TEMA Nº 1: NÚMEROS REALES
|
|
|
- Vicente Soler Núñez
- hace 9 años
- Vistas:
Transcripción
1 Deprtmeto de Mtemátics. I.E.S. Ciudd de Arjo º BAC MCS TEMA Nº : NÚMEROS REALES. NÚMEROS RACIONALES. EXPRESIONES DECIMALES.. NÚMEROS RACIONALES. EXPRESIONES DECIMALES. NÚMEROS IRRACIONALES.. NÚMEROS REALES. ORDEN Y REPRESENTACIÓN EN LA RECTA REAL. 4. INTERVALOS, ENTORNOS Y VALORES ABSOLUTOS. 5. POTENCIAS. RADICALES.. NOTACIÓN CIENTÍFICA 8. LOGARITMOS Defiició: Llmremos frcció u expresió mtemátic del tipo b, siedo y b úmeros umerdor eteros y b 0. b deomidor Defiició: Los úmeros rcioles so los que se puede escribir e form de frcció. Q= /, bz y b 0 b Sum y rest de frccioes:. Igul deomidor: Se sum o se rest los umerdores y se dej el mismo deomidor: b. Distito deomidor: Se reduce comú deomidor y se oper como e el cso terior ) Producto de frccioes: El producto de dos frccioes es u frcció cuyo umerdor es el producto de los umerdores y el deomidor el producto de los deomidores. c c b d b d Divisió de frccioes: Dividir dos frccioes es multiplicr l primer por l ivers de l segud. Es decir multiplicmos e cruz. X c d : b d b c Represetció e l rect Utilizdo el teorem de Tles (divisió de u segmeto e prtes igules), o hciedo l divisió y represetr proximdmete. Expresioes decimles. Tod frcció irreducible tiee u expresió deciml, que se obtiee dividiedo umerdor etre deomidor. (Ejemplo: ; 0... ; 5 0 ) 4 excts Ls expresioes decimles puede ser : Purs Periódics Mixts Importte: Tod expresió deciml exct o periódic se puede expresr e form de frcció Si l expresió o es exct i periódic (es decir ilimitd o periódic) o se puede expresr como frcció. A todos estos úmeros se les llm úmeros irrcioles. Ejemplo: Periódico exct Frcció Número rciol Q Expresió deciml ilimitd o periódic No es frcció.número Irrciol
2 Deprtmeto de Mtemátics. I.E.S. Ciudd de Arjo º BAC MCS Pso de úmero deciml frcció úmero si com Deciml excto seguido de ttos0 como cifrs decimles Deciml úmero si com y si gorrito - prteetero periódico puro ttos9 como cifrs tiee el periodo úmero si com y si gorrito - úmero si com y si periodo Deciml ttos9 como cifrs tiee el periodo y 0 como decimles periódico mixto o periodicos NÚMEROS IRRACIONALES. Rdicles: ; 5 ;. Número áureo:. Número pi: π= Número e= 88 Todos estos úmeros o se puede escribir e form de frcció: SON IRRACIONALES. L form de escritur más secill y exct es llmrlo co lgu letr (π, e) o co l operció co l que surge ( ; ). NÚMEROS REALES. ORDEN Y REPRESENTACIÓN EN LA RECTA REAL. El cojuto formdo por los úmeros rcioles y los irrcioles se llm cojuto de los úmeros reles (IR). Pr represetrlos y orderlos se ps úmero deciml. (L represetció es csi siempre proximd, uque hy lguos irrcioles que se puede represetr de mer exct, como los ríces cudrds) 4. INTERVALOS, ENTORNOS Y VALORES ABSOLUTOS. Itervlos: Los itervlos uméricos so cojutos de úmeros y se represet medite u segmeto co o si extremos. Puede ser cotdos o o cotdos: Itervlos o cotdos (Semirrects): Los itervlos o cotdos se represet medite u semirrect. Expresió verbl Desiguldd Gráfic Itervl o Números meores que b x b,b Números meores o igules que b x b,b Números myores o igules que x, Números myores que x. Números myores que y meores que x b, b b Números myores o igules que y meores o igules que b. x b. b Números myores o igules que y meores que b. x b, b Números myores que y meores o x b, b igules que b. Icluido sigific que puede ser igul, se represet co u puto relleo, y v co corchete [ ó ]. No icluido sigific que o puede ser igul, se represet co u puto blco, y v co prétesis ( ó ). El ifiito como o es igú úmero v siempre co prétesis. Uió de itervlos: Jutr los itervlos.,5,8,8 Itersecció de itervlos: Lo que tiee e comú., 4, 4,
3 Deprtmeto de Mtemátics. I.E.S. Ciudd de Arjo º BAC MCS Etoros: Llmremos etoro l cojuto de úmero que está lrededor de u úmero. Necesitmos dos referecis: el úmero (cetro) y l distci máxim (rdio). E c r x IR / x c r c r, c r E,5 5, 5 4,, Ejemplo: Si os d u itervlo pr psrlo etoro debemos ecotrr el cetro (puto medio del itervlo) y el rdio (distci de u extremo l cetro) b b 4, b E, Ejemplo: 4 4, E, E,5 Desigulddes y vlores bsolutos: x c r. Drá lugr l desiguldd r x c r psmos c mbos ldos sumdo c r x c r Será el itervlo c r, c r y por lo tto el etoro E c, r x c r. Drá lugr l desiguldd r x c r psmos c mbos ldos sumdo c r x c r Será los itervlos, c rc r, 5. POTENCIAS Por defiició Propieddes: Importte b b.- b b m m m m m si es pr si es impr m. RADICALES. Reducció de rdicles ídice comú. Psos seguir:. Hllr el m.c.m. de los ídices. Colocrlos rdicles cuyo ídice se el m.c.m.. Dividir el m.c.m. por el ídice terior y multiplicr por el expoete del rdicdo iicil 5 4 ; 5 ; m.c.m.(,,5)=0 0 0 ; ; 0 4 Multiplicció y divisió de rdicles. Si tiee el mismo ídice Mismo ídice y se multiplic o divide los rdicdos Si tiee distito ídice se reduce igul ídice y posteriormete se multiplic o divide los rdicles ( ) Itroducció y extrcció de fctores bjo el mismo rdicl. Itroducció: Pr itroducir u úmero detro de u rdicl es ecesrio elevrlo l ídice 5 5 del rdicl: 5 b b Extrcció: Pr extrer u fctor de u rdicl es ecesrio que esté elevdo l ídice del rdicl. Lo scmos fuer elimido el ídice. descompoer e fctores primos el rdicdo. b b. Muchs veces es ecesrio
4 Deprtmeto de Mtemátics. I.E.S. Ciudd de Arjo º BAC MCS : 5 sobr 5 49 b c d Sum de rdicles. b d No se puede hcer. 5 b c No se puede sumr rdicles, lo úico que podemos hcer es grupr rdicles igules Apretemete o se puede hcer d, pero vmos descompoer los rdicdos y extrer los fctores que podmos. 45= 5 0= Poteci de u rdicl. Pr relizr l poteci u rdicl multiplicmos los expoetes de l poteci y el p m m p rdicdo Ríz de u rdicl. Pr relizr l ríz de u rdicl multiplicmos los ídices de los rdicles. p p Rciolizció. L rciolizció cosiste e elimir los rdicles de los deomidores de ls frccioes. er Cso: Ríces Cudrds Multiplicmos umerdor y deomidor por l ríz del deomidor: º Cso: Otrs Ríces Multiplicmos el umerdor y el deomidor por u rdicl de ídice el del deomidor terior y rdicdo l poteci del rdicdo terior que os flt pr llegr l ídice del rdicl Multiplicmos por 5 porque os flt pr llegr 5. er Cso: Sum y rest de Ríces cudrds: Multiplicmos el umerdor y el deomidor por el cojugdo del deomidor. L operció cojugd de l sum es l rest y l de l rest l sum. El cojugdo de es. Si os dmos cuet l multiplicrlos
5 Deprtmeto de Mtemátics. I.E.S. Ciudd de Arjo º BAC MCS Expresió de los rdicles e form de poteci Todos los rdicles se puede expresr e form de poteci de l siguiete form. Esto explic muchs de ls propieddes de los rdicles.. NOTACIÓN CIENTÍFICA. Los úmeros de muchs cifrs, y se eteros o decimles, se mej mejor escribiédolos e otció cietífic. L otció cietífic se bs e escribirlos de l form bcd...0, dode es u úmero etero de u sol cifr, y es u úmero etero culquier. 0 Ejemplo: Si es positivo el úmero es muy grde, y si es egtivo es muy pequeño. Ls opercioes co úmeros e otció cietífic se suele hcer co l clculdor. 8. LOGARITMOS Los logritmos fuero itroducidos e ls mtemátics co el propósito de fcilitr, simplificr o icluso, hcer posible complicdos cálculos uméricos. Utilizdo logritmos podemos covertir : productos e sums, cocietes e rests, potecis e productos y ríces e cocietes. Defiició: Se llm logritmo e bse del úmero x l expoete b l que hy que elevr l bse pr obteer dicho úmero. b log x b x que se lee : "el logritmo e bse del úmero x es b", o tmbié : "el úmero b se llm logritmo del úmero x respecto de l bse ". Como podemos ver, u logritmo o es otr cos que u expoete, hecho que o debemos olvidr cudo trbjemos co logritmos. L costte es u úmero rel positivo distito de, y se deomi bse del sistem de logritmos. L poteci b, pr culquier vlor rel de b solo tiee setido si > 0. Ejemplo: log 8 porque 8; log 5 porque 5 Propieddes : log 0 log u v log u 5 5 log v log log log u log v u v x log x log u log u log x x log u log u Logritmos Decimles : Se llm logritmos decimles o vulgres los logritmos que tiee por bse el úmero 0. Al ser muy hbitules es frecuete o escribir l bse.
6 Deprtmeto de Mtemátics. I.E.S. Ciudd de Arjo º BAC MCS log 0 x log x Logritmos Neperios : Se llm logritmos eperios, turles o hiperbólicos los logritmos que tiee por bse el úmero e. log x l x Lx e Cmbio de bse: El logritmo e bse de u úmero se puede obteer prtir de logritmos e log c b otr bse log b log c
el blog de mate de aida. NÚMEROS REALES 4º ESO pág. 1 NÚMEROS REALES
el log de mte de id. NÚMEROS REALES 4º ESO pág. NÚMEROS REALES Expresió deciml de los úmeros rcioles. Pr psr u úmero rciol de form frcciori form deciml st dividir el umerdor por el deomidor. Como l hcer
Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales y a los enteros negativos.
Tem 1: Números Reles 1.0 Símbolos Mtemáticos Distito Aproximdo Meor o igul Myor o igul Uió Itersecció Cojuto vcío Existe No existe Perteece No perteece Subcojuto Implic Equivlete 1.1 Cojuto de los úmeros
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre
Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos
Matemáticas B 4º E.S.O. Tema 1 Los números Reales 1 3º ESQUEMA DE CLASIFICACIÓN DE LOS NÚMEROS. Simplificar la fracción, si es posible N = 50
Mtemátics B º E.S.O. Tem 1 Los úmeros Reles 1 TEMA 1 LOS NÚMEROS REALES 1.0 INTRODUCCIÓN º 1.0.1 ESQUEMA DE CLASIFICACIÓN DE LOS NÚMEROS º RACIONALES(Q)???????? NO RACIONALES NATURALES(N) 0 ; ; ; 81...
Potencias y radicales
Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de
Tema 1 Los números reales Matemáticas CCSS1 1º Bachillerato 1
Tem 1 Los úmeros reles Mtemátics CCSS1 1º Bchillerto 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros rcioles: Se crcteriz porque puede expresrse: E form de frcció,
( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m
Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede
POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES
Lecció : POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES.1.- POTENCIA DE UNA FRACCIÓN Si se tiee e cuet que ls frccioes so cocietes idicdos y que l poteci de u cociete es igul l cociete de potecis, se puede decir
Seminario Universitario de Ingreso Números reales
Seirio Uiversitrio de Igreso 07 Núeros reles Si u úero posee ifiits cifrs deciles o periódics, o puede escriirse coo u cociete etre úeros eteros, es decir, o es u Núero Rciol. Estos úeros recie el ore
Operaciones con Fracciones
Frccioes Opercioes co frccioes Opercioes co Frccioes Reducció de frccioes Frccioes co igul deomidor: De dos frccioes que tiee el mismo deomidor es meor l que tiee meor umerdor. < Frccioes co igul umerdor:
POTENCIACIÓN Y RADICACIÓN EN. Recordemos en primer lugar algunas definiciones y propiedades de la potenciación y de la radicación de números reales:
POTENCIACIÓN Y RADICACIÓN EN Recordemos e primer lugr lgus defiicioes y propieddes de l potecició y de l rdicció de úmeros reles: PROPIEDADES DE LA POTENCIACIÓN Poteci de expoete cero : 0 = por defiició,
Fracción generatriz de un decimal. Denominador :1 seguido de tantos 0 como cifras decimales haya 1000 = 7 8
º BACHILLERATO (LOMCE) MATEMÁTICAS CC SS TEMA.- NÚMEROS- PROFESOR: RAFAEL NÚÑEZ NOGALES.- FRACCIONES Y DECIMALES Opercioes comids co frccioes Pr relizr vris opercioes se reliz primero los prétesis y se
ESQUEMA DE LOS CONJUNTOS NUMÉRICOS
Miisterio de Educció Uiversidd Tecológic Nciol Fcultd Regiol Treque Luque ESQUEMA DE LOS CONJUNTOS NUMÉRICOS NÚMEROS NATURALES De cuerdo l esquem terior, existe cojutos chicos y grdes, y lguos de ellos
PROPIEDAD FUNDAMENTAL DE LOS RADICALES
Mtemátics Aplicds ls Ciecis Sociles I DEFINICIÓN DE RAÍZ ENÉSIMA Llmremos ríz eésim de "" y lo represetremos sí que cumpl l codició de que elevdo "" se igul "": x / x Al úmero "" se le llm ídice de l ríz.
EJERCICIOS DE RAÍCES. a b = RECORDAR: Definición de raíz n-ésima: Equivalencia con una potencia de exponente fraccionario:
EJERCICIOS DE RAÍCES RECORDAR: Defiició de ríz ésim: x x Equivleci co u poteci de expoete frcciorio: m x Simplificció de rdicles/ídice comú: Propieddes de ls ríces: x m/ b b b p m p b m m ( ) m Itroducir/extrer
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.
Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..
1. ESTIMACIÓN DE RADICALES Llamaremos estimar una raíz a dar una aproximación de ella. Por ejemplo, Raíz de 178 aproximadamente es 13 4.
Amplició potecis y rdicles º ESO Curso 06_07. ESTIMACIÓN DE RADICALES Llmremos estimr u ríz dr u proimció de ell. or ejemplo, 78. Ríz de 78 proimdmete es.. RADICALES EN FORMA DE OTENCIA El vlor de u ríz
Unidad didáctica 3 Las potencias
Uidd didáctic Ls potecis 1.- Qué es u poteci? U poteci, es u producto de fctores igules que se repite vris veces. veces El fctor que se repite se llm bse,. El úmero de veces que se repite l bse es el expoete,.
Neper ( ) Lección 2. Potencias, radicales y logarítmos
Neer (0-7) Lecció Potecis, rdicles y logrítmos º ESO MATEMÁTICAS ACADÉMICAS Potecis, rdicles y logritmos LECCIÓN. POTENCIAS, RADICALES, LOGARITMOS. Potecis de exoete etero Recuerd l defiició de oteci co
GUÍA RAICES 2º MEDIO. Solo se pueden sumar y restar raíces del mismo índice y mismo radicando:
Liceo Polivlete Arturo Alessdri plm Deprtmeto de Mtemátic Profesor Jet Espios Nivel º medio GUÍA RAICES º MEDIO Objetivo: Utilizr propieddes de ríces pr l multiplicció, sum y rest. Recoocer y plicr rciolizció.
Sucesiones de Números Reales
Apédice A Sucesioes de Números Reles A.. Defiicioes U sucesió de úmeros reles es u correspodeci A que soci, cd úmero turl, u úmero rel A ( ) El cojuto de los úmeros turles, cotiee ifiitos elemetos e u
Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1
Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...
Z={...,-4,-3,-2,-1,0,1,2,3,4,...}
TEMA Prelimires: Números y cojutos P- Números eteros: Se deomi úmeros turles (tmbié llmdos eteros positivos) los úmeros que os sirve pr cotr objetos:,,,4,5,... El cojuto de los úmeros turles se desig por
SUCESIONES DE NÚMEROS REALES
SUCESIONES DE NÚMEROS REALES Sucesioes de úmeros reles Se llm sucesió de úmeros reles u plicció del cojuto N * (cojuto de todos los úmeros turles excluido el cero) e el cojuto R de los úmeros reles. N
Enteros (Z) Son todos los números que puede expresarse como el cociente de dos nº enteros, siendo el denominador distinto de cero
www.clseslcrt.co Clsificció de Núeros Reles Te.- Núeros Reles Reles R Rcioles Q Irrcioles Ι Eteros Z Nturles N Negtivos Deciles Exctos Frcciorios Deciles Periódicos Puros Deciles Periódicos Mixtos Rcioles
1.3.6 Fracciones y porcentaje
Ejemplo : Se hor u situció e l que ecesitmos clculr l frcció de otr frcció. Por ejemplo de. Pr u mejor iterpretció de l regl terior, recurrimos l represetció gráfic. Represetemos l frcció de Es decir:
Potencias y radicales
Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de
Radicales MATEMÁTICAS I 1
Rdicles MATEMÁTICAS I. POTENCIAS DE EXPONENTE FRACCIONARIO. RADICALES..- Cocepto de rdicció Ddo u úero rel R y N, l ecució x tiee: Si es ipr, y culquier úero, u úic solució que se deot por. Si es pr y
1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias:
FICHA : Potecis de expoete IN RECORDAR:... Defiició de poteci ( veces). Aplicr l defiició pr hllr, si clculdor, el vlor de ls siguietes potecis: ) b) c) d) e) f) g) h) i) j) k) l) m) ) o) p) q) r) s) t)
Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo.
III. LOGARITMACION A) Defiició d e l og ri to : Se deoi logrito de u úero l expoete l que h que elevr u úero, lldo se, pr oteer u úero ddo. Siólicete: log x x 0 De l defiició de logrito podeos deducir:
LAS POTENCIAS Y SUS PROPIEDADES. Multiplicación y división de potencias de igual base. Potencia de un producto y de un cuociente.
LAS POTENCIAS Y SUS PROPIEDADES Defiició de poteci y sigos de est. Multiplicció y divisió de potecis de igul bse. Poteci de poteci. Poteci de u producto y de u cuociete. Multiplicció y divisió de potecis
5 3 = (5)(5)(5) = 125
Potecició: Es el resultdo que se obtiee l ultiplicr l bse por si is cuts veces lo idique el expoete: = ( )( )( )... BASE = ()()() = POTENCIA EXPONENTE Bse: Es el úero que se ultiplic por si iso. Expoete:
LÍMITES DE SUCESIONES. EL NÚMERO e
www.mtesxrod.et José A. Jiméez Nieto LÍMITES DE SUCESIONES. EL NÚMERO e. LÍMITE DE UNA SUCESIÓN... Aproximció l cocepto de límite. Vmos cercros l cocepto de límite hlldo lguos térmios de distits sucesioes
TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a.
Colegio Mter Slvtoris TEMA : RADICALES.1 DEFINICIÓN Se ll ríz -ési de u úero, se represet, otro º tl que. Se l epresió geerl de u ríz -esi es el ídice es el rdicdo c Al síolo lo llos Rdicl c es el coeficiete
Base positiva: resultado siempre positivo. Base negativa y exponente par: resultado positivo. Base negativa y exponente impar: resultado negativo
CAPÍTULO : POTENCIAS Y RAÍCES. POTENCIAS DE EXPONENTE ENTERO. PROPIEDADES.. Potecis de epoete turl. Recuerd que: Ddo, u úmero culquier, y, u úmero turl, l poteci es el producto del úmero por sí mismo veces
4ºB ESO Capítulo 2: Potencias y raíces
Mtemátics orietds ls eseñzs cdémics. ºB ESO Cpítulo : Potecis y ríces LibrosMreVerde.tk www.putesmreverde.org.es Autor: JOSE ANTONIO ENCABO DE LUCAS Revisor: Nieves Zusti Ilustrcioes: Bco de Imágees de
1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias:
EJERCICIOS de POTENCIAS º ESO HOJA : Potecis de expoete IN RECORDAR:... Defiició de poteci ( vece. Aplicr l defiició pr hllr, si clculdor, el vlor de ls siguietes potecis: ) b) ( ) c) d) ( ) e) f) ( )
16/11/2015. Tema 1: Números reales REALES. Racionales (Q) Irracionales (I) Naturales (N) REALES (I) (Q) (Z) (N)
rrcioles () //0 Te : úeros reles úeros reles (rcioles e irrcioles) Aproxició de úeros reles L rect rel Vlor soluto tervlo y seirrects Potecis de expoete etero otció cietífic dicles Potecis de expoete frcciorio
Tema 1. Números Reales. Intervalos y Radicales
Tem. Números Reles. Itervlos y Rdicles. El cojuto de úmeros reles.... Cojutos de l rect rel. Itervlos y etoros..... Opercioes co cojutos, uió e itersecció..... Notció cietífic.... Potecis y Rdicles...
Repaso general de matemáticas básicas
Repso geerl de mtemátics básics Expoetes y rdicles Regl de l multiplicció: Cudo dos ctiddes co l mism bse se multiplic, su producto se obtiee sumdo lgebricmete los expoetes. m m Expoete egtivo U térmio
APUNTE: Introducción a las Sucesiones y Series Numéricas
APUNTE: Itroducció ls Sucesioes y Series Numérics UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mtemátic Crrers: Lic. e Admiistrció Lic. e Turismo Lic. e Hotelerí Profesor: Prof. Mbel Chresti Semestre: do
Sucesiones de números reales
Apédice A Sucesioes de úmeros reles Ejercicios resueltos. Está l sucesió de térmio geerl U cot iferior es pues 5 cotd? 5 5 4 4 lo cul se cumple culquier que se el úmero turl. U cot superior es pues 5 5
Resúmenes de Matemáticas para Bachillerato NÚMEROS REALES. L d. Demostración de la irracionalidad de 2 :
Resúees de Mteátics pr Bchillerto I.E.S. Ró Girldo NÚMEROS REALES.- ALGUNOS NÚMEROS QUE NO SON RACIONALES El úero pi: p Lcircufere ci = p r = p d fi p = El úero ríz de dos: L d d Cuál es l logitud de l
( x) OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI. 0 son coeficientes numéricos y n N, c R es un cero o raíz, de ( x)
Pági del Colegio de Mtemátics de l ENP-UNAM Opercioes co frccioes lgebrics rdicles Autor: Dr. José Muel Becerr Espios OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI VI. TEOREMAS DEL RESIDUO
E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación RESUMEN TEMA SUCESIONES
E.T.S.I. Idustriles y Telecomuicció Curso 22-23 Grdos E.T.S.I. Idustriles y Telecomuicció Asigtur: Cálculo I DEFINICIONES BÁSICAS Existe muchos feómeos que o se comport de mer cotiu, sio que ecesit u determido
Potencias y Radicales
Potecis y Rdicles Potecis de expoete turl ( Se R~{ 0 } N Defiimos...... 8, ( ) ( )( )( )( )( ) Propieddes: ) m + m ) m m ( ) ) ) () ) m m Por coveio: ) 0 Potecis de expoete egtivo Se R~0 N. Defiimos 8
Matemáticas 1 EJERCICIOS RESUELTOS:
Mtemátics EJERCICIOS RESUELTOS: Series umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Series umérics Clculr l
Definición.- Llamamos POTENCIA a la expresión abreviada usada para escribir un producto de n factores no necesariamente iguales.
POTENCIAS Y RAÍCES. 1.- POTENCIAS. Defiició.- Llos POTENCIA l expresió revid usd pr escriir u producto de fctores o ecesriete igules. Escriios: =... ( veces) dode es l BASE y el EXPONENTE. Ejeplo: 7 2
NÚMEROS REALES NEGATIVOS (Z - ) 0 POSITIVOS (Z + )
LOS NÚMEROS REALES Sistem de úmeros reles Vlor soluto COMPENTECIA: Utilizr rgumetos de l teorí de úmeros pr justificr relcioes que ivolucr los úmeros turles NÚMEROS REALES Recuerde que: REALES (R) IRRACIONALES
Tema 2. Operaciones con Números Reales
Tem. Opercioes co úmeros reles Tem. Opercioes co Números Reles. Aproimció deciml de los úmeros reles.. Itroducció.. Tipos de proimcioes. Trucmieto y redodeo.. Cotrol del error cometido e ls proimcioes..
Tema 1 Los números reales Matemáticas I 1º Bachillerato 1
Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma
TEMA 2: EXPRESIONES ALGEBRAICAS
Aloso Ferádez Gliá Tem : Epresioes lgerics - - TEMA : EXRESIONES ALGEBRAIAS U poliomio es u sum idicd de moomios de distito grdo. Los poliomios se omr medite u letr múscul seguid de l vrile escrit etre
TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n
TEMA 8: UCEIONE DE NÚMERO. PROGREIONE.- UCEIONE DE NÚMERO RACIONALE: U sucesió es u cojuto ordedo de úmeros reles:,,,, - Los úmeros turles se llm ídices. El subídice idic el lugr que el térmio ocup e l
Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria
Mtemátics EJERCICIOS RESUELTOS: Sucesioes umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Sucesioes umérics Sucesioes
Tema IV. Sucesiones y Series
00 Tem IV. Sucesioes y Series Σ Gil Sdro Gómez Stos UASD 03/04/00 Tem IV. Sucesioes y Series Ídice Sucesió... 4 Límite de u sucesió... 4 Teorem 4.. Límite de u sucesió... 5 Teorem 4.. Leyes de límites
GUÍA DE TRABAJO Nº3 RAÍCES 2017 Nombre:. Fecha:..
GUÍA DE TRABAJO Nº RAÍCES 017 Nomre:. Fech:.. Coteidos Ríz eésim e el cojuto de los úmeros reles. DEFINICIÓN: E geerl, si es u úmero turl myor que 1 y es u úmero rel, decimos que x x, etoces x es l ríz
Instituto Superior del Profesorado Dr. Joaquín V. González Departamento de Matemática - Curso de Nivelación A N E X O T E Ó R I C O
A N E X O T E Ó R I C O Coteido Cojutos uméricos... 2 Módulo o Vlor bsoluto... 5 PROPIEDADES DE LA POTENCIACIÓN... 6 PROPIEDADES DE LA RADICACIÓN... 7 Logritmció... 8 Expresioes lgebrics... 8 Poliomios...
Progresiones aritméticas y geométricas
Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto
Potencias, Raíces y logaritmos
Potecis, Ríces y logritmos El ivetor del jedrez, le preseto su ovedos creció l rey de Dirhm, e l idi, este quedo t fscido por el juego que le ofreció culquier cos que el deser como recompes. Ate este
Actividades para preparar el examen Global de la Primera Evaluación:
I.E.S. Slvdor Serro - Deprteto de Mteátics MATEMÁTICAS ACADÉMICAS º ESO - 0 / 6 Actividdes pr preprr el exe Globl de l Prier Evlució: Teorí: Cotest si so cierts ls siguietes fircioes: Todo úero etero es
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
Números turles. Sistem de umerció deciml Como y sbes, el sistem de umerció deciml utiliz diez cifrs o dígitos distitos:,,,, 4, 5, 6, 7, 8 y 9. Además, es u sistem posiciol porque cd cifr o dígito tiee
Introducción a las SUCESIONES y a las SERIES NUMERICAS
Itroducció ls SUCESIONES y ls SERIES NUMERICAS UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mtemátic Crrers: Lic. e Ecoomí Profesor: Prof. Mbel Chresti Semestre: ero Año: 0 Sucesioes Numérics Defiició U
8 1 2n 2. 2( n 1) 1 2n 1 2n 1 2n 1
E.T.S.I. Idustriles y Telecomuicció Curso 00-0 Grdos E.T.S.I. Idustriles y Telecomuicció Asigtur: Cálculo I Tem : Sucesioes y Series Numérics. Series de Potecis. Ejercicios resueltos Estudir l mootoí de
UNIDAD 1: NÚMEROS RACIONALES E
Colegio Vizcy º Bchiller UNIDAD : NÚMEROS RACIONALES E IRRACIONALES Colegio Vizcy º Bchiller NÚMEROS RACIONALES E IRRACIONALES. INTRODUCCIÓN Los cojutos de úmeros v mpliádose históricmete medid que surge
Unidad 2: SUCESIONES Y SERIES NUMÉRICAS.
Uidd : SUCESIONES Y SERIES NUMÉRICAS. U sucesió es u cojuto ordedo de elemetos que respode u ley de formció. L sucesió suele brevirse: (,...) ( ) =,, 3,..., 3 Siedo el primer térmio, el segudo térmio,
TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN
TERCER PERÍODO 01 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis
UNIDAD 1 NÚMEROS REALES. es el sucesor de n. 4) Todo número natural tiene antecesor excepto el 1:, donde n 1
Uiversidd Nciol de Slt Fcultd de Igeierí Aputes de Curso Me prepro pr estudir Igeierí UNIDAD 1 NÚMEROS REALES CONJUNTOS NUMÉRICOS El cojuto de los Núeros Nturles ( N ) Los úeros que se eple pr cotr 1,2,3,4,...
POTENCIAS.- a determina la potencia de base a y exponente n, significa que hemos de multiplicar a por si mismo n veces.
POTENCIAS.- determi l oteci de se y exoete, sigific ue hemos de multilicr or si mismo veces. Defiició: L otció Bse Exoet El exoete,, idic ls veces ue se reite l se e el roducto de ést or si mism. L se,,
