Fig (a) Esquemático del circuito RLC; (b) Modelo entrada-salida del circuito RLC

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Fig (a) Esquemático del circuito RLC; (b) Modelo entrada-salida del circuito RLC"

Transcripción

1 Sistems de Cotrol II Igeierí Electróic 7 odeldo e vribles de estdo de sistem RLC Co el objeto de socir ests defiicioes l modelció de sistem físico, se tom como ejemplo circito elemetl RLC; represetdo e l Fig -5 Fig -5 () Esqemático del circito RLC; (b) odelo etrd-slid del circito RLC Se tom v e (t) como señl de etrd l sistem l tesió v r (t) sobre el resistor R como slid Por relcioes físics es coocido qe l evolció de ls distits vribles físics e este circito, tles como tesioes corrietes, qedrá defiid pr todo t t si se cooce pr istte de tiempo tt, l corriete qe fle e el idctor L, l tesió qe eist sobre el cpcitor C l tesió de etrd desde t e delte E bse l defiició qe se h ddo de vribles de estdo es posible elegir l corriete e el circito l tesió sobre el cpcitor como vribles de estdo, qe ésts defie el estdo diámico del circito L evolció del estdo diámico pr t t se podrá determir si se cooce pr tt ls vribles de estdo i(t ), v c (t ) demás l tesió de etrd v e (t) pr t t Pr lizr l evolció del circito se pede plter ls eccioes difereciles del mismo como, di R i vc ve dt L L L (-3) dvc i dt C Ls Ec (-3) se pede epresr e ecció mtricil-vectoril di dv dt c dt R L C L i L [ ve] v c (-33) Dr Ig J A Pchet

2 Sistems de Cotrol II Igeierí Electróic Defiiedo i, v c como vribles de estdo como vector de estdo, l Ec (-33) se covierte e co A A (t) b (t) - R/L /C -/L /L, b, (-34) (-35) siedo A l mtriz del sistem b el vector de etrd L vrible de slid v R pede prtir del vector de estdo medite co el vector de slid c defiido como c (t) c [ R ] (-36) (-37) De est form el circito RLC de l Fig -5 qed modeldo e el espcio de estdo por (t) A(t) b (t) c (t) (t) (-38) co (t) [i vc ], (t) ve(t), (t) vr (t) siedo A, b, c defiids por ls eccioes (-35) (-37) 8 odelció de sistem moovrible de orde El sistem moovrible represetdo e l Fig -6 Fig 7 de orde se pede represetr como () (-) - (t) (-39) Fig -6 Fig 7 Sistem moovrible de orde Coociedo los prámetros i del sistem, los vlores de l vrible de slid ss derivds (-) hst l de orde - e tt, ( to ), (t o),, (to), l etrd (t) pr t t, pede determirse el comportmieto ftro de l slid del sistem (t) pr t t Pr hcer l modelció e el espcio de estdo se pede reliz l sigiete sigció: Dr Ig J A Pchet 3

3 Sistems de Cotrol II Igeierí Electróic Dr Ig J A Pchet 4 (-4) De est form l ecció diferecil de orde (-39), se pede trsformr e sistem de eccioes difereciles de primer orde (-4) El sistem (-4) se pede epresr mtricilmete como (-4) L Ec (-4) se pede escribir e form compct (-43) De igl modo l slid del sistem qed epresd (-44) (-45) El sistem moovrible de orde represetdo por l ecció diferecil Ec (-39) qed modeldo e el espcio de estdo por ls sigietes eccioes difereciles vectorilesmtriciles de primer orde (-) (t) [ ] - - b(t) A(t) (t) ] [ (t) c (t)

4 Sistems de Cotrol II Igeierí Electróic (t) A (t) b (t) (t) c (t) (-46) siedo l etrd l sistem, l slid del sistem, el vector de estdo, A l mtriz del sistem, b el vector de etrd c el vector de slid 8 Represetció de sistems mltivribles Cdo se reqiere cosiderr vris etrds vris slids de sistem simltáemete, se recrre l represetció mostrd e l Fig -8, e l cl eiste iterccioes múltiples de ls r etrds co ls m slids Si se dese modelr co eccioes difereciles, codce sistem de m r eccioes difereciles, de distito orde qe cotempl ls relcioes diámics de tods ls etrds co ls distits slids L de mor orde defie el orde del sistem mltivrible Además, el orde del sistem está ddo por el úmero míimo de vribles de estdo ecesris pr describir l evolció del sistem Fig -8 Sistem ltivrible El sistem de ls m r eccioes difereciles trsformds l domiio de l frececi e vrible complej s permite modelr l sistem mltivrible trvés de l mtriz de trsfereci G(s), ( s) G( s) ( s) (-47) dode (s) es el vector de slid de dimesió m, (s) es el vector de etrd de dimesió r, G(s) es l mtriz de trsfereci de dimesió m r Cd elemeto de l mtriz G(s) represet l Fció de rsfereci G ij (s) de l etrd j (s) respecto de l slid i (s) De l mism form qe pr el cso moovrible, qe co mor grdo de complejidd, reslt posible trvés de decd elecció de ls vribles de estdo, trsformr tods ls eccioes difereciles e cojtos de eccioes difereciles de primer orde, compctr l otció pr obteer ecció diferecil mtricilvectoril de primer orde de l mism form qe ls Ecs (-) (-), ( t) A ( t) B ( t) ( t) C ( t) D ( t) (-48) Dr Ig J A Pchet 5

5 Sistems de Cotrol II Igeierí Electróic dode A es l mtriz del sistem, B es l mtriz de etrd, C es l mtriz de slid D es l mtriz de trsfereci direct Pr determir l correct dimesió de ls distits mtrices compoetes de l Ec (-48), reslt útil represetr los vectores mtrices de l Ec (-48) por rectáglos cs logitdes de ldos represet l dimesió cosiderd Ls Ec (-48) pede represetrse esqemáticmete pr sistem mltivrible co e etrds s slids como e l Fig -9 Fig -9 Represetció esqemátic de ls eccioes de estdo Se observ qe pr sistem mltivrible l mtriz de etrd B tom l dimesió r, l mtriz de slid C l dimesió m, l mtriz de trsfereci direct D l dimesió m r l mtriz de etrd A, l dimesió, igl qe pr el cso moovrible 8 Sistem de orde co derivds e l fció ecitció El sistem moovrible represetdo e l Fig -6 Fig 7 de orde se pede represetr como () (-) - b ( ) ( ) b L b b (-49) Ahor o se pede plicr el método mostrdo, debido qe ls eccioes difereciles de (-4) tedrí e l últim ecció térmio poliómico e, hcer o d resltdo úico U solció serí resolver de tl mer el térmio poliómico de qe se le ss derivds, sólo qede e l ecció de Así, form serí elegir ls vribles de estdo restdo frcció de ss derivds, como Dr Ig J A Pchet 6

6 Sistems de Cotrol II Igeierí Electróic Dr Ig J A Pchet 7 (-5) Co ést selecció de ls vribles de estdo l eisteci icidd de l solció de ls eccioes de estdo qed grtizd Aqe, o es úic ést crcterístic qe pede hber otr selecció qe tmbié grtice l eisteci icidd Se obtiee, etoces (-5) El sistem Ec (-5) se pede epresr mtricilmete como (-5) De igl modo l slid del sistem qed epresd como (-53) dode se tiee represetció mtricil álog l Ec (-46), co los térmios derivtivos de fectdo l mtriz B l D 83 Ejemplo (-54) (-55) Iglmete pr, ( ) ( ) (-) 3 L (t) L - -, ] [

7 Sistems de Cotrol II Igeierí Electróic de qí qe tmbié qe (-56) (-57) (-58) Por lo tto, itrodciedo l derivd segd de e l (-58) co, se l l derivd de, reslt el sistem de dode se obtiee ( ) ( ) (-59) (-6) A, b,c [ ], D [ ] Co tlb, l operció ivers es [N,D]sstf([ ;- -], [;],[,],[]) N D qe verific l epresió (-54) 84 Ejercicios sgeridos Cpitlo 3 de Ogt, ejercicios A33, A34, B35, B36, B35 9 Smrio 7 odeldo e vribles de estdo de sistem RLC 8 odelció de sistem moovrible de orde 3 83 Ejercicios sgeridos 9 Smrio 7 Bibliogrfí 8 Bibliogrfí [] Ogt, oder Cotrol Egieerig 997 Pretice Hll Dr Ig J A Pchet 8

BLOQUE 2. ÁLGEBRA LINEAL. ESPACIOS VECTORIALES

BLOQUE 2. ÁLGEBRA LINEAL. ESPACIOS VECTORIALES BOQUE. ÁGEBRA INEA. ESPACIOS VECTORIAES El espcio ectoril IR. Sbespcio ectoril. Depedeci e idepedeci liel. Sistem geerdor. Bse. Este primer tem setrá ls bses qe permitirá desrrollr ftros coceptos. Se lizrá

Más detalles

CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS

CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS Fcultd de Cotdurí y dmiistrció. UNM Determites utor: Dr. José Muel Becerr Espios MEMÁICS BÁSICS DEERMINNES CONCEPO DE DEERMINNE DEFINICIÓN Se u mtriz cudrd de orde. Se defie como ermite de (deotdo como,

Más detalles

3. Fallas Asimétricas Ejemplos

3. Fallas Asimétricas Ejemplos Ejemplo 7. Frcisco M. Gozlez-Logtt Aexo 7 3. Flls Aétrics Ejemplos El ple sistem de poteci qe se mestr e l Figr sigiete, cosiste de geerdor, trsformdor, líe de trsmisió, trsformdor redctor y crg. Cosidere

Más detalles

Matemáticas II Hoja 2: Matrices

Matemáticas II Hoja 2: Matrices Profesor: Miguel Ágel Bez lb (º Bchillerto) Mtemátics II Hoj : Mtrices Opercioes: Ejercicio : Ecotrr ls mtrices X e Y tles que: X Y 5 X Y 7 Ejercicio : 5 Dds ls mtrices y B, clcul: ) -B b) B c) B(-) d)

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES . Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.

Más detalles

Sucesiones de funciones

Sucesiones de funciones Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci

Más detalles

SUCESIONES DE NÚMEROS REALES

SUCESIONES DE NÚMEROS REALES SUCESIONES DE NÚMEROS REALES Sucesioes de úmeros reles Se llm sucesió de úmeros reles u plicció del cojuto N * (cojuto de todos los úmeros turles excluido el cero) e el cojuto R de los úmeros reles. N

Más detalles

Licdo Eliezer Montoya Resumen de los Métodos de Integración 1. Tablas de derivación

Licdo Eliezer Montoya Resumen de los Métodos de Integración 1. Tablas de derivación Licdo Eliezer Motoy Rese de los Métodos de Itegrció Tbls de derivció dy L derivd por defiició f ( ) D f y d D ( ) D ( ) D ( ) ) D ( ) D ( c) 0 D D ( ) ) D D ( ) ) D ( v) D ( ) D ( v) 3) D ( v) D v vd vd

Más detalles

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede

Más detalles

1.5 La Factorización QR

1.5 La Factorización QR Edgr Acñ/ESMA 6665 Lecc4-5 4.5 L Fctorizció QR Dd mtriz cdrd y osiglr A de orde x, etoces existe mtriz ortogol Q y mtriz triglr sperior R tl qe AQR est es llmd l fctorizció QR de A. Si l mtriz A o es cdrd

Más detalles

Licenciatura en Electrónica y Computación: Métodos Numéricos

Licenciatura en Electrónica y Computación: Métodos Numéricos CIICp VLORES Y VECTORES PROPIOS Los vlores y vectores propios se cooce tmié como eigevlores y eigevectores. Estos vlores y vectores propios se utiliz geerlmete e sistems lieles de ecucioes homogéeos que

Más detalles

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES TEM. VECTORES Y MTRICES.. PLICCIONES . VECTORES Y MTRICES.. PLICCIONES... Cálculo del rgo de u mtri.... Cálculo de l ivers de u mtri.... Resolució de ecucioes mtriciles.... Discusió resolució de sistems

Más detalles

BLOQUE 2. ÁLGEBRA LINEAL. APLICACIONES LINEALES Y DIAGONALIZACIÓN (*)

BLOQUE 2. ÁLGEBRA LINEAL. APLICACIONES LINEALES Y DIAGONALIZACIÓN (*) BOQUE. ÁGEBRA INEA. AICACIONES INEAES Y DIAGONAIZACIÓN * Apliccioes lieles. Epresió tricil de plicció liel. Digolizció. E cotetos coo Sistes Diáicos o procesos de cdes de rov es preciso coocer l or geerl

Más detalles

TEMA 2: SISTEMAS DE ECUACIONES LINEALES

TEMA 2: SISTEMAS DE ECUACIONES LINEALES Profesor: Rf Gozález Jiméez Istituto St Eulli TEM 2: SISTEMS DE ECUCIONES LINELES ÍNDICE 2..- Sistems de Ecucioes Lieles. Geerliddes. 2.2.- Sistems equivletes. 2.3.- Resolució de S.E.L. por mtriz ivers.

Más detalles

Unidad 2: SUCESIONES Y SERIES NUMÉRICAS.

Unidad 2: SUCESIONES Y SERIES NUMÉRICAS. Uidd : SUCESIONES Y SERIES NUMÉRICAS. U sucesió es u cojuto ordedo de elemetos que respode u ley de formció. L sucesió suele brevirse: (,...) ( ) =,, 3,..., 3 Siedo el primer térmio, el segudo térmio,

Más detalles

En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración.

En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración. Arquitectur del Computdor ots de Teórico SISTEMAS DE UMERACIÓ. Itroducció E este cpítulo expodremos brevemete ( modo de repso) coceptos básicos sobre los sistems de umerció. o por secillo el tem dej de

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Eucidos de proles de selectividd. Mteátics II. Mtrices y deterites MTRICES Y DETERMINNTES.(97).- Se dice que u triz cudrd es ortogol si se verific que t I. Si y B so dos trices ortogoles de igul tño, lizr

Más detalles

Base teórica sobre serie de potencias

Base teórica sobre serie de potencias Código del Curso- Ecucioes Difereciles Act 1: Lecció Evlutiv Uidd Bse teóric sobre serie de potecis Recordemos que u sucesió S coverge u úmero p o que es covergete co el limite p, si pr cd úmero positivo

Más detalles

Segunda definición.- Se llama sucesión de números reales a una aplicación del conjunto N* = N {0} en el conjunto de los números reales

Segunda definición.- Se llama sucesión de números reales a una aplicación del conjunto N* = N {0} en el conjunto de los números reales SUCESIONES DE NÚMEROS REALES. LÍMITE DE SUCESIONES. INTRODUCCIÓN.- Relció - Relció es tod propiedd que comuic los elemetos de dos cojutos o bie comuic etre sí los elemetos de u mismo cojuto. E geerl u

Más detalles

Transformaciones lineales

Transformaciones lineales Trsformcioes lieles [Versió prelimir] Prof. Isbel Arrti Z. 1 Se V y W espcios vectoriles sobre el cuerpo R de los úmeros reles. U trsformció liel o plicció liel de V e W es u fució T : V W que stisfce:

Más detalles

Unidad didáctica 3 Las potencias

Unidad didáctica 3 Las potencias Uidd didáctic Ls potecis 1.- Qué es u poteci? U poteci, es u producto de fctores igules que se repite vris veces. veces El fctor que se repite se llm bse,. El úmero de veces que se repite l bse es el expoete,.

Más detalles

Matemáticas 1 EJERCICIOS RESUELTOS:

Matemáticas 1 EJERCICIOS RESUELTOS: Mtemátics EJERCICIOS RESUELTOS: Series umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Series umérics Clculr l

Más detalles

Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x)

Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x) FUNCIÓN EXPONENCIAL Defiició: Llmmos fució epoecil u fució que se epres de l form: f = = co > 0 ( ), dode f ( ) : R R > 0 Ates de trbjr específicmete, co ls fucioes epoeciles, recordemos lguos coceptos

Más detalles

POTENCIAS.- a determina la potencia de base a y exponente n, significa que hemos de multiplicar a por si mismo n veces.

POTENCIAS.- a determina la potencia de base a y exponente n, significa que hemos de multiplicar a por si mismo n veces. POTENCIAS.- determi l oteci de se y exoete, sigific ue hemos de multilicr or si mismo veces. Defiició: L otció Bse Exoet El exoete,, idic ls veces ue se reite l se e el roducto de ést or si mism. L se,,

Más detalles

TEMA 1. ÁLGEBRA LINEAL

TEMA 1. ÁLGEBRA LINEAL Te Álgebr Liel Mteátics TEMA. ÁLGEBRA LINEAL - VECTORES DE R Defiició R {(,,..., )/,,..., R } (-tupls de os reles ordeds) Defiios e este cojuto opercioes: Su () Pr culesquier eleetos, (,,..., ), (y,y,...,y

Más detalles

el blog de mate de aida CSI: sistemas de ecuaciones. pág

el blog de mate de aida CSI: sistemas de ecuaciones. pág el blog de mte de id CSI: sistems de ecucioes pág SISTEMAS DE ECUACIONES DE PRIMER GRADO U sistem de "m" ecucioes lieles co "" icógits,,,, es u cojuto de "m" igulddes de l form: m m b b m dode ij, b i

Más detalles

3.- Solución de sistemas de ecuaciones lineales

3.- Solución de sistemas de ecuaciones lineales .- Solució de sistes de ecucioes lieles U siste de ecucioes lieles e icógits tiee l for geerl: + + + +... + +... + +... + (.) L solució de estos sistes de ecucioes lieles ls podeos ctlogr segú l tl. Siste

Más detalles

Sucesiones de Números Reales

Sucesiones de Números Reales Apédice A Sucesioes de Números Reles A.. Defiicioes U sucesió de úmeros reles es u correspodeci A que soci, cd úmero turl, u úmero rel A ( ) El cojuto de los úmeros turles, cotiee ifiitos elemetos e u

Más detalles

Procesado digital de imagen y sonido

Procesado digital de imagen y sonido em t bl u Uiversidd del Pís Vsco Deprtmeto de Arquitectur y Tecologí de Computdores upv ehu Tem 5_ Trsformd Z Procesdo digitl de imge y soido Defiició Propieddes priciples Aplicció señles y sistems LTI

Más detalles

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA. Escuela de Ciencias Básicas Tecnologías e Ingeniería CURSO CALCULO DIFERENCIAL _57

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA. Escuela de Ciencias Básicas Tecnologías e Ingeniería CURSO CALCULO DIFERENCIAL _57 UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA Escel de Ciecis Básics Tecologís e Igeierí CURSO CALCULO DIFERENCIAL 000_7 Actiidd : Trbjo colbortio No ESTUDIANTES: LIZANDRO FABIO YUVABE CARIANIL.00.07.07 EDINSON

Más detalles

ECUACIONES LINEALES SIMULTANEAS HOMOGENEAS

ECUACIONES LINEALES SIMULTANEAS HOMOGENEAS ECUACIONES LINEALES SIMULTANEAS HOMOGENEAS Métodos Numéricos /Aálisis Numérico/ Cálculo Numérico Objetivo: Resolució de sistems de ecucioes lieles homogées por métodos proimdos. SISTEMAS DE ECUACIONES

Más detalles

2.5 REGLA DE CRAMER (OPCIONAL)

2.5 REGLA DE CRAMER (OPCIONAL) CAPÍTULO etermites i. Cree u mesje pr su profesor. Utilizdo úmeros e lugr de letrs, tl y como se describió e el problem 9 de MATLAB.8, escrib el mesje e form mtricil pr que pued multiplicrlo por l derech

Más detalles

1. Discutir según los valores del parámetro k el sistema

1. Discutir según los valores del parámetro k el sistema . Discutir segú los vlores del práetro el siste C Si, el (º de icógits) S. C. D. Teiedo e cut lo terior se discute el tipo de solució del siste pr los vlores del práetro que ulr el deterite de l tri de

Más detalles

1. ESTIMACIÓN DE RADICALES Llamaremos estimar una raíz a dar una aproximación de ella. Por ejemplo, Raíz de 178 aproximadamente es 13 4.

1. ESTIMACIÓN DE RADICALES Llamaremos estimar una raíz a dar una aproximación de ella. Por ejemplo, Raíz de 178 aproximadamente es 13 4. Amplició potecis y rdicles º ESO Curso 06_07. ESTIMACIÓN DE RADICALES Llmremos estimr u ríz dr u proimció de ell. or ejemplo, 78. Ríz de 78 proimdmete es.. RADICALES EN FORMA DE OTENCIA El vlor de u ríz

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTES DE ECUCINES INEES Ecucioes lieles. Se llm ecució liel co icógits tod ecució que pued escriirse de l form: dode so vriles y... so úmeros reles siedo i el coeficiete de l vrile i y el térmio idepediete

Más detalles

GRAFCET GRAFICO DE COMANDO ETAPA TRANSICIÓN. Fabiana Ferreira

GRAFCET GRAFICO DE COMANDO ETAPA TRANSICIÓN. Fabiana Ferreira GRAFCET GRAFICO DE COMANDO ETAPA TRANSICIÓN Fbi Ferreir Lbortorio de Electróic Idustril- Dto. de Electróic Fcultd de Igeierí Uiversidd de Bueos Aires qué es el Grfcet? Método grfico de modeldo y descripció

Más detalles

MANUAL MATEMÁTICAS PARA ESTUDIANTES DE FINANZAS. Exponentes

MANUAL MATEMÁTICAS PARA ESTUDIANTES DE FINANZAS. Exponentes _ Defiició: Epoetes Pr u úero rel u etero positivo, veces se le deoi l se l poteci o epoete Ejeplos:..... Not: oserv que del segudo es. o so igules, el resultdo del priero es Lees de epoetes: Pr cd u de

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos

Más detalles

Álgebra para ingenieros de la Universidad Alfonso X

Álgebra para ingenieros de la Universidad Alfonso X Crrer: UAX Asigtur: temátics Fech: Pági de 9 Álger pr igeieros de l Uiversidd Alfoso X -trices y sistems de ecucioes lieles Opercioes co mtrices: A= m m B= m p p q q pq Sum: - s mtrices sumr tiee que teer

Más detalles

COMBINATORIA. Las variaciones ordinarias se representan por el símbolo Vm,n o por V

COMBINATORIA. Las variaciones ordinarias se representan por el símbolo Vm,n o por V COMBINATORIA Por Aálisis Cobitorio o Cobitori, se etiede quell prte del álgebr que se ocup del estudio y propieddes de los grupos que puede forrse co eleetos ddos, distiguiédose etre sí: por el úero de

Más detalles

Profesorado de Informática - Ciencias de la Computación - INET DFPD Matemática II 2010 Sucesiones

Profesorado de Informática - Ciencias de la Computación - INET DFPD Matemática II 2010 Sucesiones Profesordo de Iformátic - Ciecis de l Computció - INET DFPD Mtemátic II Sucesioes Sucesioes Tems: Límites de sucesioes. Sucesioes moótos y sus límites. Pres de sucesioes moótos covergetes. Número e. Opercioes

Más detalles

TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a.

TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a. Colegio Mter Slvtoris TEMA : RADICALES.1 DEFINICIÓN Se ll ríz -ési de u úero, se represet, otro º tl que. Se l epresió geerl de u ríz -esi es el ídice es el rdicdo c Al síolo lo llos Rdicl c es el coeficiete

Más detalles

DELTA MASTER FORMACIÓN UNIVERSTARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSTARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID / Grl. Ampudi, 6 Teléf.: 9 5-9 55 9 ADRID FBRRO 5 UNIVRSIDAD PONTIFIIA D SALAANA ATÁTIAS DISRTAS FBRRO 5 (TARD) PROBLA : Se cooce el siguiete comportmieto de Luis e u resturte l que v comer: - No es verdd

Más detalles

POTENCIACIÓN Y RADICACIÓN EN. Recordemos en primer lugar algunas definiciones y propiedades de la potenciación y de la radicación de números reales:

POTENCIACIÓN Y RADICACIÓN EN. Recordemos en primer lugar algunas definiciones y propiedades de la potenciación y de la radicación de números reales: POTENCIACIÓN Y RADICACIÓN EN Recordemos e primer lugr lgus defiicioes y propieddes de l potecició y de l rdicció de úmeros reles: PROPIEDADES DE LA POTENCIACIÓN Poteci de expoete cero : 0 = por defiició,

Más detalles

Unidad 12: DERIVADAS

Unidad 12: DERIVADAS Uidd : DERIVADAS Si u ctidd o egtiv uer t pequeñ que resultr meor que culquier otr dd, ciertmete o podrí ser sio cero. A quiees pregut qué es u ctidd iiitmete pequeñ e mtemátics, osotros respodemos que

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5. Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..

Más detalles

Método alternativo para la gráfica de funciones algebraicas

Método alternativo para la gráfica de funciones algebraicas Método ltertivo pr l gráfic de fucioes lgebrics Altertive Method for the Grph of Algebric Fuctios José Albeiro Sáchez Co* Itroducció Por lo regulr, u gráfic de u fució de vrible rel se dibuj trzdo uos

Más detalles

Guía Práctica N 12 RAÍCES FUNCIÓN RAÍZ CUADRADA

Guía Práctica N 12 RAÍCES FUNCIÓN RAÍZ CUADRADA Fuete: PreUiversitrio Pedro de Vldivi Guí Práctic N RAÍCES FUNCIÓN RAÍZ CUADRADA DEFINICIÓN : Si es u etero pr positivo es u rel o egtivo, etoces es el úico rel, o egtivo, tl que = = =, 0 DEFINICIÓN :

Más detalles

METODO DEL ESPACIO DE ESTADO

METODO DEL ESPACIO DE ESTADO Fcltd de Ingenierí Bioingenierí Control de Proceo METODO DEL ESPACIO DE ESTADO ESTADO: El etdo de n item dinámico e el conjnto má eqeño de vrile denomind vrile de etdo tl qe el conocimiento de e vrile

Más detalles

Z={...,-4,-3,-2,-1,0,1,2,3,4,...}

Z={...,-4,-3,-2,-1,0,1,2,3,4,...} TEMA Prelimires: Números y cojutos P- Números eteros: Se deomi úmeros turles (tmbié llmdos eteros positivos) los úmeros que os sirve pr cotr objetos:,,,4,5,... El cojuto de los úmeros turles se desig por

Más detalles

Algunas funciones elementales

Algunas funciones elementales Apédice B Algus fucioes eleetles B Fució poteci -ési U fució poteci -ési es u fució de l for f ( ) dode l se es u vrile y el epoete u úero turl Es l for ás secill de ls fucioes polióics f ( ) Ls fucioes

Más detalles

TEMA1: MATRICES Y DETERMINANTES:

TEMA1: MATRICES Y DETERMINANTES: TEM: MTRICES Y DETERMINNTES: MTRICES: U triz de diesió, es u tbl ford por fils y colus. j i siedo ij,.,,., ) ( Por ejeplo: Se ll Mtriz Fil l que tiee u sol fil, ejeplo: Se ll Mtriz Colu l que tiee u sol

Más detalles

( x) OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI. 0 son coeficientes numéricos y n N, c R es un cero o raíz, de ( x)

( x) OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI. 0 son coeficientes numéricos y n N, c R es un cero o raíz, de ( x) Pági del Colegio de Mtemátics de l ENP-UNAM Opercioes co frccioes lgebrics rdicles Autor: Dr. José Muel Becerr Espios OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI VI. TEOREMAS DEL RESIDUO

Más detalles

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x)

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x) FÓRMULA DE TAYLOR. Itroducció Los poliomios igur etre ls ucioes más secills que se estudi e Aálisis. So decuds pr trjr e cálculos uméricos por que sus vlores se puede oteer eectudo u úmero iito de multipliccioes

Más detalles

Matemáticas Aplicadas a la Ciencias Sociales II SISTEMAS DE ECUACIONES. , a toda ecuación que pueda escribirse de la forma: ...

Matemáticas Aplicadas a la Ciencias Sociales II SISTEMAS DE ECUACIONES. , a toda ecuación que pueda escribirse de la forma: ... Mtemátics Aplicds l Ciecis Sociles II SISTEMAS DE ECUACIONES Ecució liel Se llm ecució liel co icógits,,,,,, tod ecució que pued escriirse de l form: + + + + = dode,,,,, so úmeros reles El cojuto de úmeros

Más detalles

Vectores 1 ; Ejercicio nº 1.- Ejercicio nº 2.-

Vectores 1 ; Ejercicio nº 1.- Ejercicio nº 2.- Vectores. dij so los sigietes ectores Si ) Ejercicio º.- ( ) : Oté ls coordeds de Ls coordeds de dos ectores so ). ; ; los qe estr l figr: siedo Dij los ectores ) Ejercicio º.- ( ) : oté ls coordeds de

Más detalles

Tema IV. Sucesiones y Series

Tema IV. Sucesiones y Series 03 Tem IV. Sucesioes y Series Σ Gil Sdro Gómez Stos 0/0/03 UASD Tem IV. Sucesioes y Series Coteido Itroducció... 3 4. Sucesió... 4 4. Límite de u sucesió... 4 4.3 Tipos de sucesioes... 6 4.4 Series...

Más detalles

SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS

SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS R.F.- - SISTES DE ECUCIONES INEES: TEORE DE ROUCHÉ- FROBENIUS Recordeos que u siste de ecucioes co icógits es u siste de l for: Dode: ij so úeros reles se ll coeficietes del siste,,,, so úeros reles recie

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n

1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n . SERIES NUMÉRICAS.SUMA DE SERIES. (6 Problems.- Estudir el crácter de ls series:! 0 b + si >0, segú vlores de. 0.- Clculr cos α sbiedo que x x e 0! 0! 3.- Estudir l serie de térmio geerl. π se.- Cosidermos

Más detalles

Prof. Dr. Paul Bustamante

Prof. Dr. Paul Bustamante Práctics de C++ Prctic Nº 4 Iformátic II Fudmetos de Progrmció Prof. Dr. Pul Bustmte Prctic Nº4 Progrmció e C++ Pág. ÍNDICE ÍNDICE.... Itroducció.... Ejercicio : Números cpicús....2 Ejercicio 2: Producto

Más detalles

SUCESIONES. PROGRESIÓN ARITMÉTICA Y GEOMÉTRICA

SUCESIONES. PROGRESIÓN ARITMÉTICA Y GEOMÉTRICA AuldeMte.com SUCESIONES. PROGRESIÓN ARITMÉTICA Y GEOMÉTRICA Breve reseñ históric: Los pitgóricos llmb trigulres los úmeros 3, 6, 0,,... e cosoci co l costrucció que prece e l figur. Se trt de u primer

Más detalles

TEMA Nº 1: NÚMEROS REALES

TEMA Nº 1: NÚMEROS REALES Deprtmeto de Mtemátics. I.E.S. Ciudd de Arjo º BAC MCS TEMA Nº : NÚMEROS REALES. NÚMEROS RACIONALES. EXPRESIONES DECIMALES.. NÚMEROS RACIONALES. EXPRESIONES DECIMALES. NÚMEROS IRRACIONALES.. NÚMEROS REALES.

Más detalles

Estructuras Discretas. Unidad 3 Teoría de números

Estructuras Discretas. Unidad 3 Teoría de números Estructurs Discrets Uidd 3 Teorí de úmeros Coteido. Divisiilidd, Números rimos Teorem fudmetl de l ritmétic. 2. Algoritmo de l divisió Máximo comú divisor y míimo comú múltilo, Algoritmo de Euclides. 3.

Más detalles

5 3 = (5)(5)(5) = 125

5 3 = (5)(5)(5) = 125 Potecició: Es el resultdo que se obtiee l ultiplicr l bse por si is cuts veces lo idique el expoete: = ( )( )( )... BASE = ()()() = POTENCIA EXPONENTE Bse: Es el úero que se ultiplic por si iso. Expoete:

Más detalles

z 2 16 z Por tanto concluimos que log 3 2 z 5 Por tanto concluimos que z 2 Por tanto concluimos que log log 3 z 2 log a p p que resulta evidente

z 2 16 z Por tanto concluimos que log 3 2 z 5 Por tanto concluimos que z 2 Por tanto concluimos que log log 3 z 2 log a p p que resulta evidente UNIDAD.- LOGARIMOS. APLICACIONES (tem del libro). LOGARIMO DE UN NÚMERO Cosideremos l ecució: 8. Como vemos l icógit está e el epoete, lo que l hce diferete todos los tipos vistos hst hor. es el epoete

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación RESUMEN TEMA SUCESIONES

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación RESUMEN TEMA SUCESIONES E.T.S.I. Idustriles y Telecomuicció Curso 22-23 Grdos E.T.S.I. Idustriles y Telecomuicció Asigtur: Cálculo I DEFINICIONES BÁSICAS Existe muchos feómeos que o se comport de mer cotiu, sio que ecesit u determido

Más detalles

Progresiones aritméticas y geométricas

Progresiones aritméticas y geométricas Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistems de Eccioes Lieles 8 63.- Ddo el sistem de eccioes lieles S 63, se pide 8 3 8. Resolver co MATLAB co l istrcció =A\b (método de Gss). b. Estdir si A es defiid positiv. c. Estdir si l mtriz A de

Más detalles

5. Repaso de matrices. ( Chema Madoz, VEGAP, Madrid 2009)

5. Repaso de matrices. ( Chema Madoz, VEGAP, Madrid 2009) . epso de trices he Mdoz, VEGP, Mdrid ) Mtrices Eleeto: ij Tño: Mtriz cudrd: orde ) Eleetos de l digol: Vector colu triz ) Vector fil triz ) ) 8, B ) 8) B Su: ij k k k k k k k k k k k ) Multiplicció por

Más detalles

TEMA 3: RESOLUCIÓN DE SISTEMAS DE ECUACIONES MEDIANTE DETERMINANTES.

TEMA 3: RESOLUCIÓN DE SISTEMAS DE ECUACIONES MEDIANTE DETERMINANTES. TEM : RESOLUCIÓN DE SISTEMS DE ECUCIONES MEDINTE DETERMINNTES. º BCH(CN) TEM : RESOLUCIÓN DE SISTEMS DE ECUCIONES MEDINTE DETERMINNTES..-INTRODUCCIÓN. L resoluió de sistems de euioes está ligd l estudio

Más detalles

Las reglas de divisibilidad

Las reglas de divisibilidad Uiversidd Itermeric de Puerto Rico - Recito de Poce Ls regls de divisibilidd Por: Erique Díz Gozález Uiversidd Itermeric de Puerto Rico e el Recito de Poce Itroducció Desde l escuel elemetl los estudites

Más detalles

Las reglas de divisibilidad Por: Enrique Díaz González

Las reglas de divisibilidad Por: Enrique Díaz González Uiversidd Itermeric de Puerto Rico - Recito de Poce Ls regls de divisibilidd Por: Erique Díz Gozález Itroducció Desde l escuel elemetl los estudites se les eseñ cudo u etero es divisible, por ejemplo,

Más detalles

Progresiones aritméticas y geométricas

Progresiones aritméticas y geométricas Pogesioes itétics y geoétics Pogesioes itétics U pogesió itétic es scesió de úeos, tles qe l difeeci ete dos cosectivos clesqie de ellos es costte, po ejeplo, l scesió de los úeos ipes,,, dode l difeeci

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

Ecuaciones de recurrencia

Ecuaciones de recurrencia Ecucioes de recurreci Itroducció Comecemos co u ejemplo: Sucesió de Fibocci: ( ) = (,,,3,5,8,3,... ) Cd térmio, prtir del tercero, se obtiee sumdo los dos teriores, o se: 3 = + ( ) U expresió de este tipo,

Más detalles

La integral. 1.5 Definición de la integral. Sumas de Riemann Aproximación del área de una región

La integral. 1.5 Definición de la integral. Sumas de Riemann Aproximación del área de una región APÍTULO L itegrl.5 efiició de l itegrl. Sums de Riem.5. Aproimció del áre de u regió E est secció precismos lgus ides epuests previmete, co respecto l problem de ecotrr el áre de l regió bjo l gráfic de

Más detalles

Prácticas Matlab. Para calcular la suma entre dos valores de una expresión simbólica. Práctica 7: Convergencia Series de Términos Positivos.

Prácticas Matlab. Para calcular la suma entre dos valores de una expresión simbólica. Práctica 7: Convergencia Series de Términos Positivos. PRÁCTICA SERIES Práctics Mtlb Objetivos Práctic 7: Covergeci Series de Térmios Positivos Estudir l covergeci o divergeci de u serie de térmios positivos utilizdo distitos criterios combido ls coclusioes

Más detalles

9 Proieddes del roducto de úmeros or mtrices: b y M m. socitiv: b b Distributiv e : b b Distributiv e M m : Elemeto eutro: =.. Producto de mtrices Pr

9 Proieddes del roducto de úmeros or mtrices: b y M m. socitiv: b b Distributiv e : b b Distributiv e M m : Elemeto eutro: =.. Producto de mtrices Pr . OPERIONES ON MRIES.. Sum de mtrices Pr oder sumr dos mtrices ésts debe teer l mism dimesió. Etoces se sum térmio térmio: b b m m m Proieddes de l sum de mtrices: socitiv: omuttiv: Elemeto eutro: L mtriz

Más detalles

CLASIFICACIÓN DE MÉTODOS. Teorema 1: Dada A, matriz cuadrada de orden n, los enunciados siguientes son equivalentes:

CLASIFICACIÓN DE MÉTODOS. Teorema 1: Dada A, matriz cuadrada de orden n, los enunciados siguientes son equivalentes: SOLUCION DE SISTEMAS DE ECUACIONES LINEALES Los sistems de ecucioes represet probems físicos que ivoucr itercció de vris propieddes Ls vribes e e sistem represet s propieddes que se estudi y s ecucioes

Más detalles

Tema 1: Números reales.

Tema 1: Números reales. Tem : Números reles. REALES se utiliz pr Medir mgitudes se obtiee Ctiddes todos so Números Errores viee fectds de errores Aproximcioes clses se represet Rect rel Aproximcioes decimles Redodeos Trucmieto

Más detalles

1.- POTENCIAS DE EXPONENTE ENTERO

1.- POTENCIAS DE EXPONENTE ENTERO º ESO - UNIDAD.- POTENCIAS Y RAÍCES OBJETIVOS MÍNIMOS DE LA UNIDAD.- Clculr potecis de se rciol y epoete etero.- Relizr opercioes co potecis de epoete etero usdo sus propieddes.- Epresr úeros e otció cietífic.-

Más detalles

Práctica 6. Calcular la suma de los primeros K números naturales y k k. . 2 Calcular la suma de los cuadrados de los primeros k números

Práctica 6. Calcular la suma de los primeros K números naturales y k k. . 2 Calcular la suma de los cuadrados de los primeros k números PRÁCTICA SERIES NUMÉRICAS Práctics Mtlb Objetivos Práctic 6 Estudir l covergeci o divergeci de u serie de térmios positivos utilizdo distitos criterios combido ls coclusioes experimetles (el ordedor) co

Más detalles

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN TERCER PERÍODO 01 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis

Más detalles

Tema 7: Series Funcionales

Tema 7: Series Funcionales I.T.Telecomuiccioes Curso 99/ Tem 7: Series Fucioles Al estudir el teorem de Tylor se oservó l posiilidd de epresr u fució f ifiitmete derivle como u sum ifiit de fucioes moomiles, lgo sí como u poliomio

Más detalles

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino i quieres que lgo se hg, ecárgselo u perso ocupd Proverbio chio hht ttpp: ://ppeer rssoo..wddoooo..eess/ /ti iimoomt tee Noviembre 006 PROGREIONE DEFINICIÓN DE UCEIÓN NUMÉRICA U sucesió uméric es u cojuto

Más detalles

CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N 4: POTENCIACION

CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N 4: POTENCIACION CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N : POTENCIACION L operció de Potecició stisfce ls siguietes propieddes: L Potecició es u operció

Más detalles

EL TEOREMA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE. Alberto E. J. Manacorda*

EL TEOREMA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE. Alberto E. J. Manacorda* EL TEOREA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE Alerto E. J. cord* *Igeiero Geogrfo Profesor Titulr de Alisis temtico II Fcultd de Ciecis Ecoomics Estdistic Uiversidd Nciol de Rosrio 5.- Aliccioes

Más detalles

Ejemplos 1. Encontrar el área de la región limitada por la curva y = 6 x x 2 y el eje x. Solución

Ejemplos 1. Encontrar el área de la región limitada por la curva y = 6 x x 2 y el eje x. Solución Cálculo de Áres Ejemplos. Ecotrr el áre de l regió limitd por l curv = 6 el eje. (6)(6) / A d 4 8 9 7 A ()( 8) A = 5/6 uiddes cudrds. Ecotrr el áre de l regió etre l curv = e el eje etre = = A = e d e

Más detalles

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n TEMA 8: UCEIONE DE NÚMERO. PROGREIONE.- UCEIONE DE NÚMERO RACIONALE: U sucesió es u cojuto ordedo de úmeros reles:,,,, - Los úmeros turles se llm ídices. El subídice idic el lugr que el térmio ocup e l

Más detalles

1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias:

1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias: FICHA : Potecis de expoete IN RECORDAR:... Defiició de poteci ( veces). Aplicr l defiició pr hllr, si clculdor, el vlor de ls siguietes potecis: ) b) c) d) e) f) g) h) i) j) k) l) m) ) o) p) q) r) s) t)

Más detalles

Guía ejercicios resueltos Sumatoria y Binomio de Newton

Guía ejercicios resueltos Sumatoria y Binomio de Newton Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Guí ejercicios resueltos Sumtori y Biomio de Newto Solució: ) Como o depede de j, es costte l sumtori. b) c) d) Auilir: Igcio Domigo Trujillo Silv

Más detalles

. De manera sucesiva, si x se multiplica por si misma n veces, se

. De manera sucesiva, si x se multiplica por si misma n veces, se Fcultd de Cotdurí Adiistrció UNAM Lees de eoetes ritos Autor: Dr José Muel Becerr Esios MATEMÁTICAS BÁSICAS LEYES DE EXPONENTES Y LOGARITMOS LEYES DE EXPONENTES Se u úero rel Si se ultilic or sí iso se

Más detalles

Binomio de Newton. Teorema: Sean a, b dos números reales no nulos, y sea n N un número natural. Entonces: a n k b k. n 1 a n 1 b + 2.

Binomio de Newton. Teorema: Sean a, b dos números reales no nulos, y sea n N un número natural. Entonces: a n k b k. n 1 a n 1 b + 2. Biomio de Newto Teorem del biomio de Newto Teorem: Se, b dos úmeros reles o ulos, y se N u úmero turl. Etoces: b b b b b b L expresió l derech se deomi el desrrollo biomil de b. Observmos que este desrrollo

Más detalles

UNA ALTERNATIVA PARA LA DETERMINACIÓN DE LAS FÓRMULAS DE SUMA

UNA ALTERNATIVA PARA LA DETERMINACIÓN DE LAS FÓRMULAS DE SUMA Mosicos Mtemáticos No. Diciembre 00. Niveles Medio Superior y Superior UNA ALTERNATIVA PARA LA DETERMINACIÓN DE LAS FÓRMULAS DE SUMA Mximilio de ls Fuetes Lr Olg Gozles Zvl Crlos Vldez Gozález Fcultd de

Más detalles

ESQUEMA DE LOS CONJUNTOS NUMÉRICOS

ESQUEMA DE LOS CONJUNTOS NUMÉRICOS Miisterio de Educció Uiversidd Tecológic Nciol Fcultd Regiol Treque Luque ESQUEMA DE LOS CONJUNTOS NUMÉRICOS NÚMEROS NATURALES De cuerdo l esquem terior, existe cojutos chicos y grdes, y lguos de ellos

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

CINÉTICA DE UNA PARTÍCULA

CINÉTICA DE UNA PARTÍCULA pítlo X INÉTIA DE UNA PARTÍULA. INTRODUIÓN El estdio de l ciétic costite pte impotte del estdio de l Mecáic poqe popocio elcioes ete el movimieto de cepo ls fes mometos qe sobe él ctú. Ls elcioes de l

Más detalles

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES.

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES. PRODUCTOS NOTABLES. Productos Notbles: So poliomios que se obtiee de l multiplicció etre dos o más poliomios que posee crcterístics especiles o expresioes prticulres, cumple cierts regls fijs; es decir,

Más detalles