Cinemática del Sólido Rígido (SR)
|
|
|
- Alejandro Farías Alvarado
- hace 9 años
- Vistas:
Transcripción
1 Cinemática del Sólido Rígido (SR) OBJETIVOS Intoduci los conceptos de sólido ígido, taslación, otación y movimiento plano. Deduci la ecuación de distibución de velocidades ente puntos del SR y el concepto de cento instantáneo de otación. Pode esolve las velocidades de puntos del SR y la ω en algunos movimientos planos. DESARROLLO Concepto de sólido ígido Definimos un SR como un sistema de patículas en el que la distancia ente dos patículas cualesquiea del sistema pemanece invaiante en el tanscuso del tiempo. y Matemáticamente podemos escibi esta condición po: i j = cte ij = cte ( i j ) 2 = cte k j i x z
2 Condición cinemática de igidez El movimiento de los puntos del sólido no es totalmente libe debido a la condición de igidez. Podemos obtene una condición ente velocidades deivando la condición de igidez: ( i j ) 2 = cte d ( i j ) 2 = 0 d ( i j ) 2 = 2 ( i j ) [ d i d ] j = 0 Ninguno de los vectoes de la ecuación anteio es necesaiamente ceo ni las estas que apaecen, po lo que debe se ceo el poducto escala: [ d i ( i j ) d ] j = 0 ij ( v i v j = 0 ij v i = ij v j ij v ij = 0 Esta última condición ecibe el nombe de condición cinemática de igidez y tiene una intepetación geomética claa: Las poyecciones de los vectoes velocidad v i y v j sobe la ecta que une el punto i y j del sólido son iguales. v v
3 Movimiento de taslación del SR Definición Un SR ealiza una taslación cuando un segmento ectilíneo definido po dos puntos cualesquiea del sólido pemanece paalelo a si mismo duante el movimiento Ve que esta definición incluye tanto movimientos ectilíneos como algunos cuvilíneos. Matemáticamente podemos deduci paa una taslación: d ( i j ) = 0 = v i = v j Es deci, en una taslación todos los puntos del sólido tienen la misma velocidad (y po lo tanto la misma aceleación) Basta con conoce el movimiento de un punto del sólido paa descibi completamente una taslación.
4 Movimiento de otación del SR Definición Un SR ealiza una otación alededo de un eje cuando todos sus puntos desciben tayectoias ciculaes centadas en dicho eje y contenidas en planos pependiculaes a este. El eje de otación puede atavesa el SR o se exteio al este. C C Paa descibi matemáticamente el movimiento de los puntos en una otación podemos usa el vecto velocidad angula de la otación: Todos los puntos hacen una otación con la misma ω ω v La velocidad de cada punto vendá dada po: v i = ω i Es deci, un movimiento de otación queda deteminado completamente po el vecto velocidad angula ω Basta con conoce el vecto ω y su ecta de aplicación paa detemina completamente el movimiento de todos los puntos del SR en una otación.
5 Movimiento plano del SR Definición Un SR ealiza una movimiento plano si todos los puntos del SR se mueven descibiendo tayectoias que están contenidas en planos paalelos ente sí y que son a su vez paalelos a un plano de simetía del sólido. Un cuepo plano que se mueve en el plano que contiene al cuepo siempe ealiza un movimiento plano. En Física I nos limitaemos a estudia el movimiento plano. Ve que en el movimiento plano los vectoes ω y α siempe seán pependiculaes al plano del movimiento. ω v C
6 Distibución de velocidades en puntos del SR Veemos ahoa que cualquie movimiento de los puntos de un SR se puede epoduci mediante la suma de una taslación más una otación. M Sea F un sistema fijo y M un sistema que se mueve como el SR. y Paa las velocidades v A y v B tenemos: v A = d A v B = d B F F z B y x F AB A z x Paa elaciona v A con v B haé uso de la identidad vectoial B = A + AB y del opeado deivada en base móvil. v B = d B = d( A + AB) F = d A F F + d AB F = v A + d AB + ω AB M Como el vecto AB está fijo en la base M su deivada es ceo y nos queda finalmente: v B = v A + ω AB Esta ecuación es válida paa cualquie pa de puntos del SR, y paa cada uno habíamos obtenido ecuaciones similaes: v B v C v E = v A + ω AB = v A + ω AC = v A + ω AE Estas fomulas demuestan que el movimiento de todos los puntos del SR se puede obtene mediante la suma de una taslación definida po v A más una otación definida po ω.
7 Cento instantáneo de otación CIR Se puede demosta que cualquie movimiento plano de un SR plano es una otación instantánea alededo de un punto del espacio. Esto es una consecuencia inmediata de la fómula v B = v A + ω AB y del hecho que ω es pependicula al plano del movimiento y po lo tanto a v A, v B y AB. Sea v B la velocidad de un punto cualquiea del un SR en movimiento plano. Relacionemos ahoa v B con la velocidad de oto punto situado en la ecta pependicula a v B y que pasa po B. Como ω sale pependiculamente del papel ω AB ya tiene la diección y el sentido de v B. Ajustando la distancia AB podemos hace también que ω AB = v B. v B En este caso la expesión v B = v A + ω AB nos indica que la velocidad de A es ceo. La velocidad de cualquie oto punto del SR viene dada entonces po: v B v C v E = ω AB = ω AC = ω AE Lo que indica que todos los puntos del SR hacen una otación (al menos instantáneamente) especto del punto A. El punto A ecibe el nombe de Cento Instantáneo de Rotación (CIR)
8 Popiedades del CIR Todos los puntos ealizan instantáneamente una otación (sin taslación) alededo del CIR. El CIR puede se un punto del SR, peo también puede esta fuea del SR. En un movimiento plano el CIR siempe existe, peo puede cambia su localización con el tiempo. Paa localiza el CIR, basta con taza las pependiculaes a la velocidad de dos puntos del SR y ve donde se cotan. El punto donde se coten es el CIR. Si el sólido tiene un punto fijo, éste seá el CIR. El módulo de la velocidad de cada punto es v = ω d, donde d es la distancia del punto al CIR. A más distancia de un punto al CIR, mayo seá el módulo de su velocidad.
. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.
1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes
CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( )
CÁLCULO VECTOIAL Opeaciones con vectoes libes Suma de vectoes libes La suma de n vectoes libes P P P n es un vecto libe llamado esultante = i j k la suma de las componentes espectivas, siendo las componentes
1.6. DINÁMICA DEL PUNTO MATERIAL
Fundamentos y Teoías Físicas ETS quitectua.6. DINÁMIC DEL PUNTO MTERIL Hemos visto anteiomente que la Cinemática estudia los movimientos, peo sin atende a las causas que los poducen. Pues bien, la Dinámica
ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES
FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL 0.1 CURVAS EN R 3 ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES
MAGNITUDES ESCALARES Y VECTORIALES
C U R S O: FÍSIC Mención MTERIL: FM-01 MGNITUDES ESCLRES VECTORILES Sistema intenacional de medidas En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales.
GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia
Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones
VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES
VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la
A continuación obligamos, aplicando el producto escalar, a que los vectores:
G1.- Se sabe que el tiángulo ABC es ectángulo en el vétice C, que petenece a la ecta intesección de los planos y + z = 1 e y 3z + 3 = 0, y que sus otos dos vétices son A( 2, 0, 1 ) y B ( 0, -3, 0 ). Halla
MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias
Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente
Puntos, rectas y planos en el espacio. Problemas métricos en el espacio
1. Estudia la posición elativa de las ectas y s: x = 2t 1 x + 3y + 4z 6 = 0 : ; s : y = t + 1 2x + y 3z + 2 = 0 z = 3t + 2 Calcula la distancia ente ambas ectas (Junio 1997) Obtengamos un vecto diecto
6: PROBLEMAS METRICOS
Unidad 6: PROBLEMAS METRICOS 6.1.- DIRECCIONES DE RECTAS Y PLANOS Los poblemas afines tatan de incidencias (ve si un punto está contenido en una ecta o en un plano y ve si una ecta está contenida en un
L r p. Teniendo en cuenta que p es el momento lineal (masa por el vector velocidad) la expresión anterior nos queda: L r mv m r v. d L dr dv dt dt dt
EOEA DE CONSEVACIÓN DE OENO ANGUA: El momento angula se define como: p CASE 4.- EYES DE CONSEVACIÓN eniendo en cuenta que p es el momento lineal (masa po el vecto velocidad) la expesión anteio nos queda:
a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas.
º-Halla a y b paa que las ectas siguientes sean paalelas: x+ay - z s 4x y +6 z a ; b- x+y +bz º-Dadas las ectas de ecuaciones x z - y - (x, y,z) (,0,)+ (,,-) a) Estudia su posición elativa en el espacio.
UNIDAD 4: CIRCUNFERENCIA CIRCULO:
UNIDD 4: CIRCUNFERENCI CIRCULO: CONTENIDO: I. CONCEPTO DE CIRCUNFERENCI: Es una cuva ceada y plana cuyos puntos equidistan de un punto llamado cento. Una cicunfeencia se denota con la expesión: O C, y
EJERCICIOS SOBRE VECTORES
EJERCICIOS SOBRE VECTORES 1) Dados los puntos A = ( 2, 1,4) ( 3,1, 5) uuu vecto AB B =, calcula las componentes del 2) Dados los puntos A = ( 2, 1,4), B = ( 3,1, 5) ( 4,2, 3) C =, detemina las uuu uuu
Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio
Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P
EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO
EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina
MATEMÁTICAS 2º Bach Tema 5: Vectores José Ramón BLOQUE 2: GEOMETRÍA DEL ESPCACIO. Tema 5: Vectores
MATEMÁTICAS º Bach Tema 5: Vectoes José Ramón BLOQUE : GEOMETRÍA DEL ESPCACIO Tema 5: Vectoes MATEMÁTICAS º Bach Tema 5: Vectoes José Ramón Definición de vecto Un sistema de ejes tidimensional se constuye
7. MOMENTO ANGULAR. 7. Momento angular
7. Momento angula 7. MMENT ANGUAR El concepto de momento angula es muy útil paa descibi movimientos en dos o tes dimensiones y otaciones. Consideemos el movimiento de un punto de masa m especto de. Este
ECUACIONES DE LA RECTA
Tema 6 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos
GEOMETRÍA ANALÍTICA PLANA
GEOMETRÍ NLÍTIC PLN / Ecuaciones de la ecta Un punto y un vecto Dos puntos Un punto y la pendiente,,,,,, Coodenadas del vecto diecto ECUCION VECTORIL (x, y) (p, p ) + τ (v, v ) ECUCION PRMETRIC x p + τ
Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r
Fenando Baoso Loenzo GEOMETRÍA ANALÍTICA 1. Dados los vectoes cuyas coodenadas son u = ( 10, 2) y v = (13, 2), calcula el módulo u 43 u 298621 del vecto esultante de la siguiente combinación lineal w =
Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:
MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,
La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será:
xyz0 1. Dados la ecta : y el punto P(1, 0, 1) exteio a : x y z a) Halla la ecuación en foma geneal del plano que contiene a y a P b) Halla la ecuación (como intesección de dos planos) de la ecta s que
Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1
Tema Geometía en el espacio Matemáticas II º Bachilleato ÁNGULOS EJERCICIO 5 : λ Dados las ectas : λ, s : λ calcula el ángulo que foman: a) s b) s π el plano π : ; i j k a) Hallamos el vecto diecto de
200. Hallar la ecuación de la simetría ortogonal respecto de la recta:
Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto
GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO
GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones
Física 2º Bacharelato
Física º Bachaelato Gavitación 19/01/10 DEPARAMENO DE FÍSICA E QUÍMICA Nombe: 1. Calcula la pimea velocidad obital cósmica, es deci la velocidad que tendía un satélite de óbita asante.. La masa de la Luna
RELACION DE ORDEN: PRINCIPALES TEOREMAS
RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a
SISTEMA DIÉDRICO II Paralelismo, perpendicularidad y distancias Verdaderas magnitudes lineales TEMA 9 PARALELISMO
SSTEMA ÉRCO Paalelismo, pependiculaidad y distancias Vedadeas magnitudes lineales Objetivos y oientaciones metodológicas TEMA 9 Esta unidad temática es fundamental y, a la vez, su explicación se puede
3.3.- Cálculo del campo eléctrico mediante la Ley de Gauss
Lección 1. Campo Electostático en el vacío: Conceptos y esultados fundamentales 17..- Cálculo del campo eléctico mediante la Ley de Gauss La Ley de Gauss pemite calcula de foma sencilla el campo eléctico
3 y un vector director Supongamos también que P x, y,
. Coodenadas o componentes de un vecto Sean dos puntos a, a2, a y, 2, vecto son: b a, b a, b a b b b del espacio. Entonces las coodenadas o componentes del. Dos vectoes, CD son equivalentes ( CD ) si tienen
MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando
MECNIC PLICD I. EXMEN PCIL. 17-04-99. PIME EJECICI TIEMP: 75 1. btene la expesión de la velocidad de ω V s ω V s sucesión del cento instantáneo de otación cuando =. 2 2. Indica qué afimaciones son cietas
LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo.
LY D GAU La ley de Gauss es un enunciado ue es deivable de las popiedades matemáticas ue tiene el Vecto de intensidad de Campo léctico con especto a las supeficies en el espacio. ste enunciado constituye
A r. 1.5 Tipos de magnitudes
1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante
Unidad 12. Geometría (I).Ecuaciones de recta y plano
Unidad.Geometía (I).Ecuaciones de la ecta el plano Unidad. Geometía (I).Ecuaciones de ecta plano. Intoducción. Espacio fín... Vecto en el espacio. Vecto libe fijo... Opeaciones con vectoes.. Dependencia
www.fisicaeingenieria.es Vectores y campos
www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que
LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA
LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA OBJETIVOS I.- Loga el equilibio estático de objetos que pueden ota en tono a un eje, po medio de la aplicación de fuezas y toques. INTRODUCCIÓN
Trabajo y Energía I. r r = [Joule]
C U R S O: FÍSICA MENCIÓN MATERIAL: FM-11 Tabajo y Enegía I La enegía desempeña un papel muy impotante en el mundo actual, po lo cual se justifica que la conozcamos mejo. Iniciamos nuesto estudio pesentando
DIBUJO TÉCNICO BACHILLERATO. Láminas resueltas del TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo
DIBUJO ÉCNICO BACHILLERAO Láminas esueltas del EMA 4. ANGENCIAS. Depatamento de Ates lásticas y Dibujo 1.- Dibuja 2 cicunfeencias adio 10 mm. que sean ANGENES EXERIORES a la dada y ente ellas. 2.- Dibuja
UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA ESTÁTICA
UNIVESIDD NCINL DEL CLL CULTD DE INGENIEÍ ELÉCTIC Y ELECTÓNIC ESCUEL PESINL DE INGENIEÍ ELÉCTIC ESTÁTIC * Equilibio de cuepos ígidos ING. JGE MNTÑ PISIL CLL, 2010 EQUILIBI DE CUEPS ÍGIDS CNCEPTS PEVIS
ECUACIONES DE LA RECTA
Temas 6 y 7 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos
Bloque 3. Geometría y Trigonometría Tema 3 La recta en el plano Ejercicios resueltos
Bloque 3. Geometía y Tigonometía Tema 3 La ecta en el plano Ejecicio euelto 3.3-1 Halla la ecuación vectoial, en paamética, continua y geneal de la ecta que paa po el punto indicado y tiene po vecto dieccional
BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION
FACULTAD DE CIENCIAS CURSO DE INTRODUCCION A LA METEOROLOGIA 11 BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION 1. INTRODUCCION A LA CINEMATICA El oigen de la dinámica se emonta a los pimeos expeimentos
TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano
LA LINEA RECTA: DEFINICIÓN. TALLER VERTICAL DE MATEMÁTICA Recibe el nombe de línea ecta el luga geomético de los puntos tales que, tomados dos puntos cualesquiea distintos P, ) P, ) el valo de la epesión:
a) Concepto Es toda acción de capaz de cambiar el estado de reposo o movimiento de un cuerpo, o de producir en el alguna deformación.
FUERZAS 1- NAURALEZA DE LAS FUERZAS a) Concepto Es toda acción de capaz de cambia el estado de eposo o movimiento de un cuepo, o de poduci en el alguna defomación. b) Caácte vectoial Los efectos de una
Tema 6 Puntos, rectas y planos en el espacio
Tema 6 Puntos, ectas planos en el espacio. Punto medio. Los puntos A (,, ) B (-,, -) son vétices de un paalelogamo cuo cento es el punto M (,, ). Halla Los otos dos vétices las ecuaciones del lado AB.
El campo electrostático
1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos
TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 9: FORMAS GEOMÉTRICAS. Pime Cuso de Educación Secundaia Obligatoia. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 09: FORMAS GEOMÉTRICAS. 1. Ideas Elementales de Geometía
( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( )
CAMPOS: OPERADOR NABLA Repesenta los campos vectoiales A i + j, B i j. Halla la divegencia el otacional de cada uno de ellos eplica el significado físico de los esultados obtenidos. Solución: I.T.I., 3,
CP; q v B m ; R R qb
Campo Magnético Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos (N y S). Si acecamos
PROBLEMAS MÉTRICOS. 2º Bachillerato ÁNGULOS ENTRE RECTAS Y PLANOS ÁNGULOS ENTRE RECTAS Y PLANOS ÁNGULOS ENTRE RECTAS Y PLANOS. u v. u v.
ÁNGULOS ENTRE RECTAS Y LANOS ROBLEMAS MÉTRICOS EN EL ESACIO 2º Bachilleato Ángulo ente do vectoe. u v = u v co(u, v) u u v α co(u, v) = v u v co α = u v u v ÁNGULOS ENTRE RECTAS Y LANOS Ángulo ente do
Ejemplos 2. Cinemática de los Cuerpos Rígidos
Ejemplos. Cinemática de los Cuepos Rígidos.1. Rotación alededo de un eje fijo.1.** El bloque ectangula ota alededo de la ecta definida po los puntos O con una velocidad angula de 6,76ad/s. Si la otación,
INTERSECCIONES. POSICIONES RELATIVAS. DISTANCIAS
INTERSECCIONES. POSICIONES RELATIAS. DISTANCIAS OBJETIOS 1 2 Reconoce el Sistema diédico o Sistema de Monge como el ecuso desciptivo gáfico más adecuado en el diseño industial y aquitectónico. 1 INTERSECCIÓN
Ejercicios resueltos
Ejecicios esueltos Boletín 1 Leyes de Keple y Ley de gavitación univesal Ejecicio 1 Dos planetas de masas iguales obitan alededo de una estella de masa mucho mayo. El planeta 1 descibe una óbita cicula
Solución al examen de Física
Solución al examen de Física Campos gavitatoio y eléctico 14 de diciembe de 010 1. Si se mantuviea constante la densidad de la Tiea: a) Cómo vaiaía el peso de los cuepos en su supeficie si su adio se duplicaa?
r r r r r µ Momento dipolar magnético
A El valo φ180 o es una posición de equilibio inestable. Si se desplaza un poco especto a esta posición, la espia tiende a tasladase aún más de φ180 o. τ F ( b/ )sinϕ ( a)( bsinϕ) El áea de la espia es
La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será:
xyz0. Dados la ecta : y el punto P(, 0, ) exteio a : x y z a) Halla la ecuación en foma geneal del plano que contiene a y a P b) Halla la ecuación (como intesección de dos planos) de la ecta s que pasa
IV. Geometría plana. v v2 2. u v = u v cos α
Talle de Matemáticas 16 IV. Geometía plana IR 2 = {(x, y)/x, y IR} puede identificase con el espacio de vectoes libes del plano utilizando la base canónica: v =(v 1,v 2 )=v 1 (1, 0) + v 2 (0, 1) = v 1
MAGNITUDES ESCALARES Y VECTORIALES
U R S O: FÍSI OMÚN MTERIL: F-01 Sistema intenacional de medidas MGNITUDES ESLRES VETORILES En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales. El sistema
EJERCICIOS DEL TEMA VECTORES
EJERCICIOS DEL TEMA VECTORES 1) Considea el vecto w, siguiente: w Dibuja, en cada caso uno de los siguientes casos, un vecto v, que sumado con u dé como esultado w : a) b) c) d) u u u u 2) A la vista de
CONTENIDO FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. Campos escalares y vectoriales. Gradiente y rotacional. Campos conservativos.
CONTENIDO FUERZS CONSERVTIVS Y NO CONSERVTIVS Campos escalaes y vectoiales Gadiente y otacional Campos consevativos. Potencial Tabajo ealizado po una fueza consevativa Fuezas no consevativas: Fueza de
( ) TEMA V. 1. Ecuaciones del plano. Tema 5 : Rectas y planos en el espacio
TEMA V. Ecuaciones del plano. Ecuaciones de la ecta. Haz de planos 4. Incidencia de planos y ectas 5. Ángulos en el espacio 6. Condiciones de pependiculaidad 7. Distancias en el espacio. Ecuaciones del
