Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r"

Transcripción

1 Fenando Baoso Loenzo GEOMETRÍA ANALÍTICA 1. Dados los vectoes cuyas coodenadas son u = ( 10, 2) y v = (13, 2), calcula el módulo u 43 u del vecto esultante de la siguiente combinación lineal w = u + v. Sol w = Dados dos vectoes u y v que veifican u = 3, v = 4 y cos ( u, v) =, calcula el 24 módulo siguiente: u + 3v Sol: u + 3 v = Responde a las siguientes cuestiones teóicas: a. Qué ángulo foman los vectoes u y v si se cumple que u v = u v? b. Demuesta que si el vecto u es pependicula a los vectoes v y w, también es pependicula a cualquie combinación lineal de ellos. c. Sabiendo que u =3 y v = 5, halla los posibles valoes del paámeto a paa que los vectoes u + av y u av sean pependiculaes. d. Dados los vectoes a, b y c tales que a = 3, b = 1, c = 4 y a + b + c = 0, calcula la siguiente suma a. b + b. c + a. c e. Sean u y v vectoes otogonales y de módulo 1. Halla los posibles valoes del paámeto a paa que los vectoes u +a v y u a v fomen un ángulo de 60º. 4. Sean los vectoes a = ( 1, 3) y b = (2,1). Halla: a. a + 3b b. 2a + b c. Dada la base B = { a, b} y el vecto u = (3, 6), halla u B. d. Las coodenadas de v sabiendo que v = (2, 1) e. Las coodenadas del vecto 4i especto de la base B f. Un vecto paalelo y un vecto pependicula a a g. Poducto escala a b h. Ángulo que foman a y b i. Un vecto paalelo a a que sea unitaio. j. Un vecto pependicula a b que tenga módulo 2. k. Halla las coodenadas de un punto A y oto B de foma que AB = a B 5. Escibe las ecuaciones geneales de los ejes coodenados. Cuál es la ecuación paamética de cada uno?.sol: y=0, x=0; {x=λ,y=0}; {x=0,y=λ} 6. Escibe la ecuación explícita de la bisectiz del pime y tece cuadante. Escibe también la de la bisectiz del segundo y el cuato cuadante. Sol: y= x; y= -x. 7. Petenece el punto P(3,3) a la ecta que pasa po los puntos A(1,-1) y B(2,1)? Sol: Sí - 1 -

2 Fenando Baoso Loenzo 8. Las coodenadas del punto medio del segmento AB son (2,1). Calcula A sabiendo que B tiene coodenadas (1,2). Sol: (3,0) 9. Busca un punto P situado en el segmento AB, A=(1,2) y B=(4,-1) que lo divida en dos pates una doble de la ota. Sol: P=(2,1); P'=(3,0) uuu uuu 10. Sabiendo que A(2,4) y C(6,0). Halla las coodenadas del punto B de modo que CA = 1 CB. 4 Sol: (3,3) 11. Los puntos B(1,4) y C(8,3) son vétices de un tiángulo ectángulo. Si BC es la hipotenusa, halla el vétice A, sabiendo que está en la ecta y=x-1. Sol: (2,1), (7,6) 12. El cento de un cuadado es el punto P(2,2) y un vétice A(2,1). Halla las coodenadas de los otos vétices y el áea del cuadado. Sol: C(3,2) B(1,2) D(2,3); áea=2 u Dada la ecta que pasa po los puntos A(2,3) y B(-1,-2). a. Halla un vecto dieccional. b. Halla la pendiente y la odenada en el oigen c. Halla un vecto pependicula a dicha ecta de módulo 1. d. Halla los puntos de cote con los ejes de dicha ecta. e. El punto C=(3,-2) petenece a dicha ecta? f. Halla el punto medio del segmento AB 14. Halla las ecuaciones de la ecta en cada uno de los siguientes casos: a. Pasa po A(5,3) y lleva la diección u = i 2 j. b. Pasa po el punto A(3,1) y lleva la diección = (4,2) c. Pasa po los puntos A(5,0) y B(0,3). d. Pependicula al segmento de extemos A(5,6) y B(1,8) en su punto medio. e. Paalela a 3 x + 4y 5 = 0 que pase po el punto (0,0). f. Pasa po el punto A(1,-2) y dista 2 unidades del punto B(3,1). g. Es pependicula al vecto w (2,1) y que cota a y=x-2 en el punto de odenada 3 h. La mediatiz del segmento de extemos los puntos A(1,3) y B(5,-1) i. Pependicula a la ecta del apatado anteio que pasa po (1,0). j. Pasa po el punto de cote de las ectas 2 x + 3y 4 = 0 y s x y = 0 y po A(2,1). k. Pasa po el punto de intesección de las ectas y=x+2 y 3x+y=2 fomando un ángulo de 45º con la segunda de ellas. Sol: t 1 y=2x+2; t 2 x+2y-4=0 l. Pasa po el punto A(5,2) y foma un ángulo de 30º con el eje de abscisas. m. Pasa po el punto P(2,-3), foma un ángulo de 45º con la ecta 3 x 4y + 7 = 0. n. Pasa po P(0,4) y la tangente del ángulo que foma con el eje de abscisas es 2. o. Pasa po el punto de intesección de 2 x + 3y 5 = 0 y x + y = 0 y el punto de intesección de las ectas s x + 5 y 3 = 0 y s x + y 3 = 0. p. Equidista de los puntos A(5, -2) y B(-1, 5). 15. Indica cuáles de las siguientes ectas son paalelas coincidentes, no coincidentes, secantes o pependiculaes: 1 2x + 3y 4 = 0, 2 x 2y + 1 = 0, 3 3x 2y 9 = 0, 4 4x + 6y 8 = 0, 5 2x 4y 6 = 0 y 6 2x + 3y + 9 = 0 u - 2 -

3 Fenando Baoso Loenzo 16. Pueba que las ectas y=ax+5 y s y=(a-1)x-2 no pueden se ni paalelas ni pependiculaes. 17. Halla el ángulo que foman las ectas 2 x + 3y 5 = 0 y x y + 7 = Dadas las ectas : 3x+y=3 y s: -2x+ay=8. Detemina "a" paa que foman un ángulo de 45º. Sol: a=1 x = 2 λ x = 1+ 2λ 19. Halla el valo de k paa que las ectas y fomen un ángulo y = 2λ y = 2 + kλ de 45º. Sol: k= Detemina si los puntos A(3,1), B(5,2) y C(1,0) están alineados. Caso de que fomen un tiángulo halla su áea. 21. Demuesta que todas las ectas cuyas ecuaciones se ajustan a la foma y = ax-a, pasan po un punto. Cuáles son las coodenadas de ese punto?. Sol: P(1,0) 22. Calcula el valo de a y b paa que las ectas ax-3y+5=0 y s bx+2y-1=0 sean pependiculaes y además la segunda pase po el punto P (-1,2). Sol: b=3; a=2 23. Calcula a y c sabiendo que la ecta 3x + 2y 8 = 0 es pependicula a la ecta s ax+ 2y+c=0, y que esta última pasa po el punto P(3,5). 24. Halla las coodenadas de un punto C que petenece a la ecta 2x+y+2=0 sabiendo que los puntos A(3,0), B(1,3) y C foman un ángulo ecto desde A. Sol: C(0,-2) 25. Dadas las ectas: deteminada po el punto A(2,1) y el vecto u = (a,4) y s deteminada v po el punto B(-1,4) y el vecto = (5,3). Detemina a paa que y s sean paalelas. Paa qué valoes de a las ectas y s son secantes? Pueden se coincidentes? Sol: a =20/3 26. La ecta s 5x + 3y + 7 = 0 cota a los ejes en dos puntos. Halla la longitud del segmento que deteminan. 27. Busca un punto P de la ecta -3x+4y+1=0, de foma que la ecta OP (ecta que pasa po el oigen O y el punto P) pase po el punto medio del segmento AB, siendo A=(2,1) y B=(1,1). Sol: (3,2) 28. Halla un punto de la ecta x+y-2=0 equidistante de A(1,3) y B(1,1). Sol: (0,2) 29. Halla las coodenadas de un punto de la ecta x-y-1=0 que diste 1 unidad de la ecta s 3x-4y+2=0. Sol: (1,0) 30. Halla las coodenadas de un punto P equidistante de A (4,4), B (5,3) y C (-1,3). Sol: P(2,1) 31. Un punto P que es equidistante de A=(1,1) y de B=(-2,3), dista el tiple del eje de abscisas que del eje de odenadas. Cuáles son sus coodenadas? Sol: (11/6,11/2) 32. La ecta t 4x 3y = 12 es mediatiz del segmento AB. Sabiendo que las coodenadas de A son (1,0), halla las de B

4 Fenando Baoso Loenzo 33. Los puntos B(-1,3) y C(3,-3) son los vétices de un tiángulo isósceles que tiene el tece vétice A en la ecta x + 2y 15 = 0, siendo AB y AC los lados iguales. Calcula las coodenadas de A y las tes altuas del tiángulo. Sol: A(7,4) 34. Halla las ecuaciones de las medianas del tiángulo de vétices A(3,1), B(0,2) y C(1,-2). Sol: 2 x 5y 1 = 0; s 5x + 4y - 8 = 0; t 7x - y - 9 = Dado el tiángulo de vétices A(0,1), B(2,3) y C(3,0) calcula el baicento, el cicuncento y el otocento. Sol: G(5/3,4/3), C(7/4,5/4) y O(3/2, 3/2) 36. El baicento del tiángulo ABC es el punto G(2,1). El punto medio del segmento AB es M(3,0) y el punto medio del segmento BC es N(1,5). Calcula los vétices del tiángulo ABC. 37. Dado el tiángulo de vétices A(2,5), B(3,1) y C(2,-1). a. Calcula su áea. b. Calcula las coodenadas del baicento G del tiángulo ABC. c. Calcula las coodenadas de los puntos medios M, N y P de los lados del tiángulo ABC. d. Calcula el baicento G del tiángulo MNP. e. Compaa G con G. 38. Los puntos A(0,0) y C(1,7) son vétices opuestos de un ectángulo. Un lado está situado sobe la ecta x-3y=0. Halla las coodenadas de los vétices B y D y las ecuaciones de los lados. Sol: B(-2,6); D(3,1). AB:3x+y=0; BC:x-3y+20=0; AD: x-3y=0; CD: 3x+y= La distancia del punto A(10,6) a oto B del eje de abscisas es 10. Halla las coodenadas del punto B. 40. Detemina el áea del cículo cicunscito al tiángulo que con los ejes detemina la ecta 4x + 3y - 24 = Halla la tangente del ángulo que foman las ectas x + 2y + 1 = 0 y 3x + y + 5 = Dadas las ectas mx+(2m-1)y+3=0 y s (4m-7)x -(m+2)y -8=0, halla el valo de m paa que:: a. sea paalela a la bisectiz del pime cuadante. b. s sea paalela a la bisectiz del segundo cuadante. c. y s sean paalelas. Pueden se coincidentes? 43. Dadas las ectas: 3x + by 8 = 0 y s ax 3y + 12 = 0 : a. Detemina a y b paa que se coten en el punto P(2,-3). Sol: a=-21/2; b=-2/3 b. Detemina paa qué valo de a, la ecta s, detemina con los ejes un tiángulo de 36 unidades de supeficie. 44. Detemina el valo de a paa que las ectas ax ( a ) y ( a ) 3ax ( 3a + 1) y ( 5a + 4) = 0 sean: a. Paalelas. b. Pependiculaes = 0 y - 4 -

5 Fenando Baoso Loenzo 45. Halla la distancia ente las ectas y en cada uno de los siguientes casos: a. 2 x + 3y 5 = 0 y 2x + 3y + 7 = 0. b. x = 2 3t y = 1+ t y x + 3 y + 5 = Dados los puntos A(4,-2) y B(10,0), halla el punto de la bisectiz de los cuadantes 2º y 4º que equidista de los dos. 47. Halla la ecuación de una ecta que pasa po el punto A(4,5) y foma con los semiejes positivos un tiángulo de 40 unidades de supeficie. Te aconsejo que uses la ecuación segmentaia. 48. Halla las ecuaciones de las ectas que son incidentes con el punto A(2,3) y distan 2 unidades del oigen de coodenadas. Sol: 5x-12y+26=0 49. Dados el punto P(-1,2) y la ecta 3x - 5y - 21 = 0, calcula: a. El pie de la pependicula tazada desde el punto a la ecta. b. La distancia desde dicho pie al punto en el que esta ecta cota al eje OX. c. El punto Q simético de P especto de la ecta. 50. Encuenta un punto C de la ecta de ecuación s 2x y + 5 = 0 que equidiste de A(3,5) y B(2,1). 51. Calcula el pie de la pependicula tazada po el punto P(-1,2) a la ecta t 3x 5y 21 = 0, y la distancia de dicho pie al punto en que esa ecta cota al eje OX. 52. Calcula en cada uno de los siguientes apatados: a. Las coodenadas del punto P', simético del P(2,1), especto del M(2,0). b. Las coodenadas del punto A', simético de A(-2,1), especto de la ecta 2x+y-2=0. c. La ecuación de la ecta ', simética de x+2y-3=0, especto de la s x+y=4. Sol: a) (2,-1); b) (0,2); c) 4x+3y= Dados los puntos A(3,6) y B(1,0) y la ecta x-y+1=0, halla: a. El simético de A especto a B. b. El simético de B especto a. c. La ecuación de la ecta s, simética a la AB especto de. Sol: a. (-1,-6); b. (-1,2); c. x-3y+7= Pila tenía escito en su cuadeno los vétices de un paalelogamo, peo le ha caído un boón de tinta y se le ha tapado uno de los vétices. a. Calcula las coodenadas del vétice C, sabiendo que A(2,2), B(12,8) y D(6,1) b. Halla las ecuaciones de sus diagonales. c. Halla el punto de cote de las diagonales. d. Compueba que las diagonales de un paalelogamo se cotan en su punto medio. 55. Po el punto A(2,6) se tazan dos ectas pependiculaes a las bisectices del pime cuadante y del segundo cuadante. Halla: a. Las ecuaciones de dichas ectas. b. Las coodenadas de los vétices del tiángulo fomado po la ecta 3x 13y 8 = 0 con dichas ectas

6 Fenando Baoso Loenzo 56. Halla el valo de m paa que las ectas mx + y = 12 y s 4x-3y = m + 1sean paalelas. Calcula su distancia. Sol: m=-4/3, d(,s)=7 57. La ecta 3 x + ny 7 = 0 pasa po el punto A(2,3) y es paalela a la ecta s mx + 2 y = 13. Calcula m y n 58. Las ectas y = 2x -4 y y = -3x +2 deteminan con el eje de abscisas un tiángulo. Calcula las coodenadas de los vétices del tiángulo y dibuja el tiángulo en tu cuadeno. Calcula el áea del tiángulo. 59. Calcula la ecuación de la ecta que pasa po el punto P(-3, 2) y es paalela a la ecta que pasa po los puntos A(0, -3) y B(4, 2). Halla las coodenadas de los puntos de cote de la ecta cuya ecuación has calculado con los ejes de coodenadas. Calcula el áea del tiángulo que detemina la ecta calculada con los dos ejes de coodenadas. 60. Calcula el haz de ectas en cada uno de los siguientes casos: a. El haz de ectas que pasa po el (1,-2). b. El haz de ectas paalela a la ecta 3x 2y + 5 = 0. c. El haz de ectas pependiculaes a la ecta anteio. d. El haz de ectas que foma un ángulo de 30º con el eje de abcisa. e. El haz de ectas que foma un ángulo de 30º con el eje de odenada. f. El haz de ectas que tiene vecto diecto u = (3, 1). 61. Dadas las ectas 3x + my - 7 =0; 4x + y - 14 =0 y 7x + 2y - 28 =0, detemina m paa que las tes ectas sean ayos del mismo haz. 62. Halla el haz de ectas que pasa po el punto A(3,-1) en foma explícita. Cuál de las ectas del haz es paalela a la ecta 3x-y=2? Cuál de las ectas del haz pasa po el punto medio del segmento de extemos A(4,-1), B(0,-5)? - 6 -

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P

Más detalles

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 0- Pofeso: Jaime Andés Jaamillo González (jaimeaj@conceptocomputadoes.com) Pate del mateial ha sido tomado de documentos

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA Tema 6 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos

Más detalles

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial RECTAS EN EL PLANO Ecuación de la ecta La ecuación de una ecta puede dase de difeentes fomas, que veemos a continuación. Conocidos un punto P(p 1, p ) y un vecto de diección d = (d 1, d ) (o sea, un vecto

Más detalles

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2. 1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes

Más detalles

1. Realiza las siguientes operaciones con segmentos. 1º a+2b-c. 2º a+c-b. 3º 3a+c-b NOMBRE: Nº 1ºESO 1.3. OPERACIONES CON SEGMENTOS

1. Realiza las siguientes operaciones con segmentos. 1º a+2b-c. 2º a+c-b. 3º 3a+c-b NOMBRE: Nº 1ºESO 1.3. OPERACIONES CON SEGMENTOS 1.3. OPERCIONES CON SEGMENTOS 1. Realiza las siguientes opeaciones con segmentos a b c 1º a+2b-c 1º 2º a+c-b 2º 3º 3a+c-b 3º TEM 1 - Opeaciones con segmentos página 3 1.3.2. TEOREM DE TLES 1. Divide el

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA Temas 6 y 7 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles

Puntos, rectas y planos en el espacio. Problemas métricos en el espacio

Puntos, rectas y planos en el espacio. Problemas métricos en el espacio 1. Estudia la posición elativa de las ectas y s: x = 2t 1 x + 3y + 4z 6 = 0 : ; s : y = t + 1 2x + y 3z + 2 = 0 z = 3t + 2 Calcula la distancia ente ambas ectas (Junio 1997) Obtengamos un vecto diecto

Más detalles

A continuación obligamos, aplicando el producto escalar, a que los vectores:

A continuación obligamos, aplicando el producto escalar, a que los vectores: G1.- Se sabe que el tiángulo ABC es ectángulo en el vétice C, que petenece a la ecta intesección de los planos y + z = 1 e y 3z + 3 = 0, y que sus otos dos vétices son A( 2, 0, 1 ) y B ( 0, -3, 0 ). Halla

Más detalles

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa: PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS PÍTULO 15: TRIÁNGULOS RETÁNGULOS Dante Gueeo-handuví Piua, 2015 FULTD DE INGENIERÍ Áea Depatamental de Ingenieía Industial y de Sistemas PÍTULO 15: TRIÁNGULOS RETÁNGULOS Esta oba está bajo una licencia

Más detalles

RECTAS en el PLANO MATEMÁTICAS I 1º Bachillerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemáticas

RECTAS en el PLANO MATEMÁTICAS I 1º Bachillerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemáticas RECTAS en el PLANO MATEMÁTICAS I 1º Bachilleato CCNN Alfonso González IES Fenando de Mena Dpto. de Matemáticas I. ECUACIONES de la RECTA I.1) Deteminación pincipal de la ecta: A u Es evidente que una ecta

Más detalles

GEOMETRÍA ANALÍTICA EN EL ESPACIO

GEOMETRÍA ANALÍTICA EN EL ESPACIO GEOMETRÍ NLÍTI EN EL ESPIO PRODUTO ESLR a b a b cosx (uando sepamos el ángulo que foman a y b). a ba b a b a b (uando sepamos las coodenadas de a y b ). uando los ectoes son pependiculaes su poducto escala

Más detalles

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS POSICIÓN RELATIVA DE DOS RECTAS Ecuacione geneale : Ax + By + C = : Ax + By + C = A B A B RECTAS SECANTES \ Un punto en común A B C = A B C RECTAS PARALELAS Ningún punto en común A B C = = A B C RECTAS

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

9 Cuerpos geométricos

9 Cuerpos geométricos 865 _ 045-056.qxd 7/4/07 1:0 Página 45 Cuepos geométicos INTRODUCCIÓN Los cuepos geométicos están pesentes en múltiples contextos de la vida eal, de aí la impotancia de estudialos. Es inteesante constui

Más detalles

( ) CIRCUNFERENCIA UNIDAD VIII VIII.1 DEFINICIÓN DE CIRCUNFERENCIA

( ) CIRCUNFERENCIA UNIDAD VIII VIII.1 DEFINICIÓN DE CIRCUNFERENCIA CIRCUNRNCIA UNIA III III. INICIÓN CIRCUNRNCIA Una cicunfeencia se define como el luga geomético de los puntos P, que equidistan de un punto fijo en el plano llamado cento. La distancia que eiste de cualquiea

Más detalles

Bloque 3. Geometría y Trigonometría Tema 3 La recta en el plano Ejercicios resueltos

Bloque 3. Geometría y Trigonometría Tema 3 La recta en el plano Ejercicios resueltos Bloque 3. Geometía y Tigonometía Tema 3 La ecta en el plano Ejecicio euelto 3.3-1 Halla la ecuación vectoial, en paamética, continua y geneal de la ecta que paa po el punto indicado y tiene po vecto dieccional

Más detalles

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2)

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 2. Halla la ecuación de la recta r, sabiendo que es paralela a y=2x-3 y pasa por el punto (1,3). 3. Halla la ecuación de la recta

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A Examen de Evaluación. Geometía. Matemática II. Cuo 009-00 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA Cuo 009-00 -V-00 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

1. MEDIDA DE ÁNGULOS ENTRE RECTAS Y PLANOS.

1. MEDIDA DE ÁNGULOS ENTRE RECTAS Y PLANOS. IES Pae Poea (Guaix) UNIDAD 0: GEOMETRÍA MÉTRICA Si sólo tenemos en cuenta las elaciones existentes ente los puntos el espacio y los ectoes e V, la geometía estingiá su estuio a las posiciones elatias

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

Tangencias y enlaces. Aplicaciones.

Tangencias y enlaces. Aplicaciones. DIBUJ Tangencias y Enlaces TEA 38: Tangencias y enlaces. Aplicaciones. Esquema:.- Intoducción. Email: pepaadoes@aakis.es Web: http://www.pepaadoesdeoposiciones.com.- Tazados de ectas tangentes...- Posiciones

Más detalles

C. E. C. y T. No. 11 WILFRIDO MASSIEU PÉREZ

C. E. C. y T. No. 11 WILFRIDO MASSIEU PÉREZ C E C T No WILFRIDO MASSIEU PÉREZ Altua A Recta paalela a BC C Distancia (0, 0) Bisectiz B Ing J Ventua Ángel Felícitos Academia de Matemáticas C E C T No WILFRIDO MASSIEU PÉREZ La unidad de Apendizaje

Más detalles

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL 0.1 CURVAS EN R 3 ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

Más detalles

4.- Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y-6=0.

4.- Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y-6=0. Tipos de rectas. Vector director. Pendiente. Paralelas y perpendiculares. 1.- Encuentra la ecuación vectorial, paramétrica y continua de la recta que pasa por los puntos A=(3,2) y B=(1,-1). Sol: (x,y)=(3,2)+t(2,3);

Más detalles

UNIDAD 10.- Geometría afín del espacio (tema 5 del libro)

UNIDAD 10.- Geometría afín del espacio (tema 5 del libro) UNIDD.- Geometía afín del espacio tema del libo). VECTOR LIBRE. OPERCIONES CON VECTORES LIBRES En este cuso amos a tabaja con el espacio ectoial de dimensión,, que es simila al tatado en º de Bachilleato,

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

mediatrices de cada lado se cortan en un B, C..., etc, son iguales. el mismo centro y es tangente a los lados del polígono en 1, 2...

mediatrices de cada lado se cortan en un B, C..., etc, son iguales. el mismo centro y es tangente a los lados del polígono en 1, 2... POLÍONOS RULRS Polígono (vaios ángulos), es la figua plana limitada po vaios ánulos, los tiángulos y los cuadiláteos estudiados hasta ahoa son polígonos de y ángulos, espectivamente. Un polígono seá egula

Más detalles

UN CACHITO DE LA ALHAMBRA

UN CACHITO DE LA ALHAMBRA UN CACHITO DE LA ALHAMBRA Se llama mosaico a todo ecubimiento del plano mediante piezas llamadas teselas que no pueden supeponese, ni puede deja huecos sin ecubi y en el que los ángulos que concuen en

Más detalles

Elementos de geometría en el espacio

Elementos de geometría en el espacio Elemento de geometía en el epacio 1 Elemento de geometía en el epacio Elemento báico del epacio Lo elemento báico del epacio on: punto, denominado con leta mayúcula, po ejemplo P. ecta, denominado con

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

TEMA 7: PROPIEDADES MÉTRICAS

TEMA 7: PROPIEDADES MÉTRICAS Depatamento e Matemática º Bachilleato TEMA 7: PROPIEDADES MÉTRICAS 1- HAZ DE PLANOS PARALELOS Too lo plano paalelo a un plano Ax + By + Cz + D tenán el mimo vecto nomal que el e : n A, Po lo tanto, too

Más detalles

Universidad de Tarapacá Facultad de Ciencias Departamento de Física

Universidad de Tarapacá Facultad de Ciencias Departamento de Física Univesidad de Taapacá Facultad de Ciencias Depatamento de Física Aplica el álgea de vectoes: Poducto escala Poducto vectoial Magnitudes físicas po su natualeza Escalaes Vectoiales Es un escala que se

Más detalles

RECTAS Y ÁNGULOS. SEMIRRECTA.- Un punto de una recta la divide en dos semirrectas. La semirrecta tiene principio pero no tiene fin.

RECTAS Y ÁNGULOS. SEMIRRECTA.- Un punto de una recta la divide en dos semirrectas. La semirrecta tiene principio pero no tiene fin. RECTAS Y ÁNGULOS 5º de E. Pimaia RECTAS Y ÁNGULOS -TEMA 5 RECTA.- Es una sucesión infinita de puntos que tienen la misma diección. La ecta no tiene ni pincipio ni fin. Po dos puntos del plano pasa una

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR Númeos Complejos en Foma Pola 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta gáficamente mediante un

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

TRIGONOMETRÍA. Proviene del griego TRIGONOS (triángulo) y METRÍA (medida).

TRIGONOMETRÍA. Proviene del griego TRIGONOS (triángulo) y METRÍA (medida). Colegio Diocesano Asunción de Nuesta Señoa Ávila Tema 6 El cálculo de distancias se fundamenta en la semejanza de tiángulos ectángulos. Desde hace siglos los astónomos, sobe todo los hindús, tataon de

Más detalles

TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 9: FORMAS GEOMÉTRICAS. Pime Cuso de Educación Secundaia Obligatoia. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 09: FORMAS GEOMÉTRICAS. 1. Ideas Elementales de Geometía

Más detalles

Semana 6. Razones trigonométricas. Semana Ángulos: Grados 7 y radianes. Empecemos! Qué sabes de...? El reto es...

Semana 6. Razones trigonométricas. Semana Ángulos: Grados 7 y radianes. Empecemos! Qué sabes de...? El reto es... Semana Ángulos: Gados 7 adianes Razones tigonométicas Semana 6 Empecemos! Continuamos en el estudio de la tigonometía. Esta semana nos dedicaemos a conoce halla las azones tigonométicas: seno, coseno tangente,

Más detalles

UNIDAD 4: CIRCUNFERENCIA CIRCULO:

UNIDAD 4: CIRCUNFERENCIA CIRCULO: UNIDD 4: CIRCUNFERENCI CIRCULO: CONTENIDO: I. CONCEPTO DE CIRCUNFERENCI: Es una cuva ceada y plana cuyos puntos equidistan de un punto llamado cento. Una cicunfeencia se denota con la expesión: O C, y

Más detalles

EJERCICIOS DE GEOMETRÍA RESUELTOS

EJERCICIOS DE GEOMETRÍA RESUELTOS EJERCICIOS DE GEOMETRÍA RESUELTOS 1.- Dada la recta r: 4x + 3y -6 = 0, escribir la ecuación de la recta perpendicular a ella en el punto de corte con el eje de ordenadas. : - Hallamos el punto de corte

Más detalles

POSICIONES RELATIVAS de RECTAS y PLANOS

POSICIONES RELATIVAS de RECTAS y PLANOS POSICIONES RELATIVAS de RECTAS y PLANOS MATEMÁTICAS II 2º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática Supongamo, po ejemplo, que queemo etudia la poición elativa de una ecta que

Más detalles

GEOMETRIA EUCLIDEA. 3.-Determinar m para que el producto escalar de u=(m,5) y v=(2,-3) sea la unidad.

GEOMETRIA EUCLIDEA. 3.-Determinar m para que el producto escalar de u=(m,5) y v=(2,-3) sea la unidad. PRODUCTO ESCALAR GEOMETRIA EUCLIDEA 1.-Dados los vectores u,v y w tales que u*v=7 y u*w=8, calcular: u*(v+w); u*(2v+w); u*(v+2w) 2.-Sea {a,b} una base de vectores unitarios que forman un ángulo de 60.

Más detalles

el vector v (1, 3). Qué son las ecuaciones lineales y cómo se representan sus soluciones.

el vector v (1, 3). Qué son las ecuaciones lineales y cómo se representan sus soluciones. 0SMTL_B_0.08 // 07: P gina 50 Geometía analítica Los cepos en moimiento desciben na tayectoia qe a eces es ecta, como oce con las bolas de billa. Estas chocan nas con otas y con las paedes de la mesa descibiendo

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica?

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica? IS Menéndez Tolosa ísica y Química - º Bach ampo eléctico I Qué afima el pincipio de consevación de la caga eléctica? l pincipio indica ue la suma algebaica total de las cagas elécticas pemanece constante.

Más detalles

95 EJERCICIOS de RECTAS

95 EJERCICIOS de RECTAS 9 EJERCICIOS de RECTAS Forma paramétrica: 1. Dado el punto A(,3) y el vector director ur = (1, ), se pide: a) Hallar las ecuaciones paramétricas de la recta r que determinan. b) Obtener otros tres puntos

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

Cinemática del Sólido Rígido (SR)

Cinemática del Sólido Rígido (SR) Cinemática del Sólido Rígido (SR) OBJETIVOS Intoduci los conceptos de sólido ígido, taslación, otación y movimiento plano. Deduci la ecuación de distibución de velocidades ente puntos del SR y el concepto

Más detalles

Unidad 12. Geometría (I).Ecuaciones de recta y plano

Unidad 12. Geometría (I).Ecuaciones de recta y plano Unidad.Geometía (I).Ecuaciones de la ecta el plano Unidad. Geometía (I).Ecuaciones de ecta plano. Intoducción. Espacio fín... Vecto en el espacio. Vecto libe fijo... Opeaciones con vectoes.. Dependencia

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

Boletín de Geometría Analítica

Boletín de Geometría Analítica Boletín de Geometría Analítica 1) Si las coordenadas de los vectores a y b son (3,5) y (-2,1) respectivamente, obtén las coordenadas de: a) -2 a + 1/2 b b) 1/2 ( a +b ) - 2/3 ( a -b ) 2) Halla el vector

Más detalles

PROBLEMAS METRICOS. r 3

PROBLEMAS METRICOS. r 3 PROBLEMAS METRICOS 1. Hallar el área del triángulo de vértices A(1,1), B(2,3) y C(5,2). 2. Halla las ecuaciones de las bisectrices determinadas por las rectas y=3x e y=1/3 x. Comprueba que ambas bisectrices

Más detalles

El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas

El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas I. E. S. Siete Colinas (Ceuta) Depatamento de Matemáticas Matemáticas de º de Bachilleato El Espacio Afín Po Javie Caoquino CaZas Catedático de matemáticas del I.E.S. Siete Colinas Ceuta 005 El Espacio

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es

Más detalles

TEMAS DE MATEMATICAS (Oposiciones de Secundaria)

TEMAS DE MATEMATICAS (Oposiciones de Secundaria) TEMAS DE MATEMATICAS (Oposiciones de Secundaia) TEMA 47 GENERACIÓN DE CURVAS COMO ENVOLVENTES.. Intoducción.. Envolvente... Definición de Envolvente... Existencia de Envolvente en el Plano..3. Deteminación

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

I.E.S. Mediterráneo de Málaga Modelo5_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1A

I.E.S. Mediterráneo de Málaga Modelo5_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1A Opción A Ejecicio A [ 5 puntos] Se sabe que la función f: R R definida po f ( - +b+ si ) =, es deiable. a -5+a si > Detemina los aloes de a y b Paa se deiable debe de se, pimeamente, función continua,

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

ÁLGEBRA LINEAL GEOMETRÍA

ÁLGEBRA LINEAL GEOMETRÍA ÁLGER LINEL GEOMETRÍ ESPCIO VECTORIL DE LOS VECTORES LIRES: V 3 Se llama vecto fijo de oigen y extemo al egmento oientado. Si el oigen y el extemo coinciden, hablamo del vecto nulo : = 0. Un vecto fijo

Más detalles

ejerciciosyexamenes.com GEOMETRIA

ejerciciosyexamenes.com GEOMETRIA GEOMETRIA 1.- Dado el vector AB= (2,-1,3) y el punto B(3,1,2) halla las coordenadas del punto A. Sol: A =(1,2,-1) 2.- Comprobar si los vectores AB y CD son equipolentes, siendo A(1,2,-1), B(0,3,1), C(1,1,1)

Más detalles

1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes)

1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes) Bloque 7. VECTORES. ECUACIONES DE LA RECTA. (En el libro Tema 9, página 159) 1. Coordenadas en el plano. 2. Definiciones: vector libre, módulo, dirección, sentido, vectores equipolentes, vector fijo, coordenadas

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r Actividad SISTEMA IÉRICO II TEMA 9 Paa eolve eta actividad, emo de tene en cuenta lo iguiente: o ecta on paalela en el epacio, i u poyeccione obe lo do plano de poyección también lo on.. Sea el punto P(-P

Más detalles

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx Nombe y apellidos: Puntuación:. Las gáficas del oscilado amónico En la figua se muesta al gáfica elongacióntiempo de una patícula de,5 kg de masa que ealiza una oscilación amónica alededo del oigen de

Más detalles

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical.

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical. TNNI. onceptos, popieddes y noms. Po un punto psn infinits cicunfeencis tngentes. L ect tngente ells po dicho punto es su eje dicl. Po dos puntos psn infinits cicunfeencis secntes fomndo un hz. L ect que

Más detalles

IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría

IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría P.A.U. de. (Oviedo). (junio 994) Dados los puntos A (,0, ), B (,, ), C (,6, a), se pide: i) hallar para qué valores del parámetro a están alineados, ii) hallar si existen valores de a para los cuales A,

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA EJERCICIOS DE GEOMETRÍA 1. Se consideran las rectas r x 2 = 0 x 2z = 1, s y + 3 = 0 y + z = 3 a) Estudiar la posición relativa de r y s. b) Hallar la mínima distancia entre ambas. Se pide: Sol: Se cruzan

Más detalles

PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO

PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO Ecuación vectorial de la recta Ecuaciones paramétricas de la recta Ecuación continua de la recta Pendiente Ecuación punto-pendiente de la recta Ecuación general de la recta Ecuación explícita de la recta

Más detalles

Solución a los ejercicios de vectores:

Solución a los ejercicios de vectores: Tema 0: Solución ejecicios de intoducción vectoes Solución a los ejecicios de vectoes: Nota : Estas soluciones pueden tene eoes eatas (es un ollo escibios las soluciones bonitas con el odenado), así que

Más detalles

8.- GEOMETRÍA ANÁLITICA

8.- GEOMETRÍA ANÁLITICA 8.- GEOMETRÍA ANÁLITICA 1.- PROBLEMAS EN EL PLANO 1. Dados los puntos A = (1, 2), B = (-1, 3), C = (3, 4) y D = (1, 0) halla las coordenadas de los vectores AB, BC, CD, DA y AC. Solución: AB = (-2, 1),

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

1.- Escribe las ecuaciones paramétricas de las siguientes rectas: a) Pasa por el punto A(-3,1) y su vector de dirección es v = (2,0)

1.- Escribe las ecuaciones paramétricas de las siguientes rectas: a) Pasa por el punto A(-3,1) y su vector de dirección es v = (2,0) 1.- Escribe las ecuaciones paramétricas de las siguientes rectas: a) Pasa por el punto A(-,1) y su vector de dirección es v = (,0) b) Pasa por el punto P(5,-) y es paralela a : x = 1 t y = t c) Pasa por

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

5 Geometría analítica plana

5 Geometría analítica plana Solucionario Geometría analítica plana ACTIVIDADES INICIALES.I. Halla las coordenadas del punto medio del segmento de extremos A(, ) y B(8, ). El punto medio es M(, 8)..II. Dibuja un triángulo isósceles

Más detalles

Elementos de la geometría plana

Elementos de la geometría plana Elementos de la geometía plana Elementos de la geometía plana El punto Los elementos básicos de la geometía plana El punto es el elemento mínimo del plano. Los otos elementos geométicos están fomados po

Más detalles

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una

Más detalles

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los

Más detalles

v L G M m =m v2 r D M S r D

v L G M m =m v2 r D M S r D Poblemas de Campo Gavitatoio 1 Calcula la velocidad media de la iea en su óbita alededo del ol y la de la luna en su óbita alededo de la iea, sabiendo que el adio medio de la óbita luna es 400 veces meno

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES C U R S O: FÍSIC Mención MTERIL: FM-01 MGNITUDES ESCLRES VECTORILES Sistema intenacional de medidas En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales.

Más detalles

VECTORES. son base y. 11) Comprueba si los vectores u

VECTORES. son base y. 11) Comprueba si los vectores u VECTORES 1. Cálculo de un vector conocidos sus extremos. Módulo de un vector 2. Operaciones con vectores 3. Base: combinación lineal, linealmente independientes.coordenadas de un vector en función de una

Más detalles

TEMA 6. ECUACIONES DE LA RECTA

TEMA 6. ECUACIONES DE LA RECTA TEMA 6. ECUACIONES DE LA RECTA Dados un punto y un vector, vamos a hallar las ecuaciones de la recta r que pasa por el punto A y es paralela al vector. Sea consideramos los vectores un punto cualquiera

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles