METODO DEL ESPACIO DE ESTADO
|
|
|
- Alejandro Núñez Flores
- hace 10 años
- Vistas:
Transcripción
1 Fcltd de Ingenierí Bioingenierí Control de Proceo METODO DEL ESPACIO DE ESTADO ESTADO: El etdo de n item dinámico e el conjnto má eqeño de vrile denomind vrile de etdo tl qe el conocimiento de e vrile en t t, conjntmente con el conocimiento de l entrd r t t, determinn comletmente el comortmiento del item en clqier tiemo t t. VARIABLES DE ESTADO: L vrile de etdo de n item dinámico on l vrile qe contityen el conjnto má eqeño de vrile qe determinn el etdo del menciondo item dinámico. Se reqieren l meno n vrile,,, n r decriir comletmente el comortmiento dinámico del item de orden n. Et on l n vrile de etdo. Conocid et vrile n vrile en el intnte de tiemo inicil y l evolcione de l entrd r tiemo t t, el etdo ftro del item qed comletmente determindo. E imortnte clrr qe l vrile de etdo eden er medile o no, qe rereenten mgnitde fíic o olo mtemátic. Pero deen er l mínim n eqivlente lo n elemento de lmcenmiento de energí hlndo de item dinámico fíico r n item de orden n. ESPACIO DE ESTADO: El ecio de n-dimenione cyo eje coordendo coniten en el eje, el eje,, el eje n, e denomin Ecio de Etdo. Clqier etdo e ede rereentr or n nto en el ecio de etdo. ECUACIONES EN EL ESPACIO DE ESTADO: Pr l rereentción del modelo dinámico de item en el ecio de etdo e n tre tio de vrile. L vrile de entrd, l vrile de lid l vrile de etdo. L ventj del o en rereentción en ecio etdo e qe éte ede en modeldo rereentr item tnto contino como dicreto, linele o no linele vrile o invrinte en el tiemo y generlmente do en notción mtricil. Se rá en ete cro olo r item linele coeficiente contnte invrile en el tiemo, qe en el cmo temorl, e ede erer or el igiente item de eccione: n n m m n n m m n n n nn n n n nm m qe rereentd en form de notción mtricil e: A B iendo el vector derivd en el tiemo de l vrile de etdo de dimenión n or no Colmn Gí de Ecio de Etdo / 9
2 Fcltd de Ingenierí Bioingenierí Control de Proceo el vector de entrd tmién denomindo de control de dimenión A l mtri de etdo de dimenione n or n cdrd B l mtri de entrd de dimenione m or n y c c c n n d d m m y c c c n n d d m m y r c r c r c r n n d r d r m m ered en notción vectoril: y C D iendo y el vector de lid de dimenión r or no colmn C l mtri de Slid de dimenión r or n D l mtri de trnmiión direct de dimenión r or m D U B dt C Y A Si e conider r cd r entrd_lid e tendrá n fnción de trferenci, l qe e eden otener i e lic Trnformd de Llce y coniderndo condicione inicile nl. SX A X B U recordr qe X y or tnto [ I S - A ] X B U y or tnto X [ I S - A ] - B U y l lid Y C [ I S - A ] - B U D U { C [ I S - A ] - B U D } U G U Siendo G l Mtri Fnción de Trnferenci Recordr qe l mtri inver de [IS - A ] e igl l mtri djnt dividid el determinnte qe e n olinomio de grdo n, iendo ríce lo tovlore de l mtri y ve lo olo de l Fnción de Trnferenci. Se recerd qe e otiene l mim fnción de trnferenci no deendiendo del jego de vrile de etdo qe e definió or tnto eden eitir infinito jego de etdo r l mim F ét olo deende del item fíico. Gí de Ecio de Etdo / 9
3 Fcltd de Ingenierí Bioingenierí Control de Proceo Ejemlo: Se n item genérico de er Orden r n ol entrd y n lid del tio: y y y y tiene como Fnción de trnferenci F Y / U revimente dividiendo or mo miemro r deejr l r derivd, e otiene: Y / F U / / / Pr oder encontrr l rereentción en ecio de etdo, eto e el item de eccione de rimer orden de grdo n e de hcer: L lid l etdo ; y l y l y or lo tnto e ede rmr el igiente item de eccione de rimer orden: - / - / - / / or tnto e eden rereentr en notción mtricil lo vlore de A, B, C y D A B C D - - ; ; ; ve i e rereent or digrm de fljo coniderndo nodo de entrd, nodo de lid y nodo comne lo etdo y derivd. Tomndo l notción temorl ero rereentndo l integrción en el cmo trnformdo e otiene el igiente digrm de fljo : / / / / Y - / - / - / Co Se n item genérico de er Orden con n entrd y n lid del tio: y y y y tiene como Fnción de trnferenci F Y / U Y F U Gí de Ecio de Etdo / 9
4 Fcltd de Ingenierí Bioingenierí Control de Proceo r oder licr l regl de MASON e divide mo miemro or qedndo: F / / / / / Anlindo olo el denomindor e encentrn lo qe e deen tocr or tnto rereentción rcil oniendo qe e tocn todo en e: / / / / Y - / - / - / El nálii del nmerdor indic tre cmino qe deen r or n, do y tre integrdore, iendo reectivo determinnte djnto de vlor nitrio, lo qe eqivle l gráfico : / / / / / / Y - / - / - / Del gráfico e derende qe l ereión en Ecio de Etdo e: ; y X A X B U ; Y C X D U Si e cmin lo vlore de l vrile de etdo definiendo otro conjnto, eto e n vector T, de tl form qe l mtri T e invertile y de orden n or n, i e reeml en : Gí de Ecio de Etdo 4 / 9
5 Fcltd de Ingenierí Bioingenierí Control de Proceo A B y y C D como T y T or tnto T -, T A T B or tnto mltilicndo or T - : T - A T T - B y l lid erá y C T D r el co rticlr en qe, y e tiene qe T e digonl ecndri nitri cy inver e idéntic T T or lo qe el digrm de fljo dee qedr: Co / / / / / / Y - / - / - / ; y Co c Pr otr configrción en l qe todo lo lo e tocn en del digrm de fljo e rereent: / / / / / / Y - / - / - / Gí de Ecio de Etdo 5 / 9
6 Fcltd de Ingenierí Bioingenierí Control de Proceo L rereentción en Ecio de Etdo : ; y A B ; y C D Co d En l igiente configrción, todo lo lo e tocn en ero lo cmino de entrd vn directo lo nodo de derivd iendo l lid el etdo.. β β β / / / Y - / - / - / / / / β β β ; y A B ; y C D Ténge en cent qe hor l Fnción de Trferenci erá: Y F U β / β / / β / / / / / reordenndo e otiene : Y β β β F U Gí de Ecio de Etdo 6 / 9
7 Fcltd de Ingenierí Bioingenierí Control de Proceo or tnto: β β β lo qe eqivle β β β / / * * * * / * * / / * / Co e Se ede hcer l igiente ditrición mnteniendo l nión de lo lo en con n entrd únic nitri y lo cmino qe e nen l lid, como e indic en el igiente digrm de fljo: β β / / / β Y - / - / - / / / / β β β ; y β β β qedndo l igiente Fnción de trnferenci: Y F U β / β / / β / / / / / β β β Siendo lo vlore de β identico l co nterior en fnción de Gí de Ecio de Etdo 7 / 9
8 Fcltd de Ingenierí Bioingenierí Control de Proceo Co f L igiente roet reonde l enión de l Fnción de Trnferenci en Frccione rcile item decoldo Y α α α F U / / α / / α / α / y ; y [α α α ] Co g Ereión de olo y cero cndo eiten olo múltile en ete co do. Y α α α F U / α / / α / α / y Gí de Ecio de Etdo 8 / 9
9 Fcltd de Ingenierí Bioingenierí Control de Proceo Gí de Ecio de Etdo 9 / 9 / / ; y [α α α ] Co h Enión en frccione rcile donde eite n r de olo comlejo conjgdo: U Y F α ω ζω α α / / / ζω ω ; y [α α α ] X X X α -ζω -ω Co i Ereión en fnción de cero y olo: U Y F / ; y [ - ] α X α
TEORÍA DE CONTROL PRIMER PARCIAL 13 DE ABRIL 2018
TEOÍ DE ONTOL PE PL DE BL 8 TEOÍ: Ejercicio Ejercicio Ejercicio punto punto punto El objetivo de lo tem de teorí e exponer u conocimiento teórico obre modeldo de item. Pr ello, derrolle con clridd y conciión
Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como:
Definición Un sistem de m ecuciones con n incógnits es un conjunto de ecuciones como: m ecuciones b b n n n n b m m m mn n m n incógnits términos independientes incógnits Coeficientes del sistem Epresión
INTEGRAL DEFINIDA. ln ln ln dx 3. t t. 1 5 ln t t 5t 1 ln 1 7 ln 1. [7.1] Calcular: Solución. [7.2] Calcular: Solución INTEGRAL DEFINIDA
INTEGRAL DEFINIDA INTEGRAL DEFINIDA [7.] Clclr: d 5 dt t d t t dt 5 5t t / t 5t t 5t / / t d dt 5 t t t dt 5 5 5 5 ln t t 5t ln 7 ln 5 / 9 t 7 7 7 7 7 7 ln ln ln 5 5 7 9 6 [7.] Clclr: ln 5 e e e d e t
CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES
Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.
Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )
Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri
Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales
Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles
DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K
DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd
Práctica # 4 (30/05/00): Relaciones termodinámicas. Evaluación de cambio de propiedades. P T = T. Empleando la relación de reciprocidad se despeja:
Unieridd Simón Bolír Deprtmento de ermodinámic y Fenómeno de rnferenci F-33 ermodinámic II rof. Hernán Guerrero D ráctic # 4 (30/05/00): elcione termodinámic. Elución de cmio de propiedde. OBLEMA : Demotrr
PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO
PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este
2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR
1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid
EL GRAFICO ABC COMO TECNICA DE GESTION DE INVENTARIOS
EL GRAFICO ABC COMO TECNICA DE GESTION DE INVENTARIOS Un specto importnte pr el nálisis y l dministrción de n inventrio es determinr qé rtíclos representn l myor prte del vlor del mismo - midiéndose s
OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera la función f (x, y) = 0,4x + 3,2 y. sujeta a las restricciones: x + 5 y
UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO ESTUDIOS UNIVERSITRIOS (LOGSE) JUNIO MTEMÁTICS PLICDS LS CIENCIS SOCILES II Fse generl INSTRUCCIONES: El lumno deerá elegir un de ls dos opciones
Determinantes y la Regla de Cramer
Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos
ANÁLISIS DE SISTEMAS LINEALES SISTEMA. Posee ESTRUCTURA. Figura 1.1: Definición de Sistema
ANÁLISIS DE SISTEAS LINEALES 1. odeldo de item SISTEA Reliz FUNCIÓN Poee ESTRUCTURA Preent COPORTAIENTO Figur 1.1: Definición de Sitem Sitem: Un item reliz un función, poee un etructur y preent un comportmiento.
CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un
CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de
Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3
Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd
La raíz cuadrada de un número es otro nº que al elevarlo al cuadrado nos da el radicando La raíz cuadrado de 9 es 3. Pues 3 2 es
Curso 1/1 Mtemátics L ríz es l oerción contrri l otenci. c c L ríz cudrd de un número es otro nº que l elevrlo l cudrdo nos d el rdicndo. 9 L ríz cudrdo de 9 es. Pues es 9 9 L ríz cudrd de culquier nº
1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN
http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el
Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...
Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo
Integrales impropias
Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección
AUTOMATAS FINITOS Traductores
Universidd de Morón Lengujes Formles y Autómts AUTOMATAS FINITOS Trductores AUTOMATAS FINITOS Un utómt finito es un modelo mtemático que posee entrds y slids. Un utomát finito recie los elementos tester
Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.
UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN
TEMA 11: PROBLEMAS MÉTRICOS
Alonso Fernánde Glián TEMA PROBLEMAS MÉTRICOS Finlmente vmos ocprnos de clclr ánglos distncis entre rects plnos de resolver problems relciondos con estos conceptos.. ÁNGULOS ENTRE RECTAS Y PLANOS Vemos
UNIDAD IV ÁLGEBRA MATRICIAL
Vicerrectordo cdémico Fcultd de iencis dministrtivs Licencitur en dministrción Mención Gerenci y Mercdeo Unidd urriculr: Mtemátic II UNIDD IV ÁLGER MTRIIL Elordo por: Ing. Ronny ltuve, Esp. iudd Ojed,
Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.
Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por
PROBLEMA RESUELTO DE ESTABILIDAD
Univeridd Ncionl de Rorio Fcultd de Cienci Exct Ingenierí y Agrimenur Ecuel de Ingenierí Electrónic Deprtmento de Electrónic ELECTRÓNICA III PROBLEMA RESUELTO DE ESTABILIDAD AUTOR: Federico Miyr REVISIÓN:
Unidad 10. Sistemas de ecuaciones lineales
Tem. istems de Ecuciones Unidd. istems de ecuciones lineles. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de sistems
ECUACIONES DE PRIMER Y SEGUNDO GRADO
UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus
Integración múltiple de Riemann 34 TEMA 5 - INTEGRACIÓN MÚLTIPLE DE RIEMANN
nterción múltiple de Riemnn 4 TEMA 5 - NTEGRACÓN MÚLTPLE E REMANN Rectánlos prticiones en rectánlos en R einición Siendo dos interlos clesqier de R se denomin rectánlo de ldos prlelos los ejes coordendos
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición
XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO
XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus
Factorización de polinomios. Sandra Schmidt Q. [email protected] Escuela de Matemática Instituto Tecnológico de Costa Rica
Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. [email protected] Escuel
REPRESENTACIÓN DE ESTADO DE SISTEMAS DINÁMICOS
Circuito y Sitem Diámico (3º IIND) Tem 5 EPESENTCIÓN DE ESTDO DE SISTEMS DINÁMICOS Curo 3/ Itroducció l ecio de etdo Motivció Coceto áico ereetció de etdo De l rereetció de etdo l fució de trfereci De
1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre
EL CUERPO DE LAS FRACCIONES DE UN DOMINIO DE INTEGRIDAD
EL CUERPO DE L FRCCIONE DE UN DOMINIO DE INTEGRIDD CRLO CHINE EL CUERPO DE L FRCCIONE DE UN DOMINIO DE INTEGRIDD Ddo un nillo intero ; L L donde e un conunto L e l ley ditiv y e L l ley ultiplictiv no
EL EXPERIMENTO FACTORIAL
DISEÑO DE EXPERIMENTOS NOTAS DE CLASE: SEPTIEMBRE 2 DE 2008 EL EXPERIMENTO FACTORIAL Se utiliz cundo se quiere nlizr el efecto de dos o más fuentes de interés (fctores). Permite nlizr los efectos de ls
Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES
puntes de. Cbñó Mtemátics II SISTEMS DE ECUCIONES LINELES 8. Epresión mtricil de un sistem.clsificción de un sistem en términos del número de soluciones. 8. Teorem de RouchéFrobenius. 8. El método de eliminción
Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A
Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu
Inecuaciones con valor absoluto
Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor
Modelado en el dominio de la frecuencia Utilizar la transformada Laplace para representar ecuaciones diferenciales lineales
T. Llce 4 SR. OJETIVOS Tnfomd Llce Reo Modeldo en el dominio de l fecuenci Uiliz l nfomd Llce eeen ecucione difeencile linele CONTENIDOS Tnfomd de Llce Tnfomd úile; Tl de nfomd Poiedde Ejemlo Reolución
Tema 4: Integrales Impropias
Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem
MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A
MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes
2.1 Ecuaciones de la recta en 2.2 Posiciones relativas.
. Ecuciones de l rect en. Posiciones reltivs. R Objetivos. Se persigue que el estudinte: Encuentre ecuciones de rects Determine si dos rects son coincidentes, prlels o si son intersecntes Encuentre punto
FUNCIONES ELEMENTALES
FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos
I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.
I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,
La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y
L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.
f (t) dt Veamos primero el caso en que uno de los límites es infinito: si b =, entonces se define f (t) dt = lím
Cpítulo 2 Trnformd de Lplce 2.. Integrle impropi Vmo repr l co prendid en Análii I obre integrle impropi. Por hor penremo en un función de vrible e imgen rel, e decir, f : [, b] R. Cundo e define f (t
Unidad Nº 4: VECTORES en IR 2 y en IR 3
Unidd Nº 4: VECTORES en IR y en IR 3 Sistem de coordends crtesins ortogonles en el Plno y en el Espcio. Expresión de n ector en IR y en IR 3. Igldd de ectores. Sm de ectores. Mltiplicción de n esclr por
PROBLEMAS CON FRACCIONES Son problemas en que se pide calcular la parte de un todo, es decir, una fracción de un a
Sint Gspr College MISIONEROS DE LA PRECIOSA SANGRE Formndo Persons Íntegrs Deprtmento de Mtemátic RESUMEN PSU MATEMATICA GUÍA NÚMERO 9 ECUACIONES: () Un ecución es un iguldd condiciond en l que plicndo
CONSIDERACIONES SOBRE LAS COMPUERTAS
Abril de 006 CONSDERACONES SOBRE LAS COMPUERTAS Cátedr de Mecánic de los Fluidos Escuel de ngenierí Mecánic Autores: ngeniero Edgr Blbstro ngeniero Gstón Bourges e-mil: [email protected] 1 Abril
MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES
Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión
UNIDAD III INECUACIONES
Licencitur en Administrción Mención Gerenci y Mercdeo UNIDAD III INECUACIONES Elordo por: Ing. Ronny Altuve Rg, Esp. Ciudd Ojed, mrzo de 2017 Universidd Alonso de Ojed s reles Los números que están ordendos
Curvas en el plano y en el espacio
Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que
VECTORES PLANO Y ESPACIO
TETO º 3 ECTOES PLAO ESPACIO Conceptos Básicos Ejercicios esueltos Ejercicios Propuestos Edict Arrigd D. ictor Perlt A Diciemre 008 Sede Mipú, Sntigo de Chile Introducción Este mteril h sido construido
Tema 4. Integración compleja
Not: Ls siguientes línes son un resuen de ls cuestiones que se hn trtdo en clse sore este te. El desrrollo de todos los tópicos trtdos está recogido en l iliogrfí recoendd en l Progrción de l signtur.
re p r e s e n tac i ó n Mat r i c i a l d e
Unidd 8 re p r e s e n tc i ó n Mt r i c i l d e Un trnsformción linel Ojetivos: Al inlizr l unidd, el lumno: Asocirá cd trnsformción linel un mtriz. Relcionrá los conceptos de núcleo, imgen, rngo nulidd
1RFLRQHVEiVLFDV (ODLUHVDWXUDGR /DVYDULDEOHVTXHGHWHUPLQDQHOHVWDGRGHODLUHK~PHGR
/HFWXUDFRPSOHPHQWDULD3DUWH,,9DULDEOHVGHHVWDGRGHODLUHK~PHGR 61 /(&785$&203/(0(17$5,$3$57(,,(/$,5( +Ò0('2
Transformaciones geométricas
Tranformacione geométrica Baado en: Capítulo 5 Del Libro: Introducción a la Graficación por Computador Fole Van Dam Feiner Hughe - Phillip Reumen del capítulo Tranformacione bidimenionale Coordenada homogénea
1: El producto escalar de un vector consigo mismo coincide con el cuadrado de su módulo
UNIDAD : Geometrí eclíde. Prodcto esclr. PRODUCTO ESCALAR DE DOS VECTORES LIBRES Definición: Se llm prodcto esclr de los ectores y y se not por l nº rel qe se obtiene de l sigiente form: = es decir el
Grado en Química Bloque 1 Funciones de una variable
Grdo en Químic Bloque Funciones de un vrible Sección.6: Integrción y plicciones. L integrl sirve pr clculr áres de figurs plns limitds por curvs. Pr definir l integrl de un función f : [, b] R se utilizn
Toda ecuación lineal con dos incógnitas tiene un número ilimitado de soluciones de la forma (, y) gráfica determina una recta.
Fcultd de Contdurí y Administrción. UNAM Sistems de ecuciones Autor: Dr. José Mnuel Becerr Espinos MATEMÁTICAS BÁSICAS SISTEMAS DE ECUACIONES SISTEMAS DE ECUACIONES Un ecución linel con dos incógnits x
TEMA 7 DETERMINANTES 7.1 DETERMINANTES DE ORDEN DETERMINANTES DE ORDEN 3
TEMA 7 DETERMINANTES Mtemátics II 2º Bchillerto 1 TEMA 7 DETERMINANTES 7.1 DETERMINANTES DE ORDEN 2 7.1.1 DEFINICIÓN: El determinnte de un mtriz cudrd de orden dos es un número que se obtiene del siguiente
SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0
VECTORES, PLANOS Y RECTAS EN R 2 Y R 3
Profesionl en Técnics de Ingenierí VECTORES, PLANOS Y RECTAS EN R Y R 3 1. Puntos en R y R 3 Un pr ordendo (, ) y un tern ordend (,, c) representn puntos de IR y IR 3, respectivmente.,, c, se denominn
Tema 3. Modelado de sistemas físicos
de Sitem y Automátic Tem 3. Modeldo de item fíico Automátic º Curo del Grdo en Ingenierí en Tecnologí Indutril de Sitem y Automátic Contenido Tem 3.- Modeldo de item fíico 3.. Introducción. 3.. Modeldo
MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES.
MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Mtrices 11 Definición Se K un cuerpo y n, m N Un mtriz n m sobre K es un plicción: A : {1,,n} {1,,m} K Si (i, j) {1,,n} {1,,m} denotremos ij
Si se divide una cuarta parte de un pastel a la mitad se obtiene una octava parte del mismo, lo que escrito en simbología matemática es
págin 8 págin 8 DIVISIÓN DE FRACCIONES Si se divide un curt prte de un pstel l mitd se otiene un octv prte del mismo, lo que escrito en simologí mtemátic es Lo nterior es lo mismo que 4 8 4 4 8 De donde
Problemas de inventarios.
Problems de inventrios. Un inventrio es un recurso inemledo ero útil que osee vlor económico. El roblem se lnte cundo un emres exendedor o roductor de bienes y servicios no roduce en un momento determindo
3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:
PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:
ACTIVIDADES DE APRENDIZAJE Nº 5... 112
FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio
el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1
el de mte de id: Mtemátics Aplicds ls Ciencis Sociles I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores
6. Métodos para resolver la ecuación completa.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. 6. Métodos ara resolver la ecuación comleta. Dedicamos esta sección a ver dos métodos que nos ermiten hallar una solución articular de la ecuación comleta y +
Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )
Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0
EJERCICIOS DE INTEGRAL DOBLE PROPUESTOS EN EXÁMENES
TUTORÍA DE MATEMÁTICAS III (º A.D.E.) e-mil: [email protected] º) Obtener el lor de l integrl doble I ( y)( x y) R x dxdy efectndo el sigiente cmbio de rible: x ; y, siendo R l región del plno limitd por
MÉTODOS DE INTEGRACIÓN
Mtemátics II LE.Tem 4: Introducción l teorí de integrción Integrles inmedits MÉTODOS DE INTEGRACIÓN x α = xα+ α+ + C, si α - (f(x)) α f '(x) = (f(x))α+ + C, si α - α + x = x + C f '(x) = f(x) + C f(x)
Psicrometría. nrt. nrt. p p p. nrt. a a. v v
Estudio de sistems consistentes en ire seco y gu. Aire húmedo: mezcl de ire seco y or de gu. El ire seco se trt como si fuer un comonente uro. L mezcl globl y sus comonentes se comortn como un gs idel
2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.
. Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )
1.- El producto escalar de un vector consigo mismo coincide con el cuadrado de su módulo
UNIDAD.- Geometrí eclíde. Prodcto esclr (tem 6 del libro). PRODUCTO ESCALAR DE DOS VECTORES LIBRES Definición: Se llm prodcto esclr de los ectores se not por sigiente form: del ánglo qe formn dichos ectores.
Cuestionario Respuestas
Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de
Facultad de Informática Universidad Complutense de Madrid PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5. Problemas básicos:
Fcultd de Informátic Universidd Complutense de Mdrid Prolems ásicos: PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5 1. Especifique como máquin de Moore un sistem secuencil cuy slid z se comport, en función
