Progresiones aritméticas y geométricas
|
|
|
- Susana Belmonte Nieto
- hace 9 años
- Vistas:
Transcripción
1 Pogesioes itétics y geoétics Pogesioes itétics U pogesió itétic es scesió de úeos, tles qe l difeeci ete dos cosectivos clesqie de ellos es costte, po ejeplo, l scesió de los úeos ipes,,, dode l difeeci es Los téios de pogesió itétic se sele deot coo,,, (o co ot let) E geel, si l difeeci ete dos téios clesqie de l pogesió es d, podeos esciil tié coo, d, d,, peo hy veces qe coviee epez po el edio, to téio qe os iteese, y pti de hí escii los deás Po ejeplo, si el téio es especil po lg zó, o si sipleete os coviee epes los deás téios e fció de éste p fcilit los cálclos, podeos escii l pogesió coo d, d, d,, d, d, Ejeplo: ccteiz todos los tiáglos tles qe ss ldos está e pogesió itétic, y ss lts está tié e pogesió itétic Spoeos si pédid de geelidd qe ls logitdes de los ldos so c Coo el podcto de ldo po lt es igl l dole del áe, tedeos qe h h ch c, siedo h h h c ls lts desde los vétices opestos los ldos de logitdes c, espectivete Digos etoces qe d, cd, y qe h h D, h c h D, dode d y D so ls difeecis espectivs de ls pogesioes itétics Teeos etoces qe el dole del áe es igl ( d )( h D) h ( d )( h D), de dode D dh Dd D dh Dd Reslt etoces qe h de se Dd D dh ( D dh ), y coclios qe dd, es deci, el tiáglo dee se ecesiete eqiláteo Adeás, todos los tiáglos eqiláteos cple l codició del ecido, pes ss ldos está e pogesió itétic de difeeci, y ss lts tié S de eleetos de pogesió itétic L técic p s los pieos eleetos de pogesió itétic es y útil y stte igeios, y pede tee pliccioes e otos áitos Cosiste e epeti l pogesió peo e ode iveso, e i sdo o o los téios de s pogesioes: d d ( )d ( )d ( )d ( )d ( )d d ( )d ( )d ( )d ( )d ( )d Veos etoces qe dos veces l s scd es igl l s de téios, igles cd o de ellos l s del pieo y del últio Es deci, l s de téios cosectivos de pogesió itétic es igl l s del pieo y del últio, ltiplicd po el úeo de téios, y ptido po Po ejeplo, sdo l técic teio, l s de los pieos eteos positivos es ( ) El foso teático Gss desció este étodo po sí iso cdo est e pii!
2 Pogesioes geoétics U pogesió geoétic es scesió de úeos, tles qe el cociete ete dos cosectivos clesqie de ellos es costte, po ejeplo, l scesió de ls potecis de, es deci,,,9,7,8, dode el cociete es Los téios de pogesió geoétic se sele deot tié coo,,, (o co ot let) E geel, si el cociete ete dos téios clesqie de l pogesió es (y se sele ll l zó de l pogesió geoétic) podeos esciil tié coo,,,,, peo l igl qe co ls pogesioes itétics, hy veces qe coviee epez po el edio, to téio qe os iteese, y pti de hí escii los deás Po ejeplo, si evete el téio es especil po lg zó, o si sipleete os coviee epes los deás téios e fció de éste p fcilit los cálclos, podeos escii l pogesió coo /, /, /,,,, S y podcto de eleetos de pogesió geoétic El cálclo del podcto de eleetos cosectivos de pogesió geoétic se tsfo fácilete e el cálclo de l s de eleetos cosectivos de pogesió itétic, gpdo los epoetes de l zó : ( ) L s de eleetos de pogesió geoétic se siplific cho co el so de ot técic, tié stte igeios y qe pede se y útil e otos áitos Cosiste e ltiplic todos los téios de l scesió po, y lego est téios igles dos dos: Veos etoces qe veces l s qe os itees, eos l s qe os itees, es igl : Divisió de cietos polioios pti de ss de pogesioes geoétics Se pogesió geoétic co y zó Clete, los téios so,,,,, y l s de los pieos téios es Nos ecotos etoces co coocido esltdo, el polioio divide l polioio ; esto podíos helo dedcido del hecho de qe, qe es l úic íz del polioio del deoido, es tié íz del polioio del edo Aho ie, tié seos qe divide si y sólo si es p, y qe divide si y sólo si es ip (evete, os st co sstiti e estos dos polioios p ve qe se l) Cál es el cociete? Bie podeos dividi, ie podeos to pogesió geoétic co zó, y coside l s de ss pieos téios:
3 ( ) Aho ie, si es p, etoces el edo es ( ), y se tiee, iets qe si es ip, el edo es, y se tiee Spogos ho qe os pide dividi (coo polioios, o coo úeos, y siepe y cdo se posile) ete (sios oviete qe >) Cóo pocedeíos? Podeos to pogesió geoétic co pie téio y zó /, co lo qe tedíos qe l s de ss pieos téios seí Veos etoces qe, si es ip, l divisió es clete posile, siedo Veos tié qe si es p, l divisió o es posile; es ás, podeos clcl tié el esto: Teeos etoces qe el esto seí, y el cociete Podeos pocede de l is fo, peo co pogesió co zó / y téio iicil Spoeos deás qe, l hce l divisió de ete, oteeos cociete y esto v, de fo qe v< ( ) ( ) ( ) v Veos etoces qe, p qe l divisió se ect, ecesitos e pie lg qe v, pes si o os qed esto de l fo () v Etoces,, y teeos qe h de se evete ip, pes si o os qed esto de l fo, y filete, cso de qe se últiplo de, siedo el cociete ete ellos ip (úico cso e qe l divisió ect es posile), llegos Estos esltdos, o est fo de tj, id l técic de coplet cddos (es deci, de ñdi téios epesió p qe ést se el cddo de ot epesió ás secill) se pede tiliz p esolve el sigiete pole: úeo positivo veific l elció 7 Deost qe es eteo y clcl s vlo
4 Si toos el esltdo teio co y /, veos qe o es posile dividi / ete /, peo sí ete /: Nos st etoces co hll /, qe o pece fácil, hst qe cosideos s cddo: 9 ; ± Peo os dice qe es positivo, co lo qe o pede se /, y h de se /, llegádose filete 4
5 Ejecicios popestos Se,,,, 4 cico úeos positivos e pogesió itétic de difeeci d Po qe Cáto vldí l s de los pieos eteos positivos qe d esto l dividi ete? Deost qe si pogesió itétic ifiit de úeos eteos positivos, cotiee úeo qe es cddo pefecto, etoces cotiee ifiitos úeos qe so cddos pefectos E pogesió itétic ifiit de úeos eteos, deost qe se pede escoge ifiitos téios qe foe pogesió geoétic Hll todos los posiles csos e los qe el podcto de los 9 pieos téios de pogesió geoétic ifiit de úeos eteos positivos es cddo pefecto, y el podcto de los pieos téios de l is pogesió geoétic tié es cddo pefecto
POLINOMIOS, ECUACIONES, POLINOMICAS PROBLEMAS RESUELTOS 1. Dados los polinomios en x sobre R : Encontrar : a) p(x) + q(x), b) p(x) q(x)
POLINOMIOS, ECUACIONES, POLINOMICAS PROBLEMAS RESUELTOS Ddos los polioios e soe R : p 5 8 q 7 Ecot : p q, c p - q p q Solució : p q 5 7 8 9 5 8 5 7 9 5 6 56 5 65 5 8 7 8 5 p q c p q p q 5 7 8 Detei ls
n sen a n + sen + = sen 2 2n u sen u 2 sen sen( 2sen
Ho Polems Aálisis I 8 78.- Hll.... Solció: Como semos qe p q p-q-pq etoces se tiee qe: * Si Si Si 5...... Si - 5 Si - * - - - q p q p q p igldd l sdo 4 4 4 79.- Hll el volme del sólido geedo l gi lededo
Operaciones en el conjunto de los números racionales Q
lsteátics.eu Pedo Csto Oteg teiles de teátics Fccioes. Núeos eles. Potecis. Ríces. º ESO Opecioes e el cojuto de los úeos cioles Q Opeció Su c d bc b d bd Rest (difeeci) c d bc b d bd b) ) Ejeplo 5 5 5
Sucesiones. En resumen podemos decir que: : A R, se llama sucesión, donde an= f(n) en cada caso, y A N
Mtemátic II Cietífico IDAL 07 Sucesioes 5 Pof. F. Díz- Pof A. Glli Sucesioes E esume podemos deci que: Defiició: U fució f : A R, se llm sucesió, dode = f() e cd cso, y A N :, co A y R. E símbolos: Ejemplos:
Definición. una sucesión, definimos la sumatoria de los n primeros
MATEMATICA GENERAL 00, HERALDO GONZALEZ S SUMATORIAS Suto sle Defcó U sucesó el es tod fucó co doo u sucouto de los úeos tules y co vloes e, sólcete, l sucesó es : N tl que Osevcó Deotos l sucesó o N,
PROGRESIONES ARITMÉTICAS
PROGRESIONES ARITMÉTICAS Se defie como pogesió itmétic u sucesió de úmeos eles,,,...... e los que l difeeci ete témios cosecutivos es costte costte A l difeeci ete témios cosecutivos se le deomi d. Puede
Módulo 7. Exponentes racionales. OBJETIVO Simplificar expresiones algebraicas con exponentes racionales.
Módulo 7 Epoetes cioles OBJEIVO Simplific epesioes lgebics co epoetes cioles. Hst este mometo se h utilizdo úicmete eteos como epoetes, sí que efetemos ho cómo us otos úmeos cioles como epoetes. Peo tes
ÁLGEBRA DE MATRICES. * Tenemos aquí el mapa de una ciudad (Konigsberg) que está atravesada por un río sobre el que hay varios puentes:
º Bchilleto Mteátics II Dvid Miguel del Río IES Euop (Móstoles) Vos coside ls tices coo u disposició ectgul de úeos que cotiee ifoció. Si se quiee es u fo de ode ifoció. Po ejeplo: * Teeos quí el p de
Potencias y raíces de números enteros
Potecis y ríces de úeros eteros. Opercioes co potecis Poteci de productos y cocietes Pr hcer el producto de dos úeros elevdo u is poteci tiees dos cios posibles, cuyo resultdo es el iso: Puedes priero
Introducción al cálculo de errores
Itoducció l cálculo de eoes 1/5 Itoducció l cálculo de eoes Los eoes idetemidos so quellos que se debe l z. Po ejemplo, l eliz l medid de u ms e u blz csi siempe os ofece vloes difeetes debido fctoes ccidetles.
TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a.
Colegio Mter Slvtoris TEMA : RADICALES.1 DEFINICIÓN Se ll ríz -ési de u úero, se represet, otro º tl que. Se l epresió geerl de u ríz -esi es el ídice es el rdicdo c Al síolo lo llos Rdicl c es el coeficiete
TEMA 7. SUCESIONES NUMÉRICAS.
º EO Tem 7 TEMA 7. UCEIONE NUMÉRICA.. UCEIONE NUMÉRICA. Imgiemos el ecoido que efectú u bló que se h lzdo l suelo y midmos ls distcis ete bote y bote: Ls distcis fom u sucesió de úmeos: 0, 5, 0, 5,. U
= 41. =, halla los términos primero, quinto, b n
Sucesioes. 00 Ejecicios p pctic co solucioes E ls sucesioes de témio geel y b, hll los témios pimeo, segudo y décimo. 0 0 b b b 0 0 0 Hll los cico pimeos témios de l sucesió 0 9 9 6 6 Compueb que es el
TEMA 2: POTENCIAS, RADICALES Y LOGARITMOS
Te : Opercioes ásics co úeros reles: Potecició, y sus propieddes, rdicció y logritos TEMA : POTENCIAS, RADICALES Y LOGARITMOS ser TEMA : POTENCIAS, RADICALES Y LOGARITMOS. POTENCIACIÓN..... POTENCIA DE
Cálculo con vectores
Uidd didáctic 1 Cálculo co vectoes 1.- Mgitudes escles vectoiles. So mgitudes escles quells, como l ms, l tempetu, l eegí, etc., cuo vlo qued fijdo po u úmeo (co su uidd coespodiete). Gáficmete se epeset
Licdo Eliezer Montoya Resumen de los Métodos de Integración 1. Tablas de derivación
Licdo Eliezer Motoy Rese de los Métodos de Itegrció Tbls de derivció dy L derivd por defiició f ( ) D f y d D ( ) D ( ) D ( ) ) D ( ) D ( c) 0 D D ( ) ) D D ( ) ) D ( v) D ( ) D ( v) 3) D ( v) D v vd vd
EXPRESIONES ALGEBRAICAS RACIONALES GUÍA CIU NRO: 8
Repúlic Bolivri de Veezuel Miisterio de l Defes Uiversidd Nciol Eperietl Politécic de l Fuerz Ard Núcleo Crcs Curso de Iducció Uiversitri CIU Cátedr: Rzoieto Mteático EXPRESIONES ALGEBRAICAS RACIONALES
Radicales MATEMÁTICAS I 1
Rdicles MATEMÁTICAS I. POTENCIAS DE EXPONENTE FRACCIONARIO. RADICALES..- Cocepto de rdicció Ddo u úero rel R y N, l ecució x tiee: Si es ipr, y culquier úero, u úic solució que se deot por. Si es pr y
PRODUCTOS NOTABLES.
PRODUCTOS NOTABLES ( + ) = + + ( + )( ) = ( + )( + ) = + ( + ) + www.ediped.o PRODUCTOS NOTABLES INTRODUCCIÓN E el desrrollo lgerio, es oú el preiieto de ierts epresioes deoidos prodtos otles, o resltdo
MANUAL MATEMÁTICAS PARA ESTUDIANTES DE FINANZAS. Exponentes
_ Defiició: Epoetes Pr u úero rel u etero positivo, veces se le deoi l se l poteci o epoete Ejeplos:..... Not: oserv que del segudo es. o so igules, el resultdo del priero es Lees de epoetes: Pr cd u de
Espacios Afín y Euclídeo Resumen ESPACIOS AFÍN Y EUCLÍDEO
ESACIOS AFÍN Y EUCLÍDEO Nota: Los pocedimietos expestos o so los úicos qe eselve los poblemas Defiició El espacio afí so los ptos coexistiedo jto al espacio vectoial V, co sistema de efeecia ( pto fijo
Definición.- Llamamos POTENCIA a la expresión abreviada usada para escribir un producto de n factores no necesariamente iguales.
POTENCIAS Y RAÍCES. 1.- POTENCIAS. Defiició.- Llos POTENCIA l expresió revid usd pr escriir u producto de fctores o ecesriete igules. Escriios: =... ( veces) dode es l BASE y el EXPONENTE. Ejeplo: 7 2
TEMA 5: VECTORES 1. VECTOR FIJO
TEMA 5: 1. VECTOR FIJO Hy gnitudes que no quedn ien definids edinte un núeo el, necesitos deás conoce su diección y su sentido. Ests gnitudes se lln gnitudes vectoiles y ls epesentos edinte. P detein un
TEMAS DE MATEMÁTICAS (OPOSICIONES DE SECUNDARIA) TEMA 8
TEMA DE MATEMÁTICA OPOICIONE DE ECUNDARIA TEMA 8 UCEIONE. TÉRMINO GENERAL Y FORMA RECURRENTE. PROGREIONE ARITMÉTICA Y GEOMÉTRICA.. ucesioes de Núeos Reles.. Pogesioes Aitétics.. Pogesioes Aóics. 4. Pogesioes
Objetivos. Sucesiones numéricas. Series numéricas.
TEMA 3 Objetivos. Sucesioes uméics. Seies uméics. Mej os coceptos de sucesió y seie y utiiz s seies de potecis p epeset s fucioes. Sucesioes de úmeos ees: mootoí, cotció y covegeci Se m sucesió de úmeos
A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial
Elemetos tos bdmesoles. U vsó pelm A Se cosde el poblem de cotoo bdmesol costtdo po l eccó deecl (, e el domo, smplemete coeo ls codcoes de cotoo: (, coocd e α coocd e Recédese qe qe, s se deom l ccdte
POTENCIAS. Una potencia es una operación matemática y se realiza de de la siguiente forma: a = a a a a a a. n veces
Aputes de Mteátics pr º de E.S.O. Potecis POTENCIAS Potecis Qué es u poteci? U poteci es u operció teátic y se reliz de de l siguiete for: = veces recibe el obre de bse se deoi expoete Ejeplo: ) = = =
TEMA IV PLANO VECTORIAL. PRODUCTO ESCALAR. APLICACIONES. Un vector fijo es un segmento cuyos extremos vienen dados en un cierto orden.
VECTOR FIJO TEM IV PLNO VECTORIL. PRODUCTO ESCLR. PLICCIONES. Un vecto fijo es un segento cuyos exteos vienen ddos en un cieto oden. Ejeplo: El segento de exteos y (en este oden). Se not con (, ) ó con.
Seminario Universitario de Ingreso Números reales
Seirio Uiversitrio de Igreso 07 Núeros reles Si u úero posee ifiits cifrs deciles o periódics, o puede escriirse coo u cociete etre úeros eteros, es decir, o es u Núero Rciol. Estos úeros recie el ore
UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR
CEPREUNF CICLO REGULAR 017-018 SEMANA 06 Curso: teátic TEMA: FACTORIZACION MCM MCD- PROPORCIONALIDAD Y SEMEJANZA-REDUCCION AL PRIMER CUADRANTE FACTORIZACIÓN DE POLINOMIOS. Solució:. Se u polioio o costte
5. Repaso de matrices. ( Chema Madoz, VEGAP, Madrid 2009)
. epso de trices he Mdoz, VEGP, Mdrid ) Mtrices Eleeto: ij Tño: Mtriz cudrd: orde ) Eleetos de l digol: Vector colu triz ) Vector fil triz ) ) 8, B ) 8) B Su: ij k k k k k k k k k k k ) Multiplicció por
Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo.
III. LOGARITMACION A) Defiició d e l og ri to : Se deoi logrito de u úero l expoete l que h que elevr u úero, lldo se, pr oteer u úero ddo. Siólicete: log x x 0 De l defiició de logrito podeos deducir:
UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR
CEPREUNF CCL REGULAR 017-018 Curso: MTEMATCA se 0 te: PRDUCTS NTABLES - DVSN DE PLNMS - CCENTES NTABLES. Los Productos Notles so csos especiles que se preset detro de l ultiplicció o potecició lgeric,
SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS
R.F.- - SISTES DE ECUCIONES INEES: TEORE DE ROUCHÉ- FROBENIUS Recordeos que u siste de ecucioes co icógits es u siste de l for: Dode: ij so úeros reles se ll coeficietes del siste,,,, so úeros reles recie
EXPRESIONES ALGEBRAICAS Y FACTORIZACION
FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: TALLER Nº: SEMESTRE EXPRESIONES ALGEBRAICAS Y FACTORIZACION RESEÑA HISTÓRICA E Noether Es recoocid coo l teátic s soresliete de
REALES EALES. DEFINICIÓN Y LÍMITES
Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES EALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrile rel. Doiio de u fució.. Doiios de ls fucioes ás hitules. Coposició de fucioes. Propieddes. Fució
LOGARITMO 4º AÑO DEF. Y PROPIEDADES
LOGARITMO º AÑO DEF. Y PROPIEDADES E l epresió c, puede clculrse u de ests tres ctiddes si se cooce dos de ells resultdo de este odo, tres opercioes diferetes: º Poteci º Rdicció º Logrito c pr clculr,
g(x) se llama función integrante ò integrando.
- g() se ll fció itegrte ò itegrdo. - es l vrible de itegrció. Itegrl idefiid, técics de itegrció Teore 8.. ( Itegrles iiciles ). d. E geerl d,?-, Q. Si f,.., f so fcioes defiids e itervlo y,., costtes:
PROGRESIONES ARITMETICAS
PROGRESIONES ARITMETICAS. De ete ls sucesioes siguietes deci cuáles so pogesioes itmétics., 8,,, 0,... b., 7,,,... c. 7,, 9,,,... d., 7, 9,,... e.,,,,... f.,,, 9, g.,,,,... h. ( b), ( b), ( b),... Los
Clase-09 Potencias: Una potencia es el producto de un número "a" por si mismo "n" veces lo que se denota por a n ; con a IR y n Z ; luego: n veces a
Clse-9 Potecis: U poteci es el producto de u úero "" por si iso "" veces lo que se deot por ; co IR y Z ; luego: dode "" se ll se, "" es el expoete y el producto oteer es l poteci.... veces Clculr plicdo
ECUACIONES DE SEGUNDO GRADO. Resolver la ecuación de segundo grado aplicando propiedades de la
ECUACIONES DE SEGUNDO GRADO Ojetivos: Defiir ecució de segudo grdo. Resolver l ecució de segudo grdo plicdo propieddes de l iguldd. Resolver l ecució de segudo grdo plicdo fctorizcioes. Resolver l ecució
CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N 4: POTENCIACION
CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N : POTENCIACION L operció de Potecició stisfce ls siguietes propieddes: L Potecició es u operció
CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA CASTAÑEDA GUIA N 4: POTENCIACION
CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA CASTAÑEDA GUIA N : POTENCIACION L operció de Potecició stisfce ls siguietes propieddes: L Potecició
3. SISTEMAS DE ECUACIONES LINEALES
Teorí ejercicios de teátics II. Álger Sistes de ecucioes lieles - -. SISTES DE ECUCIONES INEES. DEFINICION U ecució liel es u ecució de l for e l que, so los coeficietes de ls icógits, es el tério idepediete
Juegos de Azar y Probabilidad/Estadística
Juegos de Az y PobbiliddEstdístic Dí. Puo Az Mixtos Esttegi Rulet Poke Ajedez Ddos Bidge Ds Loteí Doió Ds Chis Blckjck Go Ludo Bckgo Loteí tdiciol: e co u boleto co úeos iesos. Poc viedd de elecció. Peio
Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones
Mtemátics II Geometí del espcio Vectoes. Bses. Podcto escl vectoil mixto; plicciones Obsevción: L moí de los poblems eseltos continción se hn popesto en los exámenes de Selectividd.. Ddos los vectoes (
LÍMITES Si b, c, n, A y B son números reales, siendo f y g funciones tales que, lim f ( x) B, entonces: x x. lim 1 FÓRMULAS BÁSICAS DE DERIVACIÓN
FORMULRIO ÁLULO I LÍMITES Si,,, y B o úeo ele, ieo f y g fioe tle qe, li f ( y li g( B, etoe: li li li f ( li f ( g( B 5 li f ( g( B 6 7 li 8 ( e 0 0 li l 0 f ( li B 0 g( B Ig. lfeo g Ooz li 9 li e i li
Trabajo Práctico N 6: ESPACIOS VECTORIALES CON PRODUCTO INTERIOR
Fcltd Regiol Medoz. UTN Álger Geometrí Alític 8 Trjo Práctico N 6: ESPACIOS VECTORIALES CON PRODUCTO INTERIOR Ejercicio : Pr cd espcio ectoril idicdo lice cáles de ls sigietes expresioes deie prodcto iterior.
3. Fallas Asimétricas Ejemplos
Ejemplo 7. Frcisco M. Gozlez-Logtt Aexo 7 3. Flls Aétrics Ejemplos El ple sistem de poteci qe se mestr e l Figr sigiete, cosiste de geerdor, trsformdor, líe de trsmisió, trsformdor redctor y crg. Cosidere
( 3) RADICALES 1. DEFINICIÓN. Sea a un número real y sea n un número natural mayor que 1 (n > 1). Se define la raíz n-ésima de a como:
IES Ju Grcí Vldeor Deprteto de Mteátics TEMA : POTENCIAS, RADICALES Y LOGARITMOS º ESO Mteátics B. DEFINICIÓN RADICALES Se u úero rel y se u úero turl yor que ( > ). Se defie l ríz -ési de coo: sigo rdicl
1º ITIS Matemática discreta Relación 4 NÚMEROS NATURALES Y ENTEROS
º ITIS Mtemátic discet Relció 4 NÚMEROS NATURALES Y ENTEROS. Pob po iducció que si c es u úmeo el, c, y N, etoces ( + c) + c.. Pob ) c) c) d) ( + ) ( + )(+ ) i = 6 3 ( + ) i = 4 (i+ ) = ( + ) 7 ( ) e)
Tema 1: LÍMITES DE FUNCIONES. CONTINUIDAD.
Te : ÍITES DE FUNCIONES. CONTINUIDAD. AT II. ÍITE DE UNA FUNCIÓN EN UN PUNTO. El úero es el líite de l fució f cudo, si l tor vlores de uy próios l vlor o, ls iágees f correspodietes se proi l úero. Defiició:
TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES
Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrible rel. Doiio de u fució.. Doiios de ls fucioes ás hbitules. Coposició de fucioes. Propieddes. Fució
5 3 = (5)(5)(5) = 125
Potecició: Es el resultdo que se obtiee l ultiplicr l bse por si is cuts veces lo idique el expoete: = ( )( )( )... BASE = ()()() = POTENCIA EXPONENTE Bse: Es el úero que se ultiplic por si iso. Expoete:
Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino
i quieres que lgo se hg, ecárgselo u perso ocupd Proverbio chio hht ttpp: ://ppeer rssoo..wddoooo..eess/ /ti iimoomt tee Noviembre 006 PROGREIONE DEFINICIÓN DE UCEIÓN NUMÉRICA U sucesió uméric es u cojuto
UN RESUMEN DEL CURSO DE TALLER DE MATEMATICAS
Este teril sido elbordo por el profesor Alfoso C. Becerril Espios durte el triestre O 009. UAM-A. UN RESUMEN DEL CURSO DE TALLER DE MATEMATICAS ARITMETICA Y ALGEBRA E los úeros reles teeos ls siguietes
b) (1 punto) * = * Al intercambiar la posición de dos líneas (filas o columnas), el determinante cambia de signo
Modelo. Ejecicio. lificció máim puos Siedo que el vlo del deemie es igul clcul el vlo de los deemies: ) ( puo) ) ( puo). dos co comú e colum duo co comú e colum * * l iecmi l posició de dos líes (fils
b n 1.8. POTENCIAS Y RADICALES.
.. POTENCIAS Y RADICALES. La potecia es ua epresió ateática que coprede dos partes: la base el epoete. b (b)(b)(b)(b)...dode b es la base el epoete. Para ecotrar el resultado de la potecia, la base se
Área de Matemáticas orientadas a las enseñanzas académicas RELACIÓN DE EJERCICIOS RESUELTOS TEMA 10 Geometría Analítica en el Plano.
Profesor Rúl Grcí Stos º ESO Áre de Mteátics orietds ls eseñzs cdéics TEMA 0 Geoetrí Alític e el Plo Ejercicio º ) Escrie l ecció de l rect r qe ps por los ptos ( ) ( ). ) Oté l ecció de l rect s qe ps
Departamento de Matemáticas. I.E.S. Ciudad de Arjona 1º BAC UNIDAD Nº 1: NÚMEROS REALES
Deprteto de Mteátics. I.E.S. Ciudd de Arjo º BAC UNIDAD Nº : NÚMEROS REALES. NÚMEROS RACIONALES. EXPRESIONES DECIMALES. Defiició: Llreos frcció u expresió teátic del tipo, siedo y úeros eteros uerdor y
Así, si la medida del arco AB es r, entonces:
INSTITUTO EDUAIONAL ARAGUA MARAAY VMOL GUIA DE MATEMATIA, s. TRIGONOMETRÍA Nº Medid de Ángulos: (Siste Rdián y Sexgesil) B O α A Not: En est guí cundo se define l edid del ángulo centl α se lá indistintente
UNIDAD 1 NÚMEROS REALES. es el sucesor de n. 4) Todo número natural tiene antecesor excepto el 1:, donde n 1
Uiversidd Nciol de Slt Fcultd de Igeierí Aputes de Curso Me prepro pr estudir Igeierí UNIDAD 1 NÚMEROS REALES CONJUNTOS NUMÉRICOS El cojuto de los Núeros Nturles ( N ) Los úeros que se eple pr cotr 1,2,3,4,...
CINÉTICA DE UNA PARTÍCULA
pítlo X INÉTIA DE UNA PARTÍULA. INTRODUIÓN El estdio de l ciétic costite pte impotte del estdio de l Mecáic poqe popocio elcioes ete el movimieto de cepo ls fes mometos qe sobe él ctú. Ls elcioes de l
Unidad 1: NÚMEROS REALES
Resúees de Mteátics pr Bchillerto I.E.S. Ró Girldo Uidd : NÚMEROS REALES.- ALGUNOS NÚMEROS QUE NO SON RACIONALES El úero pi: L Lcircufere ci r d d El úero ríz de dos: d Cuál es l logitud de l digol? d
NÚMEROS NATURALES. DIVISIBILIDAD
NÚMEROS NATURALES. DIVISIBILIDAD NÚMEROS NATURALES Los úeros turles so los que sirve pr otr: 1,,, So ifiitos y for u ojuto que se deoi N. Está ordedos, lo que os perite represetrlos sore u ret uyo orige
UNIDAD 2: POLINOMIOS Y FRACCIONES ALGEBRAICAS
I.E.S. Rmó Girldo UNIDAD : POLINOMIOS Y FRACCIONES ALGEBRAICAS. POLINOMIOS Poliomios e u idetermid L epresió lgeric... 0 recie el omre de poliomio e l idetermid. Dode: es u úmero turl.,..., 0 so úmeros
1.5 La Factorización QR
Edgr Acñ/ESMA 6665 Lecc4-5 4.5 L Fctorizció QR Dd mtriz cdrd y osiglr A de orde x, etoces existe mtriz ortogol Q y mtriz triglr sperior R tl qe AQR est es llmd l fctorizció QR de A. Si l mtriz A o es cdrd
MATRICES Y DETERMINANTES
Eucidos de proles de selectividd. Mteátics II. Mtrices y deterites MTRICES Y DETERMINNTES.(97).- Se dice que u triz cudrd es ortogol si se verific que t I. Si y B so dos trices ortogoles de igul tño, lizr
