS
INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS Ua ecuació diferecial es ua ecuació que cotiee las derivadas de ua o más variables depedietes co respecto de ua ó mas variables idepedietes. Clasificació
Introducción al Método de Fourier. Grupo
Itroducció al Método de Fourier. Grupo 536. 14-1-211 Problema 1.) Ua cuerda elástica co ρ, y logitud L coocidos, tiee el extremo de la izquierda libre y el de la derecha sujeto a u muelle de costate elástica
Rectificador de media onda
Electróica y microelectróica ara cietíficos ectificador de media oda Como u diodo ideal uede mateer el flujo de corriete e ua sola direcció, se uede utilizar ara cambiar ua señal de ca a ua de cd. E la
Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden:
Sisemas. Marices y Deermiaes.- Si y B so marices orogoales del mismo orde: a) 2 b) B c) B 2.- Dadas dos marices iversibles y B NO se verifica e geeral que: a) ( ) ( ) b) ( B) B c) 3.- Dadas las marices
PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14
GUIA DE TRABAJO PRACTICO Nº 4 PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 4 OBJETIVOS: Lograr que el Alumo: Resuelva correctamete aritmos y aplique sus propiedades. Resuelva ecuacioes epoeciales.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA : MATRICES Y DETERMINANTES Juio, Ejercicio 3, Opció B Reserva 2, Ejercicio 3, Opció A Reserva 2, Ejercicio 3, Opció B Reserva 3, Ejercicio
Tema 8 Límite de Funciones. Continuidad
Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)
UNEFA C.I.N.U. Matemáticas
RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el
6.3. Uso de la SVD para determinar la estructura de una matriz. Primero definiremos algunas características de matrices.
Edgar Acuña/ ESMA 6665 Lecc 8 75 6.3. Uso de la SVD para determiar la estructura de ua matriz Primero defiiremos alguas características de matrices. Rago de ua matriz: Sea A ua matriz m x se etoces su
LOS NÚMEROS COMPLEJOS
LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate
El cuerpo de los números complejos
Capítulo 1 El cuerpo de los números complejos En este primer capítulo se revisan los conceptos elementales relativos a los números complejos. El capítulo comienza con una breve nota histórica y después
UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos
UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS EAP DE MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cueros cuadráticos Caítulo
1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora):
EJERCICIOS de RADICALES º ESO FICHA : Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a x x a x x (Añadir estas fórmulas al formulario, juto co la lista de los
LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En
LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)
TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES.
Tema 6 Derivada de ua ució e u puto Fució derivada Derivadas sucesivas Aplicacioes TEMA 6 DERIVADA DE UNA FUNCIÓN EN UN PUNTO FUNCIÓN DERIVADA DERIVADAS SUCESIVAS APLICACIONES ÍNDICE INTRODUCCIÓN DERIVADA
ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos
ITM, Istitució uiversitaria Guía de Laboratorio de Física Mecáica Práctica 3: Teoría de errores Implemetos Regla, balaza, cilidro, esfera metálica, flexómetro, croómetro, computador. Objetivos E esta práctica
Unidad 1: Números Complejos
Uidad 1: Números Complejos 11 Itroducció Además de los cojutos de úmeros aturales, eteros, racioales y reales existe el cojuto de úmeros complejos que juega u rol importate o solo e matemáticas sio e las
6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES
6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:
1 EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de
RADICALES. Una raíz de índice n es una operación matemática que se define de la siguiente forma:
Aputes de Matemáticas para º de E.S.O. RADICALES Qué es ua raíz de ídice? Ua raíz de ídice es ua operació matemática que se defie de la siguiete forma: a = b a= b Esto se lee como: la raíz eésima de u
LOGARITMOS. Ejercicio 1 Determine los respectivos dominios de existencia de las siguientes funciones: 2
LOGARITMOS Como seguramete el estudiate recordará, e cuarto año apredió a traajar co los aritmos, y allí se eteró de que éstos se defie a partir de la ecesidad de despejar el expoete de ua potecia. Vamos
La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera
La Capitalizació co ua Tasa de Iterés Siple El Iterés Siple La característica ás resaltate de la capitalizació co tasa de iterés siple es que el valor futuro de u capital aueta de aera lieal. Sea u pricipal
5n la Unidad 4 hemos estudiado las razones trigonométricas de un ángulo y sus relaciones;
UNIDAD Fucioes trigoométricas y úmeros complejos la Uidad hemos estudiado las razoes trigoométricas de u águlo y sus relacioes; E e esta vamos a estudiar las fucioes circulares a que da lugar las mecioadas
Juan José Font Ferrandis. Salvador Hernández Muñoz. Sergio Macario Vives
CÁLCULO Jua José Fot Ferradis Salvador Herádez Muñoz Sergio Macario Vives Ídice geeral. Campos Numéricos.. El úmero real.......................... 2... Desigualdades....................... 2..2. Valor
TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST
TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRIRIO DE NYQUIST. TRAZADO DE DIAGRAMA POLAR. La función de transferencia P, tendrá el formato dado or la siguiente exresión generalizada: P ± m m P A P + A P
Diagramas de Bode. Respuesta En Frecuencia
Diagramas de Bode Respuesta E Frecuecia Ig. William Marí Moreo Geeralidades Es u diagrama asitótico: se puede aproximar fácilmete trazado líeas rectas (asítotas). Preseta la respuesta de Magitud y Fase
LA MARAVILLOSA FUNCION Y ECUACION CUADRATICA. CAMPO ELÍAS GONZALEZ PINEDA.
LA MARAVILLOSA FUNCION Y ECUACION CUADRATICA CAMPO ELÍAS GONZALEZ PINEDA. [email protected] Itroducció. E este artículo presetamos u estudio geeral de la fució cuadrática. Veremos lo importate de esta fució
NÚMEROS COMPLEJOS: C
NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales
Tema 3.- Números Complejos.
Álgebra. 200-2005. Igeieros Idustriales. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Tema 3.- Números Complejos. Los úmeros complejos. Operacioes. Las raíces de u poliomio real. Aplicacioes
Forma polar de números complejos (repaso breve)
Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia
Probabilidad y estadística
Probabilidad y estadística MEDIDAS DE TENDENCIA CENTRAL, MEDIDAS DE DISPERSIÓN, GRÁFICAS, E INTERPRETANDO RESULTADOS Prof. Miguel Hesiquio Garduño. Est. Mirla Beavides Rojas Depto. De Igeiería Química
[ ] ( ) ( ) ( ) ( ) = = RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN a a a RESOLUCIÓN SEMANA 9 TEORÍA DE LOS NÚMEROS NÚMEROS PRIMOS.
SEMAA 9 TEORÍA DE LOS ÚMEROS ÚMEROS PRIMOS. Sea A = 3...( 6) cifras Calcule si A tiee 444 divisores compuestos. A) 3 B) C) D) E) 6 A = 3 6 6 = 6 ( ) A = 3 + A = 3 CD( A) = 444 + 4 CD( A) = 448 ( A) ( )
POTENCIACIÓN Y RADICACIÓN EN. Recordemos en primer lugar algunas definiciones y propiedades de la potenciación y de la radicación de números reales:
POTENCIACIÓN Y RADICACIÓN EN Recordemos e primer lugr lgus defiicioes y propieddes de l potecició y de l rdicció de úmeros reles: PROPIEDADES DE LA POTENCIACIÓN Poteci de expoete cero : 0 = por defiició,
