n sen a n + sen + = sen 2 2n u sen u 2 sen sen( 2sen

Tamaño: px
Comenzar la demostración a partir de la página:

Download "n sen a n + sen + = sen 2 2n u sen u 2 sen sen( 2sen"

Transcripción

1 Ho Polems Aálisis I Hll.... Solció: Como semos qe p q p-q-pq etoces se tiee qe: * Si Si Si Si - 5 Si - * q p q p q p igldd l sdo

2 Hll el volme del sólido geedo l gi lededo del ee OX, l egió del plo qe eslt de l itesecció del iteio y 7. Resolció: Ls dos cicfeecis se cot e 77, y p y 6 y±4 P,-4 y P,4. El volme pedido es l mitd del volme de l esfe de diio 7 es deci, 4 4 V V 7 π π 7, más del volme esltte de gi etoo l ee o γ, meos el de γ. V π 7 7 d π7 7 d π7 7 d 7π d 7π 7 π 8

3 V T 6 π 8.- Se l fció yf, defiid e todo R, de modo qe los icemetos coespodietes de e y so popocioles de zó e clqie pto. Se spoe qe demás y f es coociedo. Clcl l epesió geel de yf. Solció: Tegmos e cet qe f f h-f siedo el icemeto de l vile. Po lo tto: f f f p todo. De qí se dedce qe est fció es deivle e clqie pto y qe s deivd e seá: f lim f f Además si f p todo, l fció es de l fom f m flt, filmete, clcl m. P ello, oligmos qe y f : y f m es deci, my - f -. Po lo tto l fció es: f f -, o ie f-f Sep ls íces de l ecció sigiete: -7. Solció: Se f -7. f L ecció f tiee íces -4,. Pesto qe f-4 > y f - <, eslt qe f tiee úic íz e el itevlo -4,. Además f>, sí 8

4 qe dich íz está e el itevlo,. Po ot pte, f6> y f<, lo qe os pemite seg qe eiste úic íz e el itevlo,6. Filmete, f-4> y f-7< sí qe l íz se ecet e el itevlo -7, Aplic el teoem de los icemetos fiitos l fció f 9 e el itevlo [,4]. Aplic l fóml de Cchy ls fcioes f, g, e el itevlo [p 4,p 4]. E mos csos se pide hll el vlo o vloes del "pto itemedio". Solció: L fóml de los icemetos fiitos se escie e esete cso: f4- ff c4-. Es deci: 69-9 c,4. f Resolviedo l ecció f c 4. De dode eslt f c. Bsqemos el pto 9. 9 L fóml de Cchy es: π π f f 4 4 π π g g 4 4 f c g c de dode cotg c y cπ. o ie 9 oteemos c. π π 4 4 π π 4 4 c cot gc c 8.- U depósito está iicilmete lleo co litos de g sld cy cocetció o sliidd es de dos gmos de sl po lito. P edci l sliidd se hce et g p e el depósito zó de 5 litos po mito, l tiempo qe po oificio el depósito evc el mismo cdl. Detemi l ctidd de sl coteid e el depósito e fció del tiempo y clcl el tiempo qe dee tsci p qe qede sólo gmos de sl. Deotemos po St l fció pedid, es deci, l ctidd de sl e gmos qe cotiee el depósito e fció del tiempo te mitos. L cocetció de sl e el 48

5 istte t vle St - St glito. E el istte t t l ctidd de sl seá St t y po cosigiete los gmos de sl qe h slido del depósito e el itevlo de tiempo [t,t t] so St-St t. Peo po ot pte semos qe dte ese itevlo de tiempo el depósito h evcdo 5 t litos de g sld. Si el icemeto t es my peqeño, l cocetció del g del depósito pede cosidese costte e el tscso del itevlo de tiempo meicodo. El podcto del g qe h slido 5 t po dich cocetció - St os dá tmié l ctid de sl despecid e dicho itevlo de tiempo. Pltemos sí l ecció: esto es St-St t 5 - St t S t t S t t S t Tomdo límites cdo t otedemos spest deivle l fció S es deci de modo qe lego S t -St S t S t d dt log S t - t k Ste dode k es costte detemi. P t semos qe S lego e k y l fció scd es, po fi: St e -t. Llmemos T l istte e el cl l sl qe qed e el depósito so gmos. Sstityedo e l igldd teio, seá: e -T de dode se otiee Tlog y como log, eslt poimdmete T46m 7 h 4 m. 58

6 84.- Demost qe todos los tiáglos co l mism se y el mismo áglo opesto, el isósceles tiee áe máim. Po qe ete todos los tiáglos iscitos e cicfeeci dd, el eqiláteo tiee áe máim. Solció: Se y A fios. El áe del tiáglo es: A Sh. Aho ie: hĉ Aˆ Bˆ Cˆ π c Aˆ Bˆ Cˆ sistem de eccioes qe os pemite dedci qe ˆ h Bˆ C Cˆ π Aˆ Cˆ. Aˆ Aˆ Sstityedo e l epesió del áe eslt S C π A C A y scmos el máimo de S e fció de Ĉ : A S [ C A C C π A C ] π A C A π π A L ecció S es π-a-c, es deci, π-a-c de dode C. 68

7 Pesto qe S π A C, es cillo compo qe este vlo de C A coespode máimo de S. Peo etoces, Bπ-A-C qe, efectivmete, el tiáglo qe scámos es tiáglo isósceles. π A, es deci, BC sí Segd pte: E el pime lg, hemos de hce ot qe si cosidemos los tiáglos iscitos e cicfeeci co ldo fio, se veific qe el áglo opesto dicho ldo tedá el mismo vlo p todos ellos, y qe seá áglo iscito cicfeeci cdo co fio. Dedcimos etoces de l pime pte qe de todos los tiáglos iscitos e mism cicfeeci qe teg ldo fio, el de myo áe es el isósceles. Etoces, eslt evidete qe: Ddo tiáglo clqie iscito e cicfeeci fi o ie este tiáglo es isósceles o ie pedo ecot isósceles tmié iscito e dich cicfeeci, qe teg áe myo qe el tiáglo iicil. Bst p ello co tom como fio o de los ldos del pime tiáglo y plic el páfo teio. Nesto polem se edce pes demost qe ete todos los tiáglos isósceles e cicfeeci fi, el de áe máim es el eqiláteo. Clclemos el áe de este tiáglo isósceles e fció de. A B C Sh. h. P clcl, tedemos e cet qe el tiáglo ABP es ectáglo e B, sí qe es l lt eltiv l hipotes e dicho tiáglo, cmpliédose qe: 78

8 88 4 es deci. Se otiee filmete: S h Clclemos el vlo de qe hce máim est epesió: S El vlo l S y demás hce egtiv S, sí qe coespode máimo. Peo si, se otiee qe, es deci, el tiáglo ABC es eqiláteo. E efecto:. 4 9 AC AB

Progresiones aritméticas y geométricas

Progresiones aritméticas y geométricas Pogesioes itétics y geoétics Pogesioes itétics U pogesió itétic es scesió de úeos, tles qe l difeeci ete dos cosectivos clesqie de ellos es costte, po ejeplo, l scesió de los úeos ipes,,, dode l difeeci

Más detalles

CINÉTICA DE UNA PARTÍCULA

CINÉTICA DE UNA PARTÍCULA pítlo X INÉTIA DE UNA PARTÍULA. INTRODUIÓN El estdio de l ciétic costite pte impotte del estdio de l Mecáic poqe popocio elcioes ete el movimieto de cepo ls fes mometos qe sobe él ctú. Ls elcioes de l

Más detalles

Módulo 7. Exponentes racionales. OBJETIVO Simplificar expresiones algebraicas con exponentes racionales.

Módulo 7. Exponentes racionales. OBJETIVO Simplificar expresiones algebraicas con exponentes racionales. Módulo 7 Epoetes cioles OBJEIVO Simplific epesioes lgebics co epoetes cioles. Hst este mometo se h utilizdo úicmete eteos como epoetes, sí que efetemos ho cómo us otos úmeos cioles como epoetes. Peo tes

Más detalles

POLINOMIOS, ECUACIONES, POLINOMICAS PROBLEMAS RESUELTOS 1. Dados los polinomios en x sobre R : Encontrar : a) p(x) + q(x), b) p(x) q(x)

POLINOMIOS, ECUACIONES, POLINOMICAS PROBLEMAS RESUELTOS 1. Dados los polinomios en x sobre R : Encontrar : a) p(x) + q(x), b) p(x) q(x) POLINOMIOS, ECUACIONES, POLINOMICAS PROBLEMAS RESUELTOS Ddos los polioios e soe R : p 5 8 q 7 Ecot : p q, c p - q p q Solució : p q 5 7 8 9 5 8 5 7 9 5 6 56 5 65 5 8 7 8 5 p q c p q p q 5 7 8 Detei ls

Más detalles

RECTAS Y PLANOS EN EL ESPACIO

RECTAS Y PLANOS EN EL ESPACIO RISTIN RON HERNÁNEZ Eccioes posicioes elis RETS Y PLNOS EN EL ESPIO. Eccioes de l ec e el espcio. Eccioes del plo. H de plos 4. Posicioes elis de dos plos 5. Posicioes elis de es plos 6. Posicioes elis

Más detalles

Introducción al cálculo de errores

Introducción al cálculo de errores Itoducció l cálculo de eoes 1/5 Itoducció l cálculo de eoes Los eoes idetemidos so quellos que se debe l z. Po ejemplo, l eliz l medid de u ms e u blz csi siempe os ofece vloes difeetes debido fctoes ccidetles.

Más detalles

= 41. =, halla los términos primero, quinto, b n

= 41. =, halla los términos primero, quinto, b n Sucesioes. 00 Ejecicios p pctic co solucioes E ls sucesioes de témio geel y b, hll los témios pimeo, segudo y décimo. 0 0 b b b 0 0 0 Hll los cico pimeos témios de l sucesió 0 9 9 6 6 Compueb que es el

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 19/10/2011 DACIBAHCC EXAMEN PARCIAL DE METODOS NUMERICOS (MB536)

UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 19/10/2011 DACIBAHCC EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) UNIVERSIA NACIONA E INGENIERIA P.A. - FACUTA E INGENIERIA MECANICA // ACIBAHCC EXAMEN PARCIA E METOOS NUMERICOS MB6 SOO SE PERMITE E USO E UNA HOJA E FORMUARIO Y CACUAORA ESCRIBA CARAMENTE SUS PROCEIMIENTOS

Más detalles

Sucesiones. En resumen podemos decir que: : A R, se llama sucesión, donde an= f(n) en cada caso, y A N

Sucesiones. En resumen podemos decir que: : A R, se llama sucesión, donde an= f(n) en cada caso, y A N Mtemátic II Cietífico IDAL 07 Sucesioes 5 Pof. F. Díz- Pof A. Glli Sucesioes E esume podemos deci que: Defiició: U fució f : A R, se llm sucesió, dode = f() e cd cso, y A N :, co A y R. E símbolos: Ejemplos:

Más detalles

TEMA 7. SUCESIONES NUMÉRICAS.

TEMA 7. SUCESIONES NUMÉRICAS. º EO Tem 7 TEMA 7. UCEIONE NUMÉRICA.. UCEIONE NUMÉRICA. Imgiemos el ecoido que efectú u bló que se h lzdo l suelo y midmos ls distcis ete bote y bote: Ls distcis fom u sucesió de úmeos: 0, 5, 0, 5,. U

Más detalles

PROGRESIONES ARITMÉTICAS

PROGRESIONES ARITMÉTICAS PROGRESIONES ARITMÉTICAS Se defie como pogesió itmétic u sucesió de úmeos eles,,,...... e los que l difeeci ete témios cosecutivos es costte costte A l difeeci ete témios cosecutivos se le deomi d. Puede

Más detalles

Fig (a) Esquemático del circuito RLC; (b) Modelo entrada-salida del circuito RLC

Fig (a) Esquemático del circuito RLC; (b) Modelo entrada-salida del circuito RLC Sistems de Cotrol II Igeierí Electróic 7 odeldo e vribles de estdo de sistem RLC Co el objeto de socir ests defiicioes l modelció de sistem físico, se tom como ejemplo circito elemetl RLC; represetdo e

Más detalles

Área de Matemáticas orientadas a las enseñanzas académicas RELACIÓN DE EJERCICIOS RESUELTOS TEMA 10 Geometría Analítica en el Plano.

Área de Matemáticas orientadas a las enseñanzas académicas RELACIÓN DE EJERCICIOS RESUELTOS TEMA 10 Geometría Analítica en el Plano. Profesor Rúl Grcí Stos º ESO Áre de Mteátics orietds ls eseñzs cdéics TEMA 0 Geoetrí Alític e el Plo Ejercicio º ) Escrie l ecció de l rect r qe ps por los ptos ( ) ( ). ) Oté l ecció de l rect s qe ps

Más detalles

TEMA 53. Relaciones métricas: perpendicularidad, distancia, ángulos, áreas, volúmenes

TEMA 53. Relaciones métricas: perpendicularidad, distancia, ángulos, áreas, volúmenes Tema 53.Relacioes méticas: pepediclaidad, distacia, áglos, áeas, olme.. TEMA 53. Relacioes méticas: pepediclaidad, distacia, áglos, áeas, olúmees. Itodcció La Geometía desaollada e la Gecia clásica sfe

Más detalles

SOBRE LAS APLICACIONES DE R n EN R m UTILIZANDO EL JACOBIANO

SOBRE LAS APLICACIONES DE R n EN R m UTILIZANDO EL JACOBIANO OBE LA APLICACIOE E E UTILIZAO EL ACOBIAO Ce ÁCHEZ ÍEZ Estdos qí ls codcoes báscs de deecbldd de ls coes deds desde e P ello seos l t cob costtd po ls deds pcles de ls coes copoetes de l plccó dd ls popeddes

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. De ete ls sucesioes siguietes deci cuáles so pogesioes itmétics., 8,,, 0,... b., 7,,,... c. 7,, 9,,,... d., 7, 9,,... e.,,,,... f.,,, 9, g.,,,,... h. ( b), ( b), ( b),... Los

Más detalles

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones Mtemátics II Geometí del espcio Vectoes. Bses. Podcto escl vectoil mixto; plicciones Obsevción: L moí de los poblems eseltos continción se hn popesto en los exámenes de Selectividd.. Ddos los vectoes (

Más detalles

10 problemas Sangaku con triángulos

10 problemas Sangaku con triángulos 0 poblems Sgku co tiágulos Ricd Peió i Estuch Eeo 009 Itoducció Los Sgku so us tbls de mde co eucidos de poblems de geometí euclíde cedos e Jpó e el peíodo Edo 603-867 E este peíodo Jpó estb isldo de occidete

Más detalles

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial Elemetos tos bdmesoles. U vsó pelm A Se cosde el poblem de cotoo bdmesol costtdo po l eccó deecl (, e el domo, smplemete coeo ls codcoes de cotoo: (, coocd e α coocd e Recédese qe qe, s se deom l ccdte

Más detalles

MÉTRICA. = r. r r. Se puede calcular como distancia entre dos puntos.

MÉTRICA. = r. r r. Se puede calcular como distancia entre dos puntos. MÉTRI. Ditci. i. Ditci ete pt. L itci ete pt e el mól el egmet qe etemi l pt. Se ( ) ( ) pt el epci l itci ete ell eá p l epeió Ppiee i. ii. Sí l ( ) iii. ( ) ( ) i. ( ) ( ) ( ) ( ) ( ) ( ) ( ) etce ii.

Más detalles

3. Fallas Asimétricas Ejemplos

3. Fallas Asimétricas Ejemplos Ejemplo 7. Frcisco M. Gozlez-Logtt Aexo 7 3. Flls Aétrics Ejemplos El ple sistem de poteci qe se mestr e l Figr sigiete, cosiste de geerdor, trsformdor, líe de trsmisió, trsformdor redctor y crg. Cosidere

Más detalles

Cálculo con vectores

Cálculo con vectores Uidd didáctic 1 Cálculo co vectoes 1.- Mgitudes escles vectoiles. So mgitudes escles quells, como l ms, l tempetu, l eegí, etc., cuo vlo qued fijdo po u úmeo (co su uidd coespodiete). Gáficmete se epeset

Más detalles

Flujo Potencial. Método del Potencial Complejo. Flujo Traslacional. Vórtice. Potencial Complejo Velocidad Compleja. de Fuente o Sumidero.

Flujo Potencial. Método del Potencial Complejo. Flujo Traslacional. Vórtice. Potencial Complejo Velocidad Compleja. de Fuente o Sumidero. ljo Potecil (clse II Método del Potecil omplejo Los fljos plos tiee como pticlidd qe ls dos vibles, pede se combids p fom úic vible complej i Spogmos fció egl ( (, iψ (, P qe l fció se egl se debe veific

Más detalles

DINÁMICA DEL MOVIMIENTO CIRCULAR.

DINÁMICA DEL MOVIMIENTO CIRCULAR. Diámic del oimieto Cicul DINÁICA DEL OIIENO CICULA..- uez Noml o Cetípet. Si u cuepo se est moiedo co u pidez uifome, e u cículo de dio, este expeimet u celeció cetípet, cuy mitud seá: L diecció de es

Más detalles

Objetivos. Sucesiones numéricas. Series numéricas.

Objetivos. Sucesiones numéricas. Series numéricas. TEMA 3 Objetivos. Sucesioes uméics. Seies uméics. Mej os coceptos de sucesió y seie y utiiz s seies de potecis p epeset s fucioes. Sucesioes de úmeos ees: mootoí, cotció y covegeci Se m sucesió de úmeos

Más detalles

I.E.S. Ciudad de Arjona Departamento de Matemáticas. 2º BAC MCS

I.E.S. Ciudad de Arjona Departamento de Matemáticas. 2º BAC MCS I..S. Ciudd de Ajo Depteto de Mteátics. º BAC MCS. Ts de vició edi. Deivd de u ució e u puto.. Fució deivd. Deivds sucevs.. Regl de deivció.. studio de deivbilidd de u ució. Aplicció de ls deivds. Rect

Más detalles

Tema 52. Producto escalar de vectores. Producto vectorial y mixto. Aplicaciones: resolución problemas físicos y geométricos

Tema 52. Producto escalar de vectores. Producto vectorial y mixto. Aplicaciones: resolución problemas físicos y geométricos TEMA 5.Podcto escala de ectoes. Podcto ectoial mito. Resolció poblemas físicos geométicos Tema 5. Podcto escala de ectoes. Podcto ectoial mito. Aplicacioes: esolció poblemas físicos geométicos. Itodcció.

Más detalles

1 Áreas de regiones planas.

1 Áreas de regiones planas. Cálculo Mtemático. (Tem 7) Hoj Escuel Uiversitri de Arquitectur Técic Cálculo Mtemático. Tem 7: L itegrl defiid Curso 8-9 Áres de regioes pls. Defiició.- Se f u fució cotiu y o egtiv e el itervlo [, b].

Más detalles

de las veces, lo haremos estableciendo la relación que existe entre el valor del término

de las veces, lo haremos estableciendo la relación que existe entre el valor del término PROGRESIONES U sucesió uméic es u cojuto odedo de úmeos, cd uo de los cules ecibe el ombe de témio. P desig cd témio se utiliz l otció i, dode el subídice idic el lug que ocup el témio. Se llm témio geel

Más detalles

ÍNDICE MATEMÁTICAS 1 FÍSICA 14

ÍNDICE MATEMÁTICAS 1 FÍSICA 14 ÍNDIE MTEMÁTIS Geometí Tigoometí Númeos omplejos Geometí lític el Espcio Regls Geeles e Deivció 4 Tls e Itegles 6 Vectoes Itegles Múltiples Fómls Misceláes FÍSI 4 iemátic 4 Diámic 4 Tjo, Eegí osevció e

Más detalles

LÍMITES Si b, c, n, A y B son números reales, siendo f y g funciones tales que, lim f ( x) B, entonces: x x. lim 1 FÓRMULAS BÁSICAS DE DERIVACIÓN

LÍMITES Si b, c, n, A y B son números reales, siendo f y g funciones tales que, lim f ( x) B, entonces: x x. lim 1 FÓRMULAS BÁSICAS DE DERIVACIÓN FORMULRIO ÁLULO I LÍMITES Si,,, y B o úeo ele, ieo f y g fioe tle qe, li f ( y li g( B, etoe: li li li f ( li f ( g( B 5 li f ( g( B 6 7 li 8 ( e 0 0 li l 0 f ( li B 0 g( B Ig. lfeo g Ooz li 9 li e i li

Más detalles

LibrosMareaVerde.tk

LibrosMareaVerde.tk 5 MATEMÁTIAS II º Bchilleto pítulo : Itegl deiid. LiosMeVede.tk www.putesmevede.og.es Autoes: Letici Gozález Pscul y Álvo Vldés Meédez Revisoes: Mí Moleo y Jvie Rodigo Tods ls imágees h sido ceds po los

Más detalles

Un Resumen Comprensivo. Matemática III

Un Resumen Comprensivo. Matemática III U Resue Copesivo De Mteátic III WhittiLeks Los putes que ellos o quiee que seps de ITB Mteátic III WhittiLeks Resue Not soe otció síolos: v Y (d O (O Es idético Peteece /Es u eleeto de Es u suespcio de

Más detalles

Vectores 1 ; Ejercicio nº 1.- Ejercicio nº 2.-

Vectores 1 ; Ejercicio nº 1.- Ejercicio nº 2.- Vectores. dij so los sigietes ectores Si ) Ejercicio º.- ( ) : Oté ls coordeds de Ls coordeds de dos ectores so ). ; ; los qe estr l figr: siedo Dij los ectores ) Ejercicio º.- ( ) : oté ls coordeds de

Más detalles

u r 2 1 x 2 y 2 r 1 r 2 dr dθ = 2π 3 Como siempre, los cálculos se complican si se usan las cartesianas en vez de las esféricas:

u r 2 1 x 2 y 2 r 1 r 2 dr dθ = 2π 3 Como siempre, los cálculos se complican si se usan las cartesianas en vez de las esféricas: 5. Itegales de speficie 5.. efiicioes cálclo Geealiamos las itegales de líea (de campos escalaes de campos ectoiales). Ua speficie a eces iee dada po F(,, ) =. i se pede despeja la, po = f (, ). Peo lo

Más detalles

RESOLVIENDO PROBLEMAS DE MATEMÁTICA

RESOLVIENDO PROBLEMAS DE MATEMÁTICA Mtemát Fís Astoomí shom 6 ESOLVIENDO POBLEMAS DE MATEMÁTICA ESOLUCIÓN DE LOS POBLEMAS POPUESTOS POBLEMA 8 (6 Hll l eó el lg geométo e los tos ese oe se ee tz os tgetes qe fome ete sí áglo eto l v: SOLUCIÓN:

Más detalles

GEOMETRÍA 1º BACHILLERATO

GEOMETRÍA 1º BACHILLERATO GEOMETRÍ º HILLERTO Deei e c co l coo pei ( ( hll ( - - ( (-- hll ( - - - - ( ( c (- ( hll ( - - Se lo ecoe lie ( ( w ( hz l epeeció gáfic qe eie popi clcl epee el eco w w ( ( ( ( ( - Se lo po ( (- (-

Más detalles

Trabajo Práctico N 6: ESPACIOS VECTORIALES CON PRODUCTO INTERIOR

Trabajo Práctico N 6: ESPACIOS VECTORIALES CON PRODUCTO INTERIOR Fcltd Regiol Medoz. UTN Álger Geometrí Alític 8 Trjo Práctico N 6: ESPACIOS VECTORIALES CON PRODUCTO INTERIOR Ejercicio : Pr cd espcio ectoril idicdo lice cáles de ls sigietes expresioes deie prodcto iterior.

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN PRUEBA DE ACCESO A LA UNIVERSIDAD.6 ENUNCIADO Y RESOLUCIÓN Instucciones: )Dución: 1 ho y minutos. b) Tienes que elegi ente eliz únicmente los cuto ejecicios de l Opción A o eliz únicmente los cuto ejecicios

Más detalles

COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES

COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES VALORES ABSOLUTOS Defiició: si 0 =, si < 0 = Por lo tto 0 R Teorem 2 = 2 Demostrció: si 0 2 = 2, si < 0 2 = ( ) 2 = 2 PROPIEDADES. =. = + + (desiguldd trigulr) = Teorem x x Demostrció: x x 2 2 x 2 2 x

Más detalles

CAPÍTULO VI INTEGRACIÓN. f(x)dx = F(x)+C

CAPÍTULO VI INTEGRACIÓN. f(x)dx = F(x)+C 7 APÍTULO VI INTEGRAIÓN. INTEGRAL INDEFINIDA L itegrl idefiid de f( deot l fmili de primitivs de f(. Es decir si F( = f( pr todo, etoces f(d = F(+ dode f( se llm itegrdo costte de itegrció, dich costte

Más detalles

b) (1 punto) * = * Al intercambiar la posición de dos líneas (filas o columnas), el determinante cambia de signo

b) (1 punto) * = * Al intercambiar la posición de dos líneas (filas o columnas), el determinante cambia de signo Modelo. Ejecicio. lificció máim puos Siedo que el vlo del deemie es igul clcul el vlo de los deemies: ) ( puo) ) ( puo). dos co comú e colum duo co comú e colum * * l iecmi l posició de dos líes (fils

Más detalles

Bárbara Cánovas Conesa

Bárbara Cánovas Conesa Bábaa Cáovas Coesa 67 7 www.clasesalacata.com Reseva. 6 Dada la fució f() = + a + a, b R b + a) Detemia el valo de los paámetos a, b R sabiedo que y = + es ua asítota oblicua de f(). b) aa los valoes de

Más detalles

Teoría cinética de gases: velocidad relativa. Teoría de colisiones (fase gaseosa) las moléculas deben chocar. f(u) las moléculas son esferas rígidas

Teoría cinética de gases: velocidad relativa. Teoría de colisiones (fase gaseosa) las moléculas deben chocar. f(u) las moléculas son esferas rígidas eoí de colisioes (fse gseos) eoí ciétic de gses: velocidd eltiv ls molécls debe coc ls molécls so esfes ígids l eegí eltiv debe se sficiete se l be de otecil l colisió ede eei oietció esecil se ectiv f()

Más detalles

Espacios Afín y Euclídeo Resumen ESPACIOS AFÍN Y EUCLÍDEO

Espacios Afín y Euclídeo Resumen ESPACIOS AFÍN Y EUCLÍDEO ESACIOS AFÍN Y EUCLÍDEO Nota: Los pocedimietos expestos o so los úicos qe eselve los poblemas Defiició El espacio afí so los ptos coexistiedo jto al espacio vectoial V, co sistema de efeecia ( pto fijo

Más detalles

TEMA 16. Discusión Y Resolución de Sistemas de Ecuaciones Lineales. Teorema de Rouche. Regla de Cramer. Método de Gauss-Jordan

TEMA 16. Discusión Y Resolución de Sistemas de Ecuaciones Lineales. Teorema de Rouche. Regla de Cramer. Método de Gauss-Jordan TEMA 6. Discusió y Resolució de Ecucioes Lieles TEMA 6. Discusió Y Resolució de Sistems de Ecucioes Lieles. Teoem de Rouche. Regl de Cme. Método de Guss-Jod. Itoducció Ls ecucioes os pemite plte y esolve

Más detalles

Una magnitud física es todo aquello que se puede medir: masa, volumen, temperatura, velocidad...

Una magnitud física es todo aquello que se puede medir: masa, volumen, temperatura, velocidad... Fdmetos Teoís Físcs TS Aqtect.. CÁLCUL VCTIAL... INTDUCCIÓN L ecác es l pte de l Físc qe estd el eqlbo el mometo de los cepos. Se dde e Cemátc qe se ocp del mometo de los cepos depedetemete de ls fes qe

Más detalles

Licdo Eliezer Montoya Resumen de los Métodos de Integración 1. Tablas de derivación

Licdo Eliezer Montoya Resumen de los Métodos de Integración 1. Tablas de derivación Licdo Eliezer Motoy Rese de los Métodos de Itegrció Tbls de derivció dy L derivd por defiició f ( ) D f y d D ( ) D ( ) D ( ) ) D ( ) D ( c) 0 D D ( ) ) D D ( ) ) D ( v) D ( ) D ( v) 3) D ( v) D v vd vd

Más detalles

XLVII Olimpiada Matemática Española Fase nacional (Pamplona) 25 y 26 de marzo de 2011

XLVII Olimpiada Matemática Española Fase nacional (Pamplona) 25 y 26 de marzo de 2011 XLVII Olimpid Mtemátic Espñol Fse ciol (Pmplo) 5 y 6 de mrzo de 0 ENUNCIADOS Y SOLUCIONES OFICIALES E polígoo reglr de 67 ldos trzmos todos los segmetos qe e dos értices, iclidos los ldos del polígoo Elegimos

Más detalles

CUADERNOS TEMÁTICOS CUADERNO # 3.- CALCULO INTEGRAL.

CUADERNOS TEMÁTICOS CUADERNO # 3.- CALCULO INTEGRAL. UNIVERSIDAD DE SANTIAGO DE CHILE. FACUTAD DE CIENCIA- DEPARTAMENTO DE MATEMÁTICA Y C.C. CUADERNOS TEMÁTICOS CUADERNO #.- CALCULO INTEGRAL. Pf. JORGE INOSTROZA LAGOS. Mgiste e Mtemátic. 009. INDICE. Pág.

Más detalles

EJERCICIOS DE 1º BACHILLERATO CIENCIAS DE LA SALUD

EJERCICIOS DE 1º BACHILLERATO CIENCIAS DE LA SALUD EJERCICIOS DE º BACHILLERATO CIENCIAS DE LA SALUD TRIGONOMETRÍA I - Sin utilizr l clculdor, hll el vlor de l siguientes expresiones: π π 5 π π 7π 4π π sen. 4sen + senπ sen sen cos + tg + tg 6 6 - Comprueb:

Más detalles

Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades.

Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Integles y licciones. 4. Integles imois: definición y oieddes. Hst este momento hemos clculdo integles definids de funciones con ngo finito en intevlos

Más detalles

5. LEYES DE SEMEJANZA EN TURBOMÁQUINAS HIDRÁULICAS.

5. LEYES DE SEMEJANZA EN TURBOMÁQUINAS HIDRÁULICAS. 5. LEYES E SEMEJANZA EN TURBOMÁUINAS IRÁULICAS 67 5. LEYES E SEMEJANZA EN TURBOMÁUINAS IRÁULICAS. Los costrctores de áqis hidrálics qe desrroll eos tios, disoe de lbortorios de esyos de odelos. E rticlr,

Más detalles

EJERCICIOS GEOMETRÍA 2º BACHILLERATO

EJERCICIOS GEOMETRÍA 2º BACHILLERATO EJECICIOS GEOMETÍ º CHILLETO ) Coob qe lo vecoe () b (-) c () o lielee eeiee Eco l ecció el lo qe coiee eo vecoe l o (-) g( b c) g g g Lo vecoeolielee eeiee ) Se coie cico o e cooe (-) (-) (-) S(-) T(-)

Más detalles

1.-INTEGRAL DEFINIDA.

1.-INTEGRAL DEFINIDA. INTEGRAL DEFINIDA .-INTEGRAL DEFINIDA. e y ƒ( u fució cotiu e u itervlo [, ]. Not.- Pr simplificr l demostrció se cosider positiv, ƒ( > 0, e todo puto del itervlo. e divide el itervlo [, ] e "" suitervlos

Más detalles

Geometría euclídea en el espacio. Ángulos y distancias

Geometría euclídea en el espacio. Ángulos y distancias Geometía eclídea e el epacio. Áglo y ditacia Matemática Geometía eclídea e el epacio. Áglo y ditacia. Ditacia ete do pto Sea (x,y, z ) y B(x,y,z ), la ditacia ete ambo e igal al módlo del vecto B x x,

Más detalles

RADICALES. Entre los números reales se encuentran los radicales, que se pueden expresar como raíz de un índice n 2 de un número entero.

RADICALES. Entre los números reales se encuentran los radicales, que se pueden expresar como raíz de un índice n 2 de un número entero. RADICALES Ete los úeos eles se euet los diles, ue se uede exes oo íz de u ídie de u úeo eteo. Ríz eési de u úeo eteo. Si Ζ y Ν, o, dieos ue l íz eési de es u úeo el y lo oteos sí:, si. Se ll: dido. íz

Más detalles

Utilizando la fórmula que nos proporciona el número de divisores se tiene que:

Utilizando la fórmula que nos proporciona el número de divisores se tiene que: Hoj de Prolems º Alger IV /. Hllr u úmero etero A que o teg ms ftores primos que, y 7, siedo demás que ª tiee divisores más que A y que ª tiee divisores ms que A. Clulr tmié l sum de todos los divisores

Más detalles

Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA

Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA FUNCIÓN DERIVADA Cosideremos, de etrd, u fució f cotiu, Ituitivmete diremos que l fució f es derivble si es de vrició suve, esto es, que o preset cmbios bruscos como picos o cmbios vertigiosos pediete

Más detalles

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 4: Integración en una variable

SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 4: Integración en una variable SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I Pr Grdos e Igeierí Cpítulo 4: Itegrció e u vrible Domigo Pest Glvá José Muel Rodríguez Grcí Figurs relizds co Arturo de Pblo Mrtíez 4 Itegrció e u vrible 4. Itegrció

Más detalles

OPCIÓN A. Colegio La Presentación Granada MATEMATICAS II. Examen de Matemáticas GLOBAL DE GEOMETRÍA

OPCIÓN A. Colegio La Presentación Granada MATEMATICAS II. Examen de Matemáticas GLOBAL DE GEOMETRÍA Colegio L Pesentción Gnd OPCIÓN A 1- () [1 punto] Sen u y v dos vectoes otogonles y de módulo 1 Hll los vloes del pámeto p que lo vectoes u + v y u v fomen un ángulo 60º (b) [1 punto] Hll un vecto z de

Más detalles

1º ITIS Matemática discreta Relación 4 NÚMEROS NATURALES Y ENTEROS

1º ITIS Matemática discreta Relación 4 NÚMEROS NATURALES Y ENTEROS º ITIS Mtemátic discet Relció 4 NÚMEROS NATURALES Y ENTEROS. Pob po iducció que si c es u úmeo el, c, y N, etoces ( + c) + c.. Pob ) c) c) d) ( + ) ( + )(+ ) i = 6 3 ( + ) i = 4 (i+ ) = ( + ) 7 ( ) e)

Más detalles

Veamos cuáles son las interpretaciones geométricas para los distintos valores de n, que definirán la dimensión de los espacios vectoriales.

Veamos cuáles son las interpretaciones geométricas para los distintos valores de n, que definirán la dimensión de los espacios vectoriales. Pof. Adea Campillo Aálisis Matemático II Topología elemetal Recodemos cómo se defie u etoo de ceto R adio E = { R / < } Sabemos que ( R : < < < < < Esfea abieta e R Si geealizamos el cocepto de etoo e

Más detalles

1.5 La Factorización QR

1.5 La Factorización QR Edgr Acñ/ESMA 6665 Lecc4-5 4.5 L Fctorizció QR Dd mtriz cdrd y osiglr A de orde x, etoces existe mtriz ortogol Q y mtriz triglr sperior R tl qe AQR est es llmd l fctorizció QR de A. Si l mtriz A o es cdrd

Más detalles

( )( 2) 6 ( )( 2) 10 ( )( 3)( 2) 30

( )( 2) 6 ( )( 2) 10 ( )( 3)( 2) 30 Fcultd de Cotdurí y Admiistrció. UNAM Fctorizció Autor: Dr. José Muel Becerr Esios MATEMÁTICAS BÁSICAS FACTORIZACIÓN CONCEPTO DE FACTORIZACIÓN U fctor es cd uo de los úmeros ue se multilic r formr u roducto.

Más detalles

8 Derivadas. Página 239. Página 247. Función derivada

8 Derivadas. Página 239. Página 247. Función derivada 8 Derivadas Págia 9 Fució derivada E el itervalo (a, b ), f () es decreciete. Por tato, su derivada es egativa. Es lo que le pasa a g () e (a, b ). La derivada de f e b es 0: f ' (b ) 0. tambié es g (b

Más detalles

Tema 13: INTEGRALES DEFINIDAS

Tema 13: INTEGRALES DEFINIDAS Tem : INTEGRALES DEFINIDAS REFLEXIONA Ls gnnis de l ompñí RAMSES S.L. dunte los meses de un ño, en deens de miles de euos, se dn en l siguiente gái: 5 ENE FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DIC Si

Más detalles

Sucesiones de funciones

Sucesiones de funciones Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci

Más detalles

IES Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti

IES Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti IES Mediterráeo de Málg Juio Ju Crlos loso Giotti UNIVERSIDD DEL PIS VSCO PRUES DE CCESO L UNIVERSIDD CONVOCTORI DE JUNIO Este Eme tiee dos opcioes. Dees de cotestr u de ells No olvides icluir el código

Más detalles

Operaciones con fracciones

Operaciones con fracciones Uidd. Númeos eles lsmtemtics.eu Pedo Csto Oteg mteiles de mtemátics Opecioes co fccioes Mtemátics I - º Bchilleto Opeció Sum c d c d d Rest (difeeci) c d c d d ) ) Ejemplo 5 5 5 5 7 7 7 7 OJO! Osev como

Más detalles

INTEGRAL DEFINIDA. ln ln ln dx 3. t t. 1 5 ln t t 5t 1 ln 1 7 ln 1. [7.1] Calcular: Solución. [7.2] Calcular: Solución INTEGRAL DEFINIDA

INTEGRAL DEFINIDA. ln ln ln dx 3. t t. 1 5 ln t t 5t 1 ln 1 7 ln 1. [7.1] Calcular: Solución. [7.2] Calcular: Solución INTEGRAL DEFINIDA INTEGRAL DEFINIDA INTEGRAL DEFINIDA [7.] Clclr: d 5 dt t d t t dt 5 5t t / t 5t t 5t / / t d dt 5 t t t dt 5 5 5 5 ln t t 5t ln 7 ln 5 / 9 t 7 7 7 7 7 7 ln ln ln 5 5 7 9 6 [7.] Clclr: ln 5 e e e d e t

Más detalles

UNIDAD 5 Series de Fourier

UNIDAD 5 Series de Fourier Series de Fourier 5. Fucioes ortogoles, cojutos ortogoles y cojutos ortoormles Se dice que dos fucioes f ( x ) y f x so ortogoles e el itervlo < x< si cumple co: f x = Est ide se hce extesiv u cojuto de

Más detalles

( ) ( ) ( ) El producto escalar de dos vectores puede ser negativo. La información que se obtiene del signo del producto escalar es:

( ) ( ) ( ) El producto escalar de dos vectores puede ser negativo. La información que se obtiene del signo del producto escalar es: . Hll el pdct escl de ls ectes ( ) y ( ). Slción. P est definids en l se cnónic ( ) ( ) ( ) El pdct escl de ds ectes pede se negti. L infmción qe se tiene del sign del pdct escl es > 0 El ángl ente ls

Más detalles

5.7 Serie de Fourier en medio intervalo 415

5.7 Serie de Fourier en medio intervalo 415 5.7 Serie de Fourier e medio itervlo 45 5.7 Serie de Fourier e medio itervlo Serie de Fourier de coseos E ls seccioes teriores se d or hecho que l fució está defiid e u itervlo que su orige está ddo e

Más detalles

1. Determinar razonadamente si el número λ 3 2 n

1. Determinar razonadamente si el número λ 3 2 n SOLUCIONES DE LA 8ª OME Determir rzodmete si el úmero λ es irrciol r todo etero o egtivo SOLUCIÓN Suogmos que es r Etoces es múltilo de y es múltilo de ero o de co lo que o uede ser u cudrdo erfecto Suogmos

Más detalles

2πR π =

2πR π = PÁGIN 11 Pág. 1 oodends geogáfi cs 19 os ciuddes tienen l mism longitud, 15 E, y sus ltitudes son 7 5' N y 5' S. uál es l distnci ente ells? R b 7 5' b 5' Tenemos que ll l longitud del co coespondiente

Más detalles

3º de ESO Capítulo 3: Sucesiones LibrosMareaVerde.tk

3º de ESO Capítulo 3: Sucesiones LibrosMareaVerde.tk 3º de ESO Cpítulo 3: Sucesioes Auto: Fed Rmos Rodíguez y Milgos Lts Asso Reviso: Jvie Rodigo y Nieves Zusti 64 Ídice. SUCESIONES DE NÚMEROS REALES.. DEFINICIONES.. FORMAS DE DEFINIR UNA SUCESIÓN. PROGRESIONES

Más detalles

El dual tiene tantas restricciones como variables tiene el primal.

El dual tiene tantas restricciones como variables tiene el primal. .. EL MODELO DUAL A todo progr liel, lldo prole pril, le correspode otro que se deoi prole dul. Ls relcioes eistetes etre os proles so ls siguietes: El dul tiee tts vriles coo restriccioes eiste e el pril.

Más detalles

Seminario de problemas. Curso Soluciones hoja 6

Seminario de problemas. Curso Soluciones hoja 6 Semirio de problems. Curso 06-7. Solucioes hoj 6. Si igeios iformáticos, clculr l cifr que precede l fil fil de ceros e!. (Recuerd:! = 4 4 ) Empezremos por determir cuátos ceros hy e l col fil de!. Hbrá

Más detalles

5 Puntos, rectas y planos en el espacio

5 Puntos, rectas y planos en el espacio 5 Putos, ectas y paos e e espacio Págia 145 Geometía eíptica a) Sea R 1 y R ectas e a geometía eíptica, y S a supeficie esféica. R 1 = π 1 S; R = π S Como os dos paos pasa po e ceto, se cota, uego π 1

Más detalles

Sucesiones de Números Reales

Sucesiones de Números Reales Apédice A Sucesioes de Números Reles A.. Defiicioes U sucesió de úmeros reles es u correspodeci A que soci, cd úmero turl, u úmero rel A ( ) El cojuto de los úmeros turles, cotiee ifiitos elemetos e u

Más detalles

Tema 8: Integral de Riemann Monotoníadelaintegral Si f y g son funciones integrables en [a, b] tales que

Tema 8: Integral de Riemann Monotoníadelaintegral Si f y g son funciones integrables en [a, b] tales que Tem 8: Integl de iemnn Monotonídelintegl Si f y g son funciones integbles en [, b] tles que f(x) g(x) x [, b] entonces b b f Como cso pticul p g =se obtiene que si f es un función integble en [, b] tl

Más detalles

LUGARES GEOMÉTRICOS Y ÁNGULOS

LUGARES GEOMÉTRICOS Y ÁNGULOS REPASO Y APOYO OBJETIVO 1 LUGARES GEOMÉTRICOS Y ÁNGULOS Nombe: Cuso: Fec: Se llm lug geomético l conjunto de todos los puntos que cumplen un detemind popiedd geométic. EJEMPLO Cuál es el lug geomético

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES . Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.

Más detalles

Identificación n de SIStemas

Identificación n de SIStemas Idetificació de SIStemas Idetificació e Lazo Ceado ISIS J. C. omez Idetificació e Lazo Ceado A eces es ecesaio ealiza los expeimetos de idetificació e lazo ceado co etoalimetació. Las azoes puede se ue

Más detalles

Matemáticas I - Anaya

Matemáticas I - Anaya ! 50 "# Si α, qué elción tienen con los númeos α80º y 60º-α?! α80º [ cos( α 80º) i sen ( α 80º) ] (-cosα isenα ) -[(cosα isenα)] -( α ) -, luego son opuestos.! 60º-α [ cos( 60º- α) i sen (60º- α ) ] (cosα

Más detalles

EL TEOREMA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE. Alberto E. J. Manacorda*

EL TEOREMA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE. Alberto E. J. Manacorda* EL TEOREA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE Alerto E. J. cord* *Igeiero Geogrfo Profesor Titulr de Alisis temtico II Fcultd de Ciecis Ecoomics Estdistic Uiversidd Nciol de Rosrio 5.- Aliccioes

Más detalles

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación:

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación: Repesent ls dos poyecciones y l tece poyección de los puntos ddos continución: pto. lej. cot A + 0 B + = + C + < + D 0 + E - > + F - = + G - > + H - 0 I - > - J - = - K L - 0 < - - M + < - N + = - + >

Más detalles

Hacia la universidad Geometría

Hacia la universidad Geometría Hc l unvesdd Geomeí OPCIÓN A Solucono ) Clcul es vecoes que sen pependcules u ) peo que no sen plelos ene sí. b) Clcul un veco que se pependcul l ve u l pmeo que hs ddo como eemplo del pdo neo. ) Los vecoes

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 27 de Enero de 2003

CÁLCULO Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 27 de Enero de 2003 CÁLCULO Pime cuso de Igeieo de Telecomuicació Pime Exame Pacial. 7 de Eeo de 3 Ejecicio. Deducilafómuladeláeadeusegmetopaabólico e fució de su base y su altua. Se cosidea u coo cicula ecto co adio de la

Más detalles

3.6 APLICACIONES DE LOS OPERADORES DIFERENCIALES EN MEDIOS CONTINUOS

3.6 APLICACIONES DE LOS OPERADORES DIFERENCIALES EN MEDIOS CONTINUOS 3.6 APLICACIONES E LOS OPERAORES IFERENCIALES EN MEIOS CONTINUOS Existe vis pblems físics que puede epesetse mtemáticmete e témis de pedes difeeciles. E geel, se utiliz epesetcies vectiles p que ls pltemiets

Más detalles

TEMA 29. Cálculo del área. Integral Definida.

TEMA 29. Cálculo del área. Integral Definida. TEMA 9. Cálulo del áe. Itegl Deiid TEMA 9. Cálulo del áe. Itegl Deiid.. Itoduió El oige de l itegió es el álulo del áe de dieetes supeiies, sí el omiezo del álulo itegl puede ijse e l mtemáti de l Gei

Más detalles

INSTITUTO TECNOLOGICO SUPERIOR DE JESUS CARRANZA

INSTITUTO TECNOLOGICO SUPERIOR DE JESUS CARRANZA INSTITUTO TECNOOGICO SUPERIOR DE JESUS CRRNZ XII CONCURSO ESTT DE MTEMTICS COESM 5 FSE INTERN XII CONCURSO ESTT DE MTEMTICS COESM 5 FSE INTERN XII CONCURSO ESTT DE MTEMTICS COESM 5 FSE INTERN XII CONCURSO

Más detalles

g(x) se llama función integrante ò integrando.

g(x) se llama función integrante ò integrando. - g() se ll fció itegrte ò itegrdo. - es l vrible de itegrció. Itegrl idefiid, técics de itegrció Teore 8.. ( Itegrles iiciles ). d. E geerl d,?-, Q. Si f,.., f so fcioes defiids e itervlo y,., costtes:

Más detalles

SERIES NUMÉRICAS. Estudiar el carácter de las series de término general a n. n n n n n = 3. Solución: Converge. 1.- a

SERIES NUMÉRICAS. Estudiar el carácter de las series de término general a n. n n n n n = 3. Solución: Converge. 1.- a Escuel de Igeieros de Bilbo Deprtmeto Mtemátic Aplicd EIE NUMÉICA Estudir el crácter de ls series de térmio geerl :.-! Es u serie de térmios positivos. Podemos hcerlo de dos mers: ) Aplicdo el criterio

Más detalles

PAIEP. Sumas de Riemann

PAIEP. Sumas de Riemann Progrm de Acceso Iclusivo, Equidd y Permeci PAIEP Uiversidd de Stigo de Chile Sums de Riem Ddo u itervlo de l form [, b], co y b e R, < b, u prtició del itervlo [, b] es u colecció de putos P = {x, x,...,

Más detalles

!!!""#""!!! !!!""#""!!! 25 Obtén con la calculadora: aa) ) ) ,5 = 9.5 x y 2 x 1/y 5 = 2,

!!!#!!! !!!#!!! 25 Obtén con la calculadora: aa) ) ) ,5 = 9.5 x y 2 x 1/y 5 = 2, Tem Nº ritmétic y álgebr! Obté co l clculdor:, y /y,0 bb ± /y -,0 cc [(--- ---] y /y, dd y ± /y 0,0 ee y /y, f y ± /y 0, gg 0,0 -/ 0,0 00 y ±,00 hh 0, 00 000 /y y ±,0 Epres e form epoecil: dd bb ee cc

Más detalles