UNIDAD 4: CIRCUNFERENCIA CIRCULO:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD 4: CIRCUNFERENCIA CIRCULO:"

Transcripción

1 UNIDD 4: CIRCUNFERENCI CIRCULO: CONTENIDO: I. CONCEPTO DE CIRCUNFERENCI: Es una cuva ceada y plana cuyos puntos equidistan de un punto llamado cento. Una cicunfeencia se denota con la expesión: O C, y se lee cicunfeencia de cento O y adio. II. CONCEPTO DE CÍRCULO: es el conjunto de puntos fomado po la unión de una cicunfeencia y su inteio. Un cículo es una egión. III. ELEMENTOS DE L CIRCUNFERENCI: Los más impotantes son: 1. Radio: () es el segmento que une el cento y un punto cualquiea de la cicunfeencia. 2. Cueda: es un segmento cuyos extemos son dos puntos de la cicunfeencia. 3. Diámeto: (d) es una cueda que pasa po el cento de la cicunfeencia. La medida del diámeto es el doble de la medida del adio. La cueda de mayo longitud en una cicunfeencia es el diámeto. 4. co: ( a ) es una poción cualquiea de la cicunfeencia. 5. Sagita o flecha: es el segmento que se levanta pependiculamente po el punto medio de una cueda y temina en un aco subtendido. 6. Semicicunfeencia: es un aco de cicunfeencia cuyos extemos son también los extemos de un diámeto. La cicunfeencia está fomada po dos semicicunfeencias que tienen en común el mismo diámeto. 7. Semicículo: Cada una de las dos mitades del cículo sepaadas po un diámeto. IV. LONGITUD DE L CIRCUNFERENCI: (L) se detemina mediante la expesión: el adio de la cicunfeencia y 3, Paa deduci la expesión L 2 L 2 donde es, se ealizan los siguientes pasos: a) se taza una cicunfeencia con cualquie adio. b) se coloca una cueda sobe la cicunfeencia. C) se mide la longitud de la cueda. d) se divide la medida de la cueda ente el diámeto de la cicunfeencia. 3, l ealiza el mismo pocedimiento con cicunfeencias de difeentes adios se obtiene que la azón ente la longitud de la cicunfeencia y su diámeto es siempe la misma. Este valo constante es el númeo pi caacteizado po se un númeo decimal no peiódico infinito, es deci, un númeo iacional. El númeo pi se simboliza con la leta giega y su valo apoximado es 3, Como la azón L d 2, donde es el adio de la cicunfeencia y se obtiene: L 2 ente la longitud de la cicunfeencia y el diámeto es se escibe: L d. Luego se despeja: L d. Finalmente, se eemplaza d po. Ejemplo: Se quiee coloca una cinta alededo de una supeficie cicula de adio 6 m. Cuántos metos de cinta se L 2 L 2 3, L 37, 68m necesitan? Se halla la longitud de la cicunfeencia de adio. opeaciones indicadas. m, se eemplaza el adio y se ealizan las

2 V. POSICIONES RELTIVS DE UN RECT Y UN CIRCUNFERENCI: Según su posición, una ecta puede se exteio, secante o tangente a una cicunfeencia que se encuente en el mismo plano. 1. Recta Exteio a una cicunfeencia: una ecta es exteio a una cicunfeencia cuando no tiene ningún punto en común, es deci, cuando la ecta y la cicunfeencia no se intesecan. Po ejemplo, en la siguiente figua la ecta l es exteio a la cicunfeencia de cento C. 2. Recta Secante a una cicunfeencia: una ecta es secante a una cicunfeencia cuando la inteseca en dos puntos. De acuedo con esto, toda ecta que contenga una cueda de la cicunfeencia es una ecta secante de dicha cicunfeencia. Po ejemplo, en la siguiente figua, MN es una cueda de la cicunfeencia de cento C y la ecta MN es secante a la cicunfeencia. M N 3. Recta Tangente a una cicunfeencia: una ecta es tangente a una cicunfeencia cuando ente sí tiene un solo punto en común, es deci, cuando la ecta inteseca a la cicunfeencia exactamente en un punto. Po ejemplo, en la siguiente figua la ecta m es tangente a la cicunfeencia de cento C exactamente en el punto. VI. POSICIONES RELTIVS DE UN PUNTO Y UN CIRCUNFERENCI: 1. Si el punto petenece a la cicunfeencia se dice que el punto está en la cicunfeencia. En tal caso: d T, O

3 2. Si el punto petenece al cículo se dice que el punto esta dento de la cicunfeencia. En tal caso: d T, O 3. Si el punto no petenece a la cicunfeencia ni al cículo se dice que el punto se encuenta en la pate extena de la cicunfeencia. En tal caso: d T, O Sobe las posiciones elativas de una cicunfeencia y la ecta se cumplen los siguientes teoemas: Teoema 1: si una ecta es tangente a una cicunfeencia, es pependicula al adio tazado al punto de tangencia. Teoema 2: una ecta en un plano de una cicunfeencia que sea pependicula a un adio en su punto sobe la cicunfeencia, es tangente a la cicunfeencia. Teoema 3: los segmentos tangentes tazados desde un punto exteio a una cicunfeencia son conguentes. Teoema 4: una tangente y una secante paalelas deteminan acos conguentes en una cicunfeencia. VII. CUERDS Y RCOS: Cuando un aco se encuenta en un lado difeente de un ángulo y los demás puntos del aco están en el inteio del ángulo, se denomina un aco inteceptado. Po ejemplo: El aco inteceptado po el es. El aco inteceptado po el es. Y E D Los acos inteceptados po el son y. Y D Los acos inteceptados po el son y.

4 I. NGULOS DE L CIRCUNFERENCI 1. NGULO CENTRL: Es el que su vétice es el cento y sus lados son dos adios. La medida del ángulo cental es igual a la medida del aco que detemina en la cicunfeencia. 2. NGULO INSCRITO: Es el que está fomado po dos cuedas y tiene el vétice en la cicunfeencia. Un ángulo inscito mide la mitad de la medida del aco que intecepta en la cicunfeencia. 3. NGULO SEMI-INSCRITO O DE SEGMENTO: Es el que tiene el vétice en la cicunfeencia y se foma con una cueda y una tangente a la cicunfeencia. 4. NGULO INSCRITO EN UN SEGMENTO: Es el que tiene el vétice en el aco de dicho segmento, pasando sus lados po los extemos del aco. 5. NGULO INTERIOR: Es el que tiene el vétice en el punto inteio de la cicunfeencia difeente del cento. Cuando dos cuedas se intesecan en un punto difeente del cento foman 4 ángulos inteioes. 6. NGULO ETERIOR: Es el que tiene el vétice exteio de la cicunfeencia. Puede fomase po 2 secantes, 2 tangentes o una tangente y una secante a la cicunfeencia.

5 RES FIGURS CIRCULRES 1. Secto cicula: es la intesección de un ángulo cental y el cículo. Áea del secto cicula: donde n es la medida del ángulo cental. 2. Segmento cicula: es la intesección de un cículo con uno de los semiplanos deteminados po una secante al mismo. Áea del segmento cicula = Áea del secto cicula O Áea del tiángulo O O 3. Zona cicula: sección compendida po dos cuedas paalelas. Áea de la zona cicula= a la difeencia de las áeas de los segmentos ciculaes cuyas cuedas son las coespondientes a la zona cicula. 4. Coona cicula: es el complemento del cículo de adio meno especto al cículo de adio mayo en dos cicunfeencias concénticas.

6 5. Tapecio cicula: es la sección de la coona cicula limitada po dos adios de la cicunfeencia mayo en dos cicunfeencias concénticas. tapecio

TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 9: FORMAS GEOMÉTRICAS. Pime Cuso de Educación Secundaia Obligatoia. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 09: FORMAS GEOMÉTRICAS. 1. Ideas Elementales de Geometía

Más detalles

Ángulos en la circunferencia

Ángulos en la circunferencia MT-22 Clase Ángulos en la cicunfeencia pendizajes espeados Identifica los elementos de un cículo y una cicunfeencia. Calcula áeas y peímetos del secto y segmento cicula. Reconoce tipos de ángulos en la

Más detalles

Definición 39. Circunferencia de centro en O y radio r en un plano π. Figura 141. Podemos definir este conjunto por comprensión así: C O,

Definición 39. Circunferencia de centro en O y radio r en un plano π. Figura 141. Podemos definir este conjunto por comprensión así: C O, 9.1 NOCIONES BÁSICAS Definición 9. Cicunfeencia de cento en O y adio en un plano π. Es el conjunto (luga geomético) de todos los puntos de un plano un punto dado O, llamado cento, una distancia., que equidistan

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

6.1. SUPERFICIE PRISMÁTICA Y PRISMA

6.1. SUPERFICIE PRISMÁTICA Y PRISMA 6 6.1. SUPERFICIE PRISMÁTICA Y PRISMA 6.. SUPERFICIE PIRAMIDAL Y PIRÁMIDE 6.. CUERPOS REDONDOS. 6.4. SÓLIDOS DE REVOLUCIÓN Objetivos: Detemina áeas de supeficies. Detemina volúmenes de sólidos. 14 Inicialmente

Más detalles

1. Realiza las siguientes operaciones con segmentos. 1º a+2b-c. 2º a+c-b. 3º 3a+c-b NOMBRE: Nº 1ºESO 1.3. OPERACIONES CON SEGMENTOS

1. Realiza las siguientes operaciones con segmentos. 1º a+2b-c. 2º a+c-b. 3º 3a+c-b NOMBRE: Nº 1ºESO 1.3. OPERACIONES CON SEGMENTOS 1.3. OPERCIONES CON SEGMENTOS 1. Realiza las siguientes opeaciones con segmentos a b c 1º a+2b-c 1º 2º a+c-b 2º 3º 3a+c-b 3º TEM 1 - Opeaciones con segmentos página 3 1.3.2. TEOREM DE TLES 1. Divide el

Más detalles

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2. 1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes

Más detalles

El radio de una circunferencia mide 1,25 cm. Halla el ángulo que forman las tangentes a la circunferencia desde un punto situado a 4,8 cm del centro.

El radio de una circunferencia mide 1,25 cm. Halla el ángulo que forman las tangentes a la circunferencia desde un punto situado a 4,8 cm del centro. T: TRIGNMETRÍ 1º T 7. RESLUIÓN E TRIÁNGULS RETÁNGULS L TNGENTE UN IRUNFERENI El adio de una cicunfeencia mide 1, cm. Halla el ángulo que foman las tangentes a la cicunfeencia desde un punto situado a cm

Más detalles

DIBUJO TÉCNICO BACHILLERATO. Láminas resueltas del TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO. Láminas resueltas del TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo DIBUJO ÉCNICO BACHILLERAO Láminas esueltas del EMA 4. ANGENCIAS. Depatamento de Ates lásticas y Dibujo 1.- Dibuja 2 cicunfeencias adio 10 mm. que sean ANGENES EXERIORES a la dada y ente ellas. 2.- Dibuja

Más detalles

ÁNGULOS Y LONGITUDES DE ARCO

ÁNGULOS Y LONGITUDES DE ARCO I.E LEÓN XIII EL PEÑOL MATEMÁTICA GRADO: 0 TALLER Nº: EMETRE I ÁNGULO Y LONGITUDE DE ARCO REEÑA HITÓRICA Un Poblema de Ángulos en la Antigüedad. El matemático giego Eatostenes (apox 76 9 a.c.) midió la

Más detalles

TANGENCIAS (Julio Catalán)

TANGENCIAS (Julio Catalán) NGENIS (Julio atalán) Los poblemas de tangencia que pueden pesentase son innumeables y van desde los muy sencillos a los más complejos, ecuiéndose paa su solución a pocedimientos muy distintos: desde los

Más detalles

11 FORMAS GEOMÉTRICAS

11 FORMAS GEOMÉTRICAS 11 FRMS GEMÉTRIS EJERIIS PRPUESTS 11.1 Dos puntos deteminan una ecta. a) uántas ectas se pueden taza con un solo punto? b) ómo son las ectas que pasan po ese punto? a) Tantas como se quiea. b) Secantes,

Más detalles

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 18 Explorando la esfera-1. Fecha: Profesor: Fernando Viso

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 18 Explorando la esfera-1. Fecha: Profesor: Fernando Viso GUIA DE TRABAJO Mateia: Matemáticas. Tema: Geometía 18 Exploando la esfea-1. Fecha: Pofeso: Fenando Viso Nombe del alumno: Sección del alumno: CONDICIONES: Tabajo individual. Sin libos, ni cuadenos, ni

Más detalles

1 Halla la mediatriz del segmento AB. 2 Traza la recta perpendicular a la recta r por el punto A.

1 Halla la mediatriz del segmento AB. 2 Traza la recta perpendicular a la recta r por el punto A. 1 Halla la mediatiz del segmento. 2 Taza la ecta pependicula a la ecta po el punto. 3 Taza la pependicula a la ecta desde el punto. uál es la distancia del punto a la ecta? 4 Dibuja dos ectas pependiculaes

Más detalles

Puntos, rectas y planos en el espacio. Problemas métricos en el espacio

Puntos, rectas y planos en el espacio. Problemas métricos en el espacio 1. Estudia la posición elativa de las ectas y s: x = 2t 1 x + 3y + 4z 6 = 0 : ; s : y = t + 1 2x + y 3z + 2 = 0 z = 3t + 2 Calcula la distancia ente ambas ectas (Junio 1997) Obtengamos un vecto diecto

Más detalles

B - CIRCUNFERENCIAS TANGENTES A UNA RECTA O A OTRA CIRCUNFERENCIA

B - CIRCUNFERENCIAS TANGENTES A UNA RECTA O A OTRA CIRCUNFERENCIA GRUPOS DE ANGENCIAS A - RECAS ANGENES A CIRCUNFERENCIAS A1- Recta tangente en de ella (1). eoemas fundamentales A2- Recta tangente a aco de cento O desconocido en del aco (1).eoemas fundamentales. A3-

Más detalles

LINEA: Es una sucesión infinita de puntos. Pueden ser lineas curvas o líneas rectas.

LINEA: Es una sucesión infinita de puntos. Pueden ser lineas curvas o líneas rectas. puntes geometía: Constucciones básicas º ESO LINE: Es una sucesión infinita de puntos. ueden se lineas cuvas o líneas ectas. LINE CUR. Es una sucesión infinita de puntos en difeentes diecciones. LINE RECT.

Más detalles

Notas del Autor. Prof. Guillermo Corbacho C. [email protected]

Notas del Autor. Prof. Guillermo Corbacho C. gcorbach@uc.cl Notas del Auto El pesente tabajo, junto con compila y deduci pate de los contenidos -ya existentes po lo demás, desde la antigua Gecia- pesenta en su amplia mayoía ejecicios elaboados pesonalmente. Algunos

Más detalles

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL 0.1 CURVAS EN R 3 ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

Más detalles

COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 )

COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 ) COLEGIO ESTRADA DE MARIA AUILIADORA CIENCIA, TRABAJO VALORES: MI PROECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (0 ) Fecha: Nombe del estudiante: N O T A La nivelación es en foma de talle donde

Más detalles

6: PROBLEMAS METRICOS

6: PROBLEMAS METRICOS Unidad 6: PROBLEMAS METRICOS 6.1.- DIRECCIONES DE RECTAS Y PLANOS Los poblemas afines tatan de incidencias (ve si un punto está contenido en una ecta o en un plano y ve si una ecta está contenida en un

Más detalles

RELACION DE ORDEN: PRINCIPALES TEOREMAS

RELACION DE ORDEN: PRINCIPALES TEOREMAS RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a

Más detalles

12 Cuerpos. en el espacio. 1. Elementos básicos en el espacio. Dibuja a mano alzada un punto, una recta, un romboide y un cubo.

12 Cuerpos. en el espacio. 1. Elementos básicos en el espacio. Dibuja a mano alzada un punto, una recta, un romboide y un cubo. 12 uepos en el espacio 1. Elementos básicos en el espacio ibuja a mano alzada un punto, una ecta, un omboide y un cubo. P I E N S A Y A L U L A Recta Punto Romboide ubo ané calculista 489,6 : 7,5 = 65,28;

Más detalles

Círculos y Circunferencias Áreas y perímetros

Círculos y Circunferencias Áreas y perímetros Cículos y Cicunfeencias Áeas y peímetos Agosto 01. Pesentación: El cálculo de áeas y peímetos de figuas es siempe atactivo. Y sin luga a dudas que siento una alegía cuando de cicunfeencias se tata. Ya

Más detalles

Apuntes de Trigonometría Elemental

Apuntes de Trigonometría Elemental Apuntes de Tigonometía Elemental José Antonio Salgueio González IES Bajo Guadalquivi - ebija ii Agadecimientos A Rocío, que con su apoyo hace posible la ealización de este poyecto 1 Índice geneal Agadecimientos

Más detalles

Sector Circular Longitud de Arco. Sector Circular. Und. 1 Introducción a la Trigonometría

Sector Circular Longitud de Arco. Sector Circular. Und. 1 Introducción a la Trigonometría Llamamos desaollo de una supeficie lateal al conjunto de puntos de la supeficie imaginaia que envuelve a un sólido y que es extendida sobe un plano. En pincipio toda supeficie lateal puede epesentase sobe

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

Cinemática del Sólido Rígido (SR)

Cinemática del Sólido Rígido (SR) Cinemática del Sólido Rígido (SR) OBJETIVOS Intoduci los conceptos de sólido ígido, taslación, otación y movimiento plano. Deduci la ecuación de distibución de velocidades ente puntos del SR y el concepto

Más detalles

REPARTIDO III CIRCUNFERENCIA

REPARTIDO III CIRCUNFERENCIA Pof.: Lucia Tafenabe Ecuación Geneal REPRTIDO III IRUNFERENI B B cento, Ecuación de la icunfeencia conociendo cento (α, β) adio. adio B MN ( - α) ( - β) Deteminación de la ecuación de la cicunfeencia conociendo:

Más detalles

ÓPTICA GEOMÉTRICA: REFLEXIÓN, REFRACCIÓN Y LENTES

ÓPTICA GEOMÉTRICA: REFLEXIÓN, REFRACCIÓN Y LENTES PRÁCTICA ÓPTICA GEOMÉTRICA: REFLEXIÓN, REFRACCIÓN Y LENTES A) MATERIAL Fuente de luz, banco óptico, lente delgada convegente, pantalla. B) OBJETIVO Intoduci los conceptos de ayo luminoso y de índice de

Más detalles

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r Fenando Baoso Loenzo GEOMETRÍA ANALÍTICA 1. Dados los vectoes cuyas coodenadas son u = ( 10, 2) y v = (13, 2), calcula el módulo u 43 u 298621 del vecto esultante de la siguiente combinación lineal w =

Más detalles

GEOMETRÍA. punto, la recta y el plano.

GEOMETRÍA. punto, la recta y el plano. MISIÓN 011-II GEMETRÍ STUS GEMETRÍ a geometía es la ama de las Matemáticas que tiene po objeto el estudio de las figuas geométicas. Se denomina figua geomética a cualquie conjunto no vacío de puntos del

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r Actividad SISTEMA IÉRICO II TEMA 9 Paa eolve eta actividad, emo de tene en cuenta lo iguiente: o ecta on paalela en el epacio, i u poyeccione obe lo do plano de poyección también lo on.. Sea el punto P(-P

Más detalles

SISTEMA DIÉDRICO II Paralelismo, perpendicularidad y distancias Verdaderas magnitudes lineales TEMA 9 PARALELISMO

SISTEMA DIÉDRICO II Paralelismo, perpendicularidad y distancias Verdaderas magnitudes lineales TEMA 9 PARALELISMO SSTEMA ÉRCO Paalelismo, pependiculaidad y distancias Vedadeas magnitudes lineales Objetivos y oientaciones metodológicas TEMA 9 Esta unidad temática es fundamental y, a la vez, su explicación se puede

Más detalles

DEFINICIÓN DE CIRCUNFERENCIA. Es el conjunto de puntos de un plano que equidistan (están a la misma distancia) de otro punto llamado centro.

DEFINICIÓN DE CIRCUNFERENCIA. Es el conjunto de puntos de un plano que equidistan (están a la misma distancia) de otro punto llamado centro. CIRCUNFERENCI. DEFINICIÓN DE CIRCUNFERENCI. Es e cnjunt de punts de un pan que equidistan (están a a misma distancia de t punt amad cent. ELEMENTOS DE UN CIRCUNFERENCI. Cicunfeencia. Es e cnjunt de punts

Más detalles

CP; q v B m ; R R qb

CP; q v B m ; R R qb Campo Magnético Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos (N y S). Si acecamos

Más detalles

Geometría 2/2. Material UA. Material propiedad de sus autores. Ojo tiene errores. Magisterio Infantil - Primaria

Geometría 2/2. Material UA. Material propiedad de sus autores. Ojo tiene errores. Magisterio Infantil - Primaria Geometía 2/2 Mateial U Mateial popiedad de sus autoes. Ojo tiene eoes Magisteio Infantil Pimaia / licante 84 Junto Telepizza 695400027 www.academiaup.es [email protected] Univesidad de licante FIGURS

Más detalles

Capítulo 8 Geometría del Espacio

Capítulo 8 Geometría del Espacio Capítulo 8 Geometía del Espacio Intoducción Esta ama de la geometía, también denominada Esteeometía, se ocupa de las popiedades y medidas de figuas geométicas en el espacio tidimensional. Estas figuas

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 5-. Ejemplo 1º. Aplicando el teoema de Gauss halla el campo eléctico ceado po una distibución esféica de

Más detalles

8. LA CIRCUNFERENCIA Y EL CÍRCULO. 8.1. La Circunferencia. 8.2. El circulo. Dibujo Técnico La Circunferencia y el círculo

8. LA CIRCUNFERENCIA Y EL CÍRCULO. 8.1. La Circunferencia. 8.2. El circulo. Dibujo Técnico La Circunferencia y el círculo 8. LA CIRCUNFERENCIA Y EL CÍRCULO 8.1. La Circunferencia. Una circunferencia es una línea curva, cerrada y plana, cuyos puntos están a la misma distancia de otro interior al que llamamos centro, es decir:

Más detalles

El punto fijo O se llama centro del círculo. La longitud del segmento giratorio OM llama radio del círculo.

El punto fijo O se llama centro del círculo. La longitud del segmento giratorio OM llama radio del círculo. 1.4 Cículo y cicunfeencia Cículo. Imaginemos la siguiente constucción en el plano. Tacemos un segmento OM de longitud > 0 cualquiea peo fija, giemos en cualquie sentido, una vuelta completa, a dicho segmento

Más detalles

A) TRAZADO DE RECTAS TANGENTES

A) TRAZADO DE RECTAS TANGENTES ecta tangente a una cicunfeencia que paan po un punto (pc). a) El punto etá en la cicunfeencia. (1 olución) A) TAZAD DE ECTAS TANGENTES ecta tangente a do cicunfeencia de ditinto adio (cc). a) Tangente

Más detalles

Ejercicios. 100 Capítulo 8 Construcciones geométricas

Ejercicios. 100 Capítulo 8 Construcciones geométricas jecicios 1. a. Taza la ecta (MN). b. Taza la semiecta [N). c. Taza el segmento [Q]. d. Taza el segmento []. e. Taza la ecta (). f. Taza la semiecta [).. 7. () [] [) (G) G () [) [) () [] [] [) (G) H 8.

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Energía potencial y potencial eléctrico I

IES Menéndez Tolosa Física y Química - 1º Bach Energía potencial y potencial eléctrico I IS Menéndez Tolosa Física y uímica - º Bach negía potencial y potencial eléctico I Calcula el potencial de un punto de un campo eléctico situado a una distancia de una caga y a una distancia 4 de una caga.

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

Tangencias y enlaces. Aplicaciones.

Tangencias y enlaces. Aplicaciones. DIBUJ Tangencias y Enlaces TEA 38: Tangencias y enlaces. Aplicaciones. Esquema:.- Intoducción. Email: [email protected] Web: http://www.pepaadoesdeoposiciones.com.- Tazados de ectas tangentes...- Posiciones

Más detalles

Elementos de geometría en el espacio

Elementos de geometría en el espacio Elemento de geometía en el epacio 1 Elemento de geometía en el epacio Elemento báico del epacio Lo elemento báico del epacio on: punto, denominado con leta mayúcula, po ejemplo P. ecta, denominado con

Más detalles

A continuación obligamos, aplicando el producto escalar, a que los vectores:

A continuación obligamos, aplicando el producto escalar, a que los vectores: G1.- Se sabe que el tiángulo ABC es ectángulo en el vétice C, que petenece a la ecta intesección de los planos y + z = 1 e y 3z + 3 = 0, y que sus otos dos vétices son A( 2, 0, 1 ) y B ( 0, -3, 0 ). Halla

Más detalles

CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas

CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas ETS. Ingenieía de Telecomunicación Dpto. Teoía de la Señal Comunicaciones CAMPOS ELECTROMAGNÉTICOS Tema. Cálculo Vectoial Coodenadas Catesianas, Cilíndicas Esféicas P.- Dado un vecto A = + (a) su magnitud

Más detalles

Lección 2. El campo de las cargas en reposo: campo electrostático.

Lección 2. El campo de las cargas en reposo: campo electrostático. Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés

Más detalles

Tangencias y enlaces. Los objetivos que nos proponemos alcanzar con esta Unidad son:

Tangencias y enlaces. Los objetivos que nos proponemos alcanzar con esta Unidad son: UNIDD 4 Tangencia y enlace E n la tipogafía, en el dieño, en la aquitectua... e utilizan línea compueta po egmento y aco de cicunfeencia enlazado, que peentan continuidad en u tazado. La tangencia poibilita

Más detalles

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1 Tema Geometía en el espacio Matemáticas II º Bachilleato ÁNGULOS EJERCICIO 5 : λ Dados las ectas : λ, s : λ calcula el ángulo que foman: a) s b) s π el plano π : ; i j k a) Hallamos el vecto diecto de

Más detalles

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los

Más detalles

3.3.6 Perímetro en la circunferencia y área en el círculo.

3.3.6 Perímetro en la circunferencia y área en el círculo. 3.3.6 Peímeto en a cicunfeencia y áea en e cícuo. Peímeto de a cicunfeencia. Es a ongitud (L de a cicunfeencia, se cacua con as siguientes fómuas. d adio diámeto L = d Peo d =, entonces L = Ecuación paa

Más detalles

Arista Los polígonos que limitan al poliedro se llaman caras. Tetraedro Cubo Octaedro Dodecaedro Icosaedro

Arista Los polígonos que limitan al poliedro se llaman caras. Tetraedro Cubo Octaedro Dodecaedro Icosaedro OBJETIVO 1 CLASIICAR POLIEDROS NOMBRE: CURSO: ECHA: POLIEDROS Un poliedo es un cuepo geomético que está limitado po cuato o más polígonos. Aista Los polígonos que limitan al poliedo se llaman caas. Caa

Más detalles

FÍSICA II: 1º Curso Grado de QUÍMICA

FÍSICA II: 1º Curso Grado de QUÍMICA FÍSICA II: 1º Cuso Gado de QUÍMICA 5.- DIPOLOS Y DIELÉCTRICOS 5.1 Se tiene una distibución de cagas puntuales según la figua. P Calcula cuánto vale a) el momento monopola y b) el momento dipola 5.2 Calcula

Más detalles

Tema 6 Puntos, rectas y planos en el espacio

Tema 6 Puntos, rectas y planos en el espacio Tema 6 Puntos, ectas planos en el espacio. Punto medio. Los puntos A (,, ) B (-,, -) son vétices de un paalelogamo cuo cento es el punto M (,, ). Halla Los otos dos vétices las ecuaciones del lado AB.

Más detalles

Unidad 12: Posiciones y Métrica en el espacio.

Unidad 12: Posiciones y Métrica en el espacio. Unidad 12: Poicione y Mética en el epacio. 1) Poicione elativa en el epacio: a) De un punto con ecta y plano: a1) Un punto A petenece a una ecta i cumple u ecuacione geneale, en cao contaio e dice que

Más detalles

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS Fundamentos Físicos de la Infomática Escuela Supeio de Infomática Cuso 09/0 Depatamento de Física Aplicada TEMA 4. ELECTOSTATICA EN CONDUCTOES Y DIELECTICOS 4..- Se tiene un conducto esféico de adio 0.5

Más detalles

INSTITUCIÓN EDUCATIVA HÉCTOR ABAD GÓMEZ

INSTITUCIÓN EDUCATIVA HÉCTOR ABAD GÓMEZ INSTITUIÓN EDUATIVA HÉTR AAD GÓMEZ Pces: GESTIN URRIULAR Nmbe del Dcument: GUÍA DE APRENDIZAJE GEMETRÍA NVEN Vesión 0 Página de 5 Dcente: Sanube López Mnte Gads: 9. 9. 9.3 9.4 PERID: Ds FEHA: Del 8 de

Más detalles

SERIE # 3 CÁLCULO VECTORIAL

SERIE # 3 CÁLCULO VECTORIAL SERIE # 3 ÁLULO VETORIAL ÁLULO VETORIAL Página 1 1) Sea el campo vectoial F (x,y,)=( 3x+ y)i+( x+ y ) j ( x) k. alcula lago de la cuva : 4 5 x = + y y =, del punto A ( 3, 1, 1) al punto B ( 3, 1, -1).

Más detalles

9 COMPRENDER LOS CONCEPTOS DE RECTA, SEMIRRECTA Y SEGMENTO.

9 COMPRENDER LOS CONCEPTOS DE RECTA, SEMIRRECTA Y SEGMENTO. REPASO Y APOYO OBJETIVO 1 9 COMPRENDER LOS CONCEPTOS DE RECTA, SEMIRRECTA Y SEGMENTO. ESTUDIAR LAS POSICIONES RELATIVAS RECTA ecta G A A y B A B A ACTIVIDADES 1 Dibuja un punto P y taza cuato ecta que

Más detalles

DIBUJO TÉCNICO I GEOMÉTRICO DESCRIPTIVA NORMALIZACIÓN SOLUCIONARIO EDITORIAL DONOSTIARRA

DIBUJO TÉCNICO I GEOMÉTRICO DESCRIPTIVA NORMALIZACIÓN SOLUCIONARIO EDITORIAL DONOSTIARRA DIBUJO TÉCNICO I SOLUCIONRIO GEOMÉTRICO DESCRIPTIV Ø EDITORIL DONOSTIRR NORMLIZCIÓN Ø Ø Ø F. JVIER RODRÍGUEZ DE BJO VÍCTOR ÁLVREZ BENGO DIBUJO TÉCNICO DIBUJO GEOMÉTRICO º Bachilleato SOLUCIONRIO EDITORIL

Más detalles

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo: MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas.

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas. º-Halla a y b paa que las ectas siguientes sean paalelas: x+ay - z s 4x y +6 z a ; b- x+y +bz º-Dadas las ectas de ecuaciones x z - y - (x, y,z) (,0,)+ (,,-) a) Estudia su posición elativa en el espacio.

Más detalles

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz.

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz. Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los polos

Más detalles

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será:

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será: xyz0. Dados la ecta : y el punto P(, 0, ) exteio a : x y z a) Halla la ecuación en foma geneal del plano que contiene a y a P b) Halla la ecuación (como intesección de dos planos) de la ecta s que pasa

Más detalles

CUADRILÁTEROS. Cuadrado y Rectángulo.

CUADRILÁTEROS. Cuadrado y Rectángulo. ibuja un NTÁN cuando nos dan el RI. 1. ibuja una cicunfeencia de adio el que nos dan.. ibuja dos diámetos pependiculaes (ojo que pasen po el cento de la cicunfeencia). 3. ibuja la mediatiz de uno de los

Más detalles

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( )

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( ) CÁLCULO VECTOIAL Opeaciones con vectoes libes Suma de vectoes libes La suma de n vectoes libes P P P n es un vecto libe llamado esultante = i j k la suma de las componentes espectivas, siendo las componentes

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN Puebas de selectividad PRUEBA DE ACCESO A LA UNIVERSIDAD.004 ENUNCIADO Y RESOLUCIÓN Instucciones: a)duación: 1 hoa y 0 minutos. b) Tienes que elegi ente ealiza únicamente los cuato ejecicios de la Opción

Más detalles

9 Cuerpos geométricos

9 Cuerpos geométricos 865 _ 045-056.qxd 7/4/07 1:0 Página 45 Cuepos geométicos INTRODUCCIÓN Los cuepos geométicos están pesentes en múltiples contextos de la vida eal, de aí la impotancia de estudialos. Es inteesante constui

Más detalles

INTERSECCIONES. POSICIONES RELATIVAS. DISTANCIAS

INTERSECCIONES. POSICIONES RELATIVAS. DISTANCIAS INTERSECCIONES. POSICIONES RELATIAS. DISTANCIAS OBJETIOS 1 2 Reconoce el Sistema diédico o Sistema de Monge como el ecuso desciptivo gáfico más adecuado en el diseño industial y aquitectónico. 1 INTERSECCIÓN

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA Temas 6 y 7 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA Tema 6 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos

Más detalles