FÍSICA I TEMA 0: INTRODUCCIÓN
|
|
|
- Víctor Manuel Gallego Peralta
- hace 9 años
- Vistas:
Transcripción
1 FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg g P mg g * 980 cm/s dinas INTERNACIONAL Meto, kilogamo y segundo. 80 Kg 80 Kg P mg 80 Kg * 9.8 m / s 784 N TECNICO Meto, kilogamo -fueza y segundo M P / g 80 k / 9.8 m/s 8.1 u.t.m P 80 kg. En las siguientes ecuaciones x está en metos y el tiempo en segundos. Cuáles son las unidades y dimensiones de C 1,C y C 3?. A) x C 1 + C t + C 3 t. B) x C 1 cos C t. C ) x C 1 sen C t A) [ x ] [ C 1 ] [ C ] T [ C 3 ] T ; como [ x ] L [ C 1 ] L ; [ C ] T L y [ C 3 ] T L luego [ C ] L T -1 y [ C 3 ] L T - La unidad de C 1 es m, la de C es m/s y la de C 3 es m / s. B) [x] [C 1 ] [ cos C t ] como [C t] 1 ; [C ] T -1 y [C 1 ] [x] L Las unidades de C 1 es m y la de C es s -1. C) Igual que B) 3. Si no ecueda cuál de las tes fómulas siguientes coesponde al peiodo del péndulo [T] T ; simple, cómo lo podía aveigua utilizando el análisis dimensional. T π ( l/g) 1/ ; T π (g/l) 1/ y T π ( m/g) 1/ [( l/g) 1/ ] ( L / LT - ) 1/ T coecto. [(g/l) 1/ ] ( LT - / L) 1/ T -1 [(m/g) 1/ ] ( M/LT - ) 1/ incoecto. incoecto. 4. Utilizando el análisis dimensional obtene la fueza que hay que aplica a un cuepo de masa m, paa que desciba una tayectoia cicula de adio R, con una velocidad constante, v. F m α v β R γ [ F ] M L T - ; [ m ] M ; [ v ] L T -1 ; [ R ] L
2 M L T - M α (L T -1 ) β L γ ; M M α ; L L (γ+β) ; T - T -β ; β ; α 1 ; γ 1 F m v / R 5. La tensión supeficial del mecuio vale σ 0.49 N / m. Expesa su valo en el sistema c.g.s N / m 0.49 kg m / ( s m) 0.49 kg / s 0.49 kg 1000 g / kg s 490 g / s 490 dinas/cm. Cuántos adianes equivalen a 1 0?. Cuántos gados equivalen a 1 adián?. Cuántos adianes tienen 9 o? son π adianes gado π adianes / 180 gados ( π / 180 ) adianes ad 1 ad 1 ad 180 gados / π ad ( 180 / π ) gados 57.9 gados 9 gados 9 gados π ad / 180 gados 1.04 ad 7. El peiodo de vibación de una gotita esféica está dado po la expesión: T A ( 3 ρ / s ) 1/. Donde es el adio de la gota, ρ es la densidad y s es la tensión supeficial ( MT - ). Halla las dimensiones de A. [ T ] T ; [ ] L ; [ρ ] M L -3 ; [ σ ] [MT - ] T A ( 3 ρ / σ ) 1/ A 3/ ρ 1/ σ -1/ ; A T -3/ ρ 1/ σ 1/ [A] T L -3/ ( M L -3 ) 1/ (MT - ) 1/ 1 A es adimensional 8. Dado el valo de la constante de gavitación univesal G din cm / g, detemina su valo en unidades del sistema intenacional. din g cm / s ; 1 din 1 g ( 1 kg / 1000 g ) cm ( 1 m / 100 cm) / s 10-5 N cm 1 cm (1 m / 100 cm) 10 - m g 1 g ( 1 kg / 1000 g) 10-3 kg G din cm / g N (10 - m) / (10-3 kg) N m /kg 9. Sabiendo que el meto equivale a longitudes de onda de la aya naanja del Si kiptón 8. Detemina su longitud de onda en nanómetos y en amstongs. 1 m lambdas Entonces x m lambda x.05785e-7 m.05785e-7 (10 9 nm) Å nm (10 Å)
3 10. Ente las divesas fomas de expesa un tabajo en física, están: la enegía cinética (1/mv ), la enegía potencial (mgh), el tabajo temodinámico (PV). Demosta que todas ellas tienen la misma dimensión. [E c ] M L T - [E p ] M L T - T M L T - [PV] (M L T - / L ) L 3 M L T Cuato vectoes coplanaios de 8, 1, 10 y unidades foman 70º, 150º y 00º con el pime vecto. Calcula la magnitud y diección del vecto suma de todos ellos. y v v 3 v 1 (8,0) v (1 cos70, 1 sen70) (4.1, 11.7) v 3 (10 cos150, 10 sen150) (-8., 5) x v 4 ( cos00, sen150) (-5.4, -.05) v 4 v 1 coseno es negativo y el seno es positivo α 98.77º R v 1 + v + v 3 + v 4 (-.194, 14.4) R [(-.194) + (14.4) ] 1/ tg α R y / R x 14.4/ α -81.3º y como el 1. El vecto suma de dos vectoes vale 10 unidades y foma un ángulo de 35º con uno de ellos que tiene 1 unidades. Enconta la magnitud del oto vecto y el ángulo ente ellos. S x (10 cos 35, 10 sen35) y V 1 (1, 0) V (x, y) cos x x 10 cos35-1 θº? x 35º 10 sen y y 10 sen35 1 V [(10 cos35-1) + (10 sen35) ] 1/ tgθ 10 sen35/ (10 cos35 1) 13. Un bote a moto se diige hacia el note a 15 millas po hoa en un luga donde la coiente es de 5 millas po hoa en la diección su-este (70º con el su). Enconta la velocidad esultante del bote. y V B β θ 70º V V C x V V B + V C ya que θ 110º V Paa obtene la diección, aplicamos: V C V sen θ sen β ( 15)( 5) cos110º mi/h V sen θ sen β C V
4 β19.4º 14. Dos vectoes de y 9 unidades, foman un ángulo de 150º. Enconta la magnitud y diección del vecto suma. S cos unid. 150º s Po el teo. del seno: 9 S sen θ sen30 sen 9sen 30/ θ θ 11º 9 θº 15. Enconta el ángulo ente los vectoes A i + 3 j k y B i + j + k El poducto escala: A B ( 1) + 31 ( ) + ( 1) 1 y A B A B unid. cos θ A B 9.17 θ 9.3º unid. 1. Halla la poyección del vecto A (1, -, 1) sobe el vecto B (4, -4, 7) La poyección de A sobe B es: P A cos θ A B A A A B B A u B A / B B donde u B es el vecto unitaio en diección B ( 4, 4,7) P A / B ( 1, 1, ) unid. 17. Dados los vectoes (-1,3,4) y (,0,-3), calcula el ángulo que foman su suma y su poducto vectoial. S ( 1+,3 + 0,4 3) (5,3,1) i j k A B ( 9 0) i + (4 3) j + (0 18) k 9i + 1j 18k 0 3 El ángulo que foman S, A x B se puede obtene del cálculo de su poducto escala:
5 S ( A B) S A B cosα ( 5,31, )( 9,1, 18) cos α α 90º 18. Dados A 5 i + 3j + 4k y B i j + k, calcula: a) el módulo de cada uno, b) el a) poducto escala de ambos, c) el ángulo que foman, d) los cosenos diectoes de cada uno, e) los vectoes A + B, A B, f) el poducto vectoial A B A B A B ( 5,3,4) (, 1,) (30, 3,8) b) c) cos d) Paa A: α α 39.37º cos α cosβ 0.44 cos γ Paa B: 1 cos α 0.93 cos β cos γ A + B (5,3,4) + (, 1,) (11,,) e) A B (5,3,4) (, 1,) ( 1,4,) i j k A B ( + 4) i + (4 10) j + ( 5 18) k 10i + 14 j 3 f) k Demosta que si la suma y la difeencia de dos vectoes son pependiculaes, entonces los vectoes tienen longitudes iguales. S a + b D a b S D 0 ( a b ) ( a b ) a a a b + a b b b a a b b a a b b a a cos 0 b b cos0 a b 0. Halla el áea del paalelogamo deteminado po los vectoes: A i + 3 j k y B i + j + k Pimeo, calculamos el poducto vectoial:
6 i j k A B 3 1 7i 3 j + 5k 1 1 Con módulo: A B unid. 1. Repesenta el punto (3,,1) en coodenadas esféicas. x + y + z y ϕ actg actg x 3 ad θ actg x + y z actg actg ad
TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES
TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o
Tema 0 Conocimientos previos al curso de Física
Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional
GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia
Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones
GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO
GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones
VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES
VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la
EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO
EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina
Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO
Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,
TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL
EMA 3 MOIMIENO CICULA Y GAIACIÓN UNIESAL El movimiento cicula unifome (MCU) Movimiento cicula unifome es el movimiento de un cuepo que tiene po tayectoia una cicunfeencia y descibe acos iguales en tiempos
CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO
CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un
MAGNITUDES ESCALARES Y VECTORIALES
C U R S O: FÍSIC Mención MTERIL: FM-01 MGNITUDES ESCLRES VECTORILES Sistema intenacional de medidas En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales.
Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:
PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido
PROBLEMAS DE ELECTROMAGNETISMO
º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente
q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb
Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los
Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones
Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una
EJERCICIOS TEMA 9: ELEMENTOS MECÁNICOS TRANSMISORES DEL MOVIMIENTO
EJECICIOS TEMA 9: ELEMENTOS MECÁNICOS TANSMISOES DEL MOVIMIENTO 1. Dos uedas de ficción gian ente sí sin deslizamiento. Sabiendo que la elación de tansmisión vale 1/5 y que la distancia ente ejes es de
A r. 1.5 Tipos de magnitudes
1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante
IES Menéndez Tolosa Física y Química - 1º Bach Energía potencial y potencial eléctrico I
IS Menéndez Tolosa Física y uímica - º Bach negía potencial y potencial eléctico I Calcula el potencial de un punto de un campo eléctico situado a una distancia de una caga y a una distancia 4 de una caga.
CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS
PÍTULO 15: TRIÁNGULOS RETÁNGULOS Dante Gueeo-handuví Piua, 2015 FULTD DE INGENIERÍ Áea Depatamental de Ingenieía Industial y de Sistemas PÍTULO 15: TRIÁNGULOS RETÁNGULOS Esta oba está bajo una licencia
8. Movimiento Circular Uniforme
8. Movimiento Cicula Unifome En la vida cotidiana e peentan ituacione donde un objeto gia alededo de oto cuepo con una tayectoia cicula. Un ejemplo de ello on lo planeta que gian alededo del ol en obita
200. Hallar la ecuación de la simetría ortogonal respecto de la recta:
Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto
( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( )
CAMPOS: OPERADOR NABLA Repesenta los campos vectoiales A i + j, B i j. Halla la divegencia el otacional de cada uno de ellos eplica el significado físico de los esultados obtenidos. Solución: I.T.I., 3,
9. NÚMEROS COMPLEJOS EN FORMA POLAR
Númeos Complejos en Foma Pola 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta
9. NÚMEROS COMPLEJOS EN FORMA POLAR
9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta gáficamente mediante un
Actividades del final de la unidad
Actividades del final de la unidad. Indica cuál de las siguientes afimaciones es falsa: a) En la época de Aistóteles ya se aceptaba que la iea ea esféica. b) La estimación del adio teeste que llevó a cabo
Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría
Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice
A continuación obligamos, aplicando el producto escalar, a que los vectores:
G1.- Se sabe que el tiángulo ABC es ectángulo en el vétice C, que petenece a la ecta intesección de los planos y + z = 1 e y 3z + 3 = 0, y que sus otos dos vétices son A( 2, 0, 1 ) y B ( 0, -3, 0 ). Halla
El campo electrostático
1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos
CAMPO GRAVITATORIO FCA 10 ANDALUCÍA
CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe
Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio
Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P
INTRODUCCION AL ANALISIS VECTORIAL
JOSÉ MILCIDEZ DÍZ, REL CSTILLO, ERNNDO VEG PONTIICI UNIVERSIDD JVERIN, DEPRTMENTO DE ÍSIC INTRODUCCION L NLISIS VECTORIL Intoducción Pate Pate 3 Pate 4 (Pate ) Donde encuente el símbolo..! conduce a una
Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar.
TRABAJO Y ENERGÍA TRABAJO Es el poducto escala de la fueza aplicada al cuepo po el vecto desplazamiento. Po lo tanto es una magnitud escala. W = F.D = F.D. cos a Su unidad en el sistema intenacional es
Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE
LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.
+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m
m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6
CAPÍTULO II LEY DE GAUSS
Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio
De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz.
Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los polos
Expresión que permite despejar la masa del planeta en función de g y R. 2
UNVESDADES ÚBLCAS DE LA COUNDAD DE ADD UEBA DE ACCESO A ESTUDOS UNVESTAOS (LOGSE) FÍSCA Septiembe 05 NSTUCCONES Y CTEOS GENEALES DE CALFCACÓN Después de lee atentamente todas las peguntas, el alumno debeá
ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas
ELECTROSTTIC La electostática es la pate de la física que estudia las cagas elécticas en equilibio. Cagas elécticas Existen dos clases de cagas elécticas, llamadas positiva y negativa, las del mismo signo
Electrostática. Campo electrostático y potencial
Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes
CAMPO GRAVITATORIO FCA 04 ANDALUCÍA
CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.
Movimientos planetarios
Movimientos planetaios Teoías geocénticas: La Tiea es el cento del Univeso Aistóteles (384 322 a.c.). Esfeas concénticas. Ptolomeo (100 170 d.c.). Dos movimientos: epiciclo y defeente Teoías heliocénticas:
. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.
1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes
VECTORES, DERIVADAS, INTEGRALES
Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo
Examen de Selectividad de Física. Junio 2009. Soluciones.
Depatamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madid) Examen de Selectividad de Física. Junio 009. Soluciones. Pimea pate Cuestión 1.- Un satélite atificial de 500 kg que descibe una óbita
avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el
/5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado
TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA
TALLER GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 0- Pofeso: Jaime Andés Jaamillo González ([email protected]) Pate del mateial ha sido tomado de documentos
CUERPOS REDONDOS. LA ESFERA TERRESTRE
IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes
ECUACIONES DE LA RECTA
Tema 6 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos
Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales
Capitulo 9: Leyes de Keple, Gavitación y Fuezas Centales Índice. Las 3 leyes de Keple 2. Campo gavitacional 4 3. Consevación de enegía 6 4. Movimiento cicula 8 5. Difeentes tayectoias 0 6. Demosta Leyes
Examen de Selectividad de Física. Septiembre 2008. Soluciones.
Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000
ÁLGEBRA LINEAL I LISTA DE EJERCICIOS 3. Página para el curso:
ÁLGEBRA LINEAL I LISTA DE EJERCICIOS 3 DANIEL LABARDINI FRAGOSO DANIEL BALAM CRUZ HUITRÓN Página paa el cuso: www.matem.unam.mx/labadini/teaching.html A lo lago de los siguientes ejecicios, seá un campo.
GEOMETRÍA ANALÍTICA EN EL ESPACIO
GEOMETRÍ NLÍTI EN EL ESPIO PRODUTO ESLR a b a b cosx (uando sepamos el ángulo que foman a y b). a ba b a b a b (uando sepamos las coodenadas de a y b ). uando los ectoes son pependiculaes su poducto escala
10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:[email protected] 27/01/2005 Física 2ªBachiller
www.lotizdeo.tk I.E.S. Fancisco Gande Covián Campo Gavitatoio mailto:[email protected] 7/01/005 Física ªBachille 10.- Un satélite atificial descibe una óbita elíptica, con el cento de la iea en uno
ECUACIONES DIMENSIONALES
ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?
MARCOSAPB CIENCIAS NATURALES FÍSICA M. CIRCULAR U N.S.Q INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ
MARCOSAPB CIENCIAS NAURALES FÍSICA M. CIRCULAR U. -- 0 - - 03. N.S.Q INSIUCIÓN EDUCAIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ M.C.U. MOVIMIENO CIRCULAR UNIFORME Pieda atada a una cueda: estoy giando La tiea:
CONTENIDO FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. Campos escalares y vectoriales. Gradiente y rotacional. Campos conservativos.
CONTENIDO FUERZS CONSERVTIVS Y NO CONSERVTIVS Campos escalaes y vectoiales Gadiente y otacional Campos consevativos. Potencial Tabajo ealizado po una fueza consevativa Fuezas no consevativas: Fueza de
BLOQUE II - CUESTIONES Opción A Explica mediante un ejemplo el transporte de energía en una onda. Existe un transporte efectivo de masa?
EXAMEN COMPLETO El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de 1,5 puntos. BLOQUE I Un satélite atificial de 500
TEMA 2 Ondas mecánicas progresivas
TEMA Ondas mecánicas ogesivas .. Intoducción DEFINICIÓN DE ONDA: - tansfeencia de una etubación: enegía y momento - no hay tansfeencia de mateia - ONDAS MECÁNICAS: oagación a tavés de un medio (O. Sonoas)
Física 2º Bacharelato
Física º Bachaelato Gavitación 19/01/10 DEPARAMENO DE FÍSICA E QUÍMICA Nombe: 1. Calcula la pimea velocidad obital cósmica, es deci la velocidad que tendía un satélite de óbita asante.. La masa de la Luna
Fluidos: generalidades y definiciones.
Fluidos: genealidades y definiciones. Intoducción a la Física Ambiental. Tema 4. Tema 4. IFA (Pof. RAMOS) 1 Tema 4.- Fluidos Genealidades y Definiciones. El fluido como medio continuo. Mecánica de los
Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice
Cáteda de Física Índice Figua - Enunciado Solución Ecuación - Momento de inecia definición Figua - Sistema de estudio 3 Ecuación - Descomposición del momento de inecia3 Figua 3 - Cálculo del momento de
r r r r r µ Momento dipolar magnético
A El valo φ180 o es una posición de equilibio inestable. Si se desplaza un poco especto a esta posición, la espia tiende a tasladase aún más de φ180 o. τ F ( b/ )sinϕ ( a)( bsinϕ) El áea de la espia es
Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN
Física P.A.U. GRAVIACIÓN 1 GRAVIACIÓN INRODUCCIÓN MÉODO 1. En geneal: Se dibujan las fuezas que actúan sobe el sistema. Se calcula la esultante po el pincipio de supeposición. Se aplica la ª ley de Newton
ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES
FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL 0.1 CURVAS EN R 3 ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES
rad/s EXAMEN FÍSICA PAEG UCLM. JUNIO 2013. SOLUCIONARIO
EXAMEN FÍSICA PAEG UCLM. JUNIO 01. SOLUCIONARIO OPCIÓN A. PROBLEMA 1 Una onda tansvesal se popaga po una cueda tensa fija po sus extemos con una velocidad de 80 m/s, y al eflejase se foma el cuato amónico
9 Cuerpos geométricos
865 _ 045-056.qxd 7/4/07 1:0 Página 45 Cuepos geométicos INTRODUCCIÓN Los cuepos geométicos están pesentes en múltiples contextos de la vida eal, de aí la impotancia de estudialos. Es inteesante constui
MAGNITUDES VECTORIALES:
Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de
Cinemática del Sólido Rígido (SR)
Cinemática del Sólido Rígido (SR) OBJETIVOS Intoduci los conceptos de sólido ígido, taslación, otación y movimiento plano. Deduci la ecuación de distibución de velocidades ente puntos del SR y el concepto
CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB
7 CAMPO ELÉCTRICO 7.. FENÓMENOS DE ELECTRIZACIÓN. Un péndulo electostático es un dispositivo fomado po una esfea ligea, de mateial aislante, suspendida de un hilo de masa despeciable. Utilizando ese dispositivo,
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A
Examen de Evaluación. Geometía. Matemática II. Cuo 009-00 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA Cuo 009-00 -V-00 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
Elementos de la geometría plana
Elementos de la geometía plana Elementos de la geometía plana El punto Los elementos básicos de la geometía plana El punto es el elemento mínimo del plano. Los otos elementos geométicos están fomados po
FÍSICA UNIDAD TEMÁTICA I: Introducción a la Física. Conceptos Elementales. 1.3.- Unidades y Medidas. Sistemas de Unidades.
UNIDAD TEMÁTICA I: Intoducción a la Física. Conceptos Elementales. 1.- ÍNDICE. 1.1.- Intoducción a la Física. 1.2.- Magnitudes Físicas. 1.3.- Unidades y Medidas. Sistemas de Unidades. 1.4.- Ecuación de
PROBLEMAS DE ELECTROESTÁTICA
PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín
Práctica 8: Carta de Smith
Páctica 8: Cata de Smith Objetivo Familiaización con el manejo de la Cata de Smith. Contenidos Repesentación de impedancias y admitancias. Obtención de paámetos de las líneas empleando la Cata de Smith.
FLUJO POTENCIAL BIDIMENSIONAL (continuación)
Pof. ALDO TAMBURRINO TAVANTZIS Pof. ALDO TAMBURRINO TAVANTZIS FLUJO POTENCIAL BIDIMENSIONAL (continuación) RESUMEN DE LA CLASE ANTERIOR Si un flujo es iotacional, V 0, entonces eiste una función escala
Ejercicios resueltos
Ejecicios esueltos Boletín 2 Campo gavitatoio y movimiento de satélites Ejecicio 1 En el punto A(2,0) se sitúa una masa de 2 kg y en el punto B(5,0) se coloca ota masa de 4 kg. Calcula la fueza esultante
Puntos, rectas y planos en el espacio. Problemas métricos en el espacio
1. Estudia la posición elativa de las ectas y s: x = 2t 1 x + 3y + 4z 6 = 0 : ; s : y = t + 1 2x + y 3z + 2 = 0 z = 3t + 2 Calcula la distancia ente ambas ectas (Junio 1997) Obtengamos un vecto diecto
LA PARTÍCULA SOBRE UNA ESFERA
Fundaentos de Quíica Teóica LA PARTÍCULA SOBRE UNA ESFERA E odeo de una patícua oviéndose en una configuación de esfea pefecta, es deci, a una distancia fija de un cento dado, peo en tes diensiones, es
FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS
FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS PARA EMPEZAR, REFLEXIONA Y RESUELVE 1. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora: a) Cuántos
= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS
POSICIÓN RELATIVA DE DOS RECTAS Ecuacione geneale : Ax + By + C = : Ax + By + C = A B A B RECTAS SECANTES \ Un punto en común A B C = A B C RECTAS PARALELAS Ningún punto en común A B C = = A B C RECTAS
ECUACIONES DE LA RECTA
Temas 6 y 7 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos
UNIDAD TEMÁTICA I BIOMECÁNICA
UNIDAD TEMÁTICA I BIOMECÁNICA Mecánica: estudio de las condiciones que hacen que los objetos pemanezcan en equilibio (estática) y de las leyes que igen su movimiento (dinámica). La cinemática descibe el
0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.
VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala
