POSICIONES RELATIVAS de RECTAS y PLANOS
|
|
|
- María Cristina Aranda Blázquez
- hace 9 años
- Vistas:
Transcripción
1 POSICIONES RELATIVAS de RECTAS y PLANOS MATEMÁTICAS II 2º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática
2
3 Supongamo, po ejemplo, que queemo etudia la poición elativa de una ecta que venga dada en implícita (e deci, 2 ecuacione) y un plano (1 ecuación). En pincipio, podíamo eolve el itema 3x3 paa ve lo punto comune a ambo. Ahoa bien, eto podemo hacelo má fácilmente mediante el teoema de Rouché-Föbeniu, que no pemite abe el númeo de olucione -e deci, el númeo de punto en común ente la ecta y el plano- in neceidad de eolve dicho itema. Y eto e peciamente lo que haemo en ete tema. I) POSICIÓN RELATIVA DE DOS PLANOS : : ax + by + cz + d = 0 a x + b y + c z + d = 0 a b c d 1) POR RANGOS: etudiamo g (1) a b c d Hay 3 cao: i) g M=g M * =2<3 S.C.I. unipaamético e cotan en una ecta SECANTES: ' ii) g M=1 g M * =2 S.I. oluc. no tienen punto comune PARALELOS: ' iii) g M=g M * =1<3 S.C.I. bipaamético tienen en común un plano COINCIDENTES: = ' n 2) POR : i) i n = (a,b, c) y n = (a',b',c' ) no on popocionale SECANTES ii) " " " " " " on popocionale i d y d' on popocionale COINCIDENTES " " " " no on popocionale PARALELOS 1 CONSEJO: Si hay paámeto e ecomienda etudia el ango po matice, no po vectoe. Ejecicio final tema: 1 Ejecicio PAEG: 4A jun 2009 (con paámeto) 1 Nótee que en ealidad todo eto coincide con el etudio po ango, i obevamo la matiz (1) Texto bajo licencia Cative Common: e pemite u utilización didáctica aí como u epoducción impea o digital iempe y cuando e epete la mención de u autoía, y ea in ánimo de luco. En oto cao e equiee el pemio del auto ([email protected])
4 II) POSICIÓN RELATIVA DE TRES PLANOS : ax + by + cz + d = 0 : a x + b y + c z + d = 0 : a x + b y + c z + d = 0 a Etudiemo g a a b b b c c c d d d i) g M=g M * =3 S.C.D. oluc. única, e deci, e cotan en un punto: ii) g M=2 g M * =3 S.I. oluc. e deci, no tienen punto comune: o bien: (pima) iii) g M=g M * =2<3 S.C.I. unipaamético e cotan en una ecta: cao paticula: = ' HAZ DE PLANOS SECANTES 2 '' 2 Supongamo do plano y ' ecante (e deci, e cotan en una ecta); i queemo que un 3 e plano cualquiea '' también contenga a ea ecta, entonce debido a iii) habá de e combinación lineal de y ': : ax+ by+ cz+ d= 0 : ax + by + cz + d = 0 Ejemplo: ejecicio 4 '' =λ +µ'=0 λ (ax+by+cz+d)+ µ(a'x+b'y+c'z+d')=0 (ECUACIÓN DEL HAZ DE PLANOS DEFINIDO POR y ' ) Texto bajo licencia Cative Common: e pemite u utilización didáctica aí como u epoducción impea o digital iempe y cuando e epete la mención de u autoía, y ea in ánimo de luco. En oto cao e equiee el pemio del auto ([email protected])
5 iv) g M=1 g M * =2 S.I. oluc. e deci, no tienen punto comune En qué e difeencia del cao ii)? Hay que tene en cuenta que: g M=1 n, n y n on popocionale lo te plano on paalelo: ' '' cao paticula: = ' '' v) g M=g M * =1<3 S.C.I. bipaamético tienen en común un plano COINCIDENTES NOTA: po n no compena etudialo pue e complicado. Ejecicio final tema: 2, 3, 10, 11 y 12 Ejecicio PAEG: Con paámeto: 4A jun 99, 4B ept 2000 III) POSICIÓN RELATIVA RECTA-PLANO 1) POR RANGOS: eta opción inteea cuando la ecta viene dada en implícita, e deci, como inteección de do plano: : ax + by + cz + d = 0 a x + b y + c z + d = 0 : a x + b y + c z + d = 0 a Etudiemo g a a b b b c c c d d d Hay 3 poibilidade: i) g M=g M * =3 S.C.D. oluc. única, e deci, SE CORTAN: ii) g M=2 g M * =3 S.I. ningún punto en común // iii) g M=g M * =2<3 S.C.I. unipaamético NOTA: no hay má cao, pue e impoible que g M=1 (téngae en cuenta que el hecho de que venga dada como inteección de do plano gaantiza que g M al meno e 2) Texto bajo licencia Cative Common: e pemite u utilización didáctica aí como u epoducción impea o digital iempe y cuando e epete la mención de u autoía, y ea in ánimo de luco. En oto cao e equiee el pemio del auto ([email protected])
6 2) POR VECTORES: eta opción inteea cuando la ecta viene dada en paamética o continua: : : a' x x = a + λu y = b + λv z = c + λw + b' y + c' z + d' = 0 i) i n 0 SE CORTAN u ii) i u n = 0 y ademá (a,b,c) (a,b,c) // Ejecicio final tema: 4, 5, 7, 8 y 9 Ejecicio PAEG: Sin paámeto: 3B ept 2003, 4A jun 2010 Con paámeto: 4B ept 2001, 3B ept 2002, 4A ept 2008, 4B ept 2010, 4B jun 2012, 4A jun 2011, 4B jun 2014 IV) POSICIÓN RELATIVA DE DOS RECTAS Razónee peviamente que ólo caben cuato poibilidade. 1) POR RANGOS: eta opción inteea cuando amba ecta vienen dada en implícita: : ax + by + cz + d = 0 a x + b y + c z + d = 0 : a x + b y + c z + d = 0 a x + b y + c z + d = 0 Etudiemo a a g a a b b b b c c c c d d d d y teniendo en cuenta que g M al meno e 2 (dado que amba ecta vienen dada en implícita), caben la iguiente poibilidade: i) g M=3 g M * =4 S.I. oluc. e deci, no tienen punto comune SE CRUZAN [debido a (*)] ii) g M=g M * =3 S.C.D. oluc. única, e deci, un punto en común SE CORTAN (*) En el cao i) no pueden e amba ecta paalela, ya que // g M=2 DEM: Supongamo // : ' n y n '' lo 4 vectoe n etán en un mimo plano (el a amba ecta) ólo puede habe do de ello l.i. g M=2 (C.Q.D.) n y n ''' (Po la mima azón, en el cao iii) amba ecta on paalela) Texto bajo licencia Cative Common: e pemite u utilización didáctica aí como u epoducción impea o digital iempe y cuando e epete la mención de u autoía, y ea in ánimo de luco. En oto cao e equiee el pemio del auto ([email protected])
7 iii) g M=2 g M * =3 S.I. oluc. no hay punto comune PARALELAS [debido también a (*)] iv) g M=g M * =2<3 S.C.I. unipaamético tienen en común una ecta COINCIDENTES 2) POR VECTORES: eta opción inteea cuando la do ecta vienen dada en paamética o continua: : x : x = A = A + λu + λu i) [g( u, u )=2 y] g( u, DEM: g( u, u, A A u, A A )=3 SE CRUZAN )=3 g( u, u )=2 y no on paalela, e deci e cotan o e cuzan; no pueden cotae pue entonce u, u y A A eían coplanaio, e deci eía g( u, u, A A )=2 ii) g( u, u )=2 y g( u, u, A A )=2 SE CORTAN DEM: g( u, u )=2 y no on paalela, e deci e cotan o e cuzan; en ete cao e cotan pue g( u, u, A )=2 u, u y A A A on coplanaio: A u A u iii) g( u, u )=1 y g( u, u, A A )=2 PARALELAS DEM: g( u, u )=1 y on paalela o coinciden; en ete cao on paalela pue g( u, u, A A )=2 u, u y A A on coplanaio: A u A u iv) g( u, u )=1 y g( u, u, A A )=1 COINCIDENTES DEM: g( u, u, A )=1 u, u y A AA tienen la mima diección: = A u A u Ejecicio final tema: 6 Ejecicio PAEG: Sin paámeto: 2A jun 98, 1B ept 98, 4A ept 2006, 4A jun 2007 Con paámeto: 4B ept 2009, 2B ept 2001, 4A ept 2013, 4A jun 2014 Texto bajo licencia Cative Common: e pemite u utilización didáctica aí como u epoducción impea o digital iempe y cuando e epete la mención de u autoía, y ea in ánimo de luco. En oto cao e equiee el pemio del auto ([email protected])
8 I.E.S. FERNANDO DE MENA DPTO. DE MATEMÁTICAS POSICIONES RELATIVAS de RECTAS y PLANOS 2 PLANOS: : ax + by + cz + d = 0 : a x + b y + c z + d = 0 g M g M * POSICIÓN RELATIVA 2 2 SECANTES (e cotan en una ecta) 1 2 PARALELOS 1 1 COINCIDENTES 3 PLANOS: : ax + by + cz + d = 0 : a x + b y + c z + d = 0 :a x + b y + c z + d = 0 g M g M * POSICIÓN RELATIVA 3 3 SE CORTAN EN UN PUNTO 2 3 o pima tiangula SE CORTAN DOS A DOS 2 2 o HAZ DE PLANOS SECANTES (e cotan en una ecta) 1 2 o PARALELOS 1 1 COINCIDENTES Texto bajo licencia Cative Common: e pemite u utilización didáctica aí como u epoducción impea o digital iempe y cuando e epete la mención de u autoía, y ea in ánimo de luco. En oto cao e equiee el pemio del auto ([email protected])
9 I.E.S. FERNANDO DE MENA DPTO. DE MATEMÁTICAS RECTA-PLANO: : ax + by + cz + d = 0 a x + b y + c z + d = 0 : a x + b y + c z + d = 0 g M g M * POSICIÓN RELATIVA 3 3 SECANTES (e cotan en un punto) 2 3 PARALELOS 2 2 RECTA CONTENIDA EN EL PLANO : ax + by + cz + d = 0 a x + b y + c z + d = 0 : a x + b y + c z + d = 0 a x + b y + c z + d = 0 2 RECTAS: : x : x = A = A + λu + λu g M g M * POSICIÓN RELATIVA g(u,u ) g(u,u,a A ) 3 4 SE CRUZAN SE CORTAN PARALELAS COINCIDENTES 1 1 Texto bajo licencia Cative Common: e pemite u utilización didáctica aí como u epoducción impea o digital iempe y cuando e epete la mención de u autoía, y ea in ánimo de luco. En oto cao e equiee el pemio del auto ([email protected])
10 POSICIÓN RELATIVA de RECTAS y PLANOS 2º BACH. 1. Etudia la poición elativa de lo iguiente plano; cao de e ecante, halla la ecuacione paamética de la ecta que definen: a) 3x-y+2z-1=0 b) x+y-5z=-4 c) x+y-5z=-4 x+y-5z+4=0-3x-3y+15z=1-3x-3y+15z=12 (Soluc: ecante; paalelo; coincidente) 2. Etudia la poición de lo iguiente plano: x+3y+2z=0 2x-y+z=0 4x-5y-3z=0 (Soluc: e cotan en el oigen) 3. (S) Detemina el valo de k paa que lo iguiente plano e coten a lo lago de una ecta: x+y+z=2 2x+3y+z=3 kx+10y+4z=11 (Soluc: k=7) 4. (S) Halla la ecuación del plano que paa po el oigen de coodenada y contiene la ecta deteminada po lo plano x+y+z-1=0 x-y-2=0 (Soluc: x+3y+2z=0) 5. Detemina la poición elativa de y en lo iguiente cao; i e cotan, halla el punto de inteección: a) : 2x+y+z=4 b) : x= 2t c) : x= 5+λ x+y-2z=2 y=1+3t y=-3 : x-y+8z=1 z= t z= -λ : 3x+2y-11z-5=0 : x=1-2α+β y=3+3α+3β z=8+4α+β (Soluc: paalelo; e cotan en (6,10,3); ) 6. Detemina la poición elativa de lo iguiente pae de ecta. Cao de e ecante, enconta el punto de inteección: a) : x=1+3λ b) : x=-4+6λ c) : 2x-y=0 d) : 2x-z=5 y=2+4λ y=-5+8λ 3x-z+1=0 x+5y-2z=7 z=-1-2λ z=8-4λ : 3x-z=0 : x+2y-z=4 : x=7-3µ : x=3+µ 3y-2z=0 7x+4y+5z=6 y=10-4µ y=5+2µ z=-5+2µ z=3-µ (Soluc: coincidente; e cotan en (2,3,4); e cuzan; e cuzan) Texto bajo licencia Cative Common: e pemite u utilización didáctica aí como u epoducción impea o digital iempe y cuando e epete la mención de u autoía, y ea in ánimo de luco. En oto cao e equiee el pemio del auto ([email protected])
11 7. (S) Calcula la ecuación del plano que paa po (3,7,-5) y e paalelo al plano : 2x+3y+z+5=0. Ademá, halla la poición elativa ente el plano que e acaba de calcula y la ecta : 3x+2y+1=0 8x-2y-2z+2=0 (Soluc: 2x+3y+z-22=0; e cotan) 8. (S) Se conidea la ecta : x-2y-2z=0 y el plano : 2x+y+mz=n. Se pide: x+5y-z=0 a) Paa qué valoe de m y n, y on ecante? b) Paa qué valoe de m y n, y on paalelo? c) Paa qué valoe de m y n, contiene a la ecta?. (Soluc: m -23/7 y n; m=-23/7 y n 0; m=-23/7 y n=0) 9. (S) Dado el plano : x+y+mz=n y la ecta : x/1=(y-2)/-1=z/2 a) Calcula m y n paa que y ean ecante b) Calcula m y n paa que y ean paalelo c) Calcula m y n paa que contenga a. (Soluc: m 0 y n; m=0 y n 2; m=0 y n=2) 10. (S) Detemina la poición elativa de lo plano: : 2x+3y+z-1=0 ': x-y+z+2=0 '': 2x-2y+2z+3=0 (Soluc: ' // '' y cota a ambo) 11. (S) Etudia, paa lo difeente valoe de a, la poición elativa de lo iguiente plano: : ax+y+z=1 ': x+ay+z=1 '': x+y+az=1 (Soluc: a 1 y a -2 e cotan en un punto; a=1 coincidente; a=-2 e cotan do a do fomando un pima) 12. (S) Detemina paa qué valoe de λ y µ lo plano: a) Tienen un único punto común b) Paan po una mima ecta. : 2x-y+3z-1=0 ': x+2y-z+µ=0 '': x+λy-6z+10=0 (Soluc: λ 7 y µ; λ=7 y µ=3) Texto bajo licencia Cative Common: e pemite u utilización didáctica aí como u epoducción impea o digital iempe y cuando e epete la mención de u autoía, y ea in ánimo de luco. En oto cao e equiee el pemio del auto ([email protected])
POSICIONES RELATIVAS de RECTAS y PLANOS
POSICIONES RELATIVAS de RECTAS y PLANOS MATEMÁTICAS II 2º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática Supongamo, po ejemplo, que queemo etudia la poición elativa de una ecta que
= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS
POSICIÓN RELATIVA DE DOS RECTAS Ecuacione geneale : Ax + By + C = : Ax + By + C = A B A B RECTAS SECANTES \ Un punto en común A B C = A B C RECTAS PARALELAS Ningún punto en común A B C = = A B C RECTAS
RECTAS Y PLANOS EN EL ESPACIO
RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa calcla la ecación de la ecta debo conoce n pnto A(a, a 2, a 3 ) y n vecto en la diección de la ecta llamado vecto diecto. v=(v,v 2,v 3) OP=OA+AP
Elementos de geometría en el espacio
Elemento de geometía en el epacio 1 Elemento de geometía en el epacio Elemento báico del epacio Lo elemento báico del epacio on: punto, denominado con leta mayúcula, po ejemplo P. ecta, denominado con
TEMA 13: EL ESPACIO MÉTRICO
TEMA 3: EL ESACIO MÉTRICO. DISTANCIA ENTRE DOS UNTOS. ÁNGULO ENTRE DOS RECTAS 3. VECTOR NORMAL CARACTERÍSTICO O ASOCIADO AL LANO 4. ANGULO ENTRE DOS LANOS 5. ANGULO ENTRE RECTA Y LANO 6. DISTANCIA DE UN
a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas.
º-Halla a y b paa que las ectas siguientes sean paalelas: x+ay - z s 4x y +6 z a ; b- x+y +bz º-Dadas las ectas de ecuaciones x z - y - (x, y,z) (,0,)+ (,,-) a) Estudia su posición elativa en el espacio.
TEMA 7: PROPIEDADES MÉTRICAS
Depatamento e Matemática º Bachilleato TEMA 7: PROPIEDADES MÉTRICAS 1- HAZ DE PLANOS PARALELOS Too lo plano paalelo a un plano Ax + By + Cz + D tenán el mimo vecto nomal que el e : n A, Po lo tanto, too
ÁNGULOS y DISTANCIAS entre RECTAS y PLANOS
ÁNGULOS y DISTANCIAS ente RECTAS y PLANOS MATEMÁTICAS II º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática 1. PROBLEMAS DE ÁNGULOS 1.1 ÁNGULO DE DOS RECTAS: Si la do ecta on paalela
Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio
Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P
EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO
EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina
ÁNGULOS y DISTANCIAS entre RECTAS y PLANOS
ÁNGULOS y DISTANCIAS ente RECTAS y PLANOS MATEMÁTICAS II º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática 1. PROBLEMAS DE ÁNGULOS 1 1.1 ÁNGULO DE DOS RECTAS: Si la do ecta on paalela
( ) TEMA V. 1. Ecuaciones del plano. Tema 5 : Rectas y planos en el espacio
TEMA V. Ecuaciones del plano. Ecuaciones de la ecta. Haz de planos 4. Incidencia de planos y ectas 5. Ángulos en el espacio 6. Condiciones de pependiculaidad 7. Distancias en el espacio. Ecuaciones del
UNIDAD Nº 5: GEOMETRÍA ANALÍTICA PLANA
I.E.S. Ciudad de Ajona Depatamento de Matemática. º BAC UNIDAD Nº 5: GEOMETRÍA ANALÍTICA PLANA. VECTORES. DEFINICIÓN Y OPERACIONES Definición: Un ecto fijo AB e un egmento oientado ue tiene u oigen en
Autoevaluación. Bloque II. Geometría. BACHILLERATO Matemáticas II. Página 200
Boque II. Geometía Autoevauación Página Detemina todo o vectoe de móduo que on otogonae a o vectoe u(,, ) y v (,, ). Lo vectoe pependicuae a o do vectoe a a vez on popocionae a poducto vectoia de ambo.
Unidad 12: Posiciones y Métrica en el espacio.
Unidad 12: Poicione y Mética en el epacio. 1) Poicione elativa en el epacio: a) De un punto con ecta y plano: a1) Un punto A petenece a una ecta i cumple u ecuacione geneale, en cao contaio e dice que
6: PROBLEMAS METRICOS
Unidad 6: PROBLEMAS METRICOS 6.1.- DIRECCIONES DE RECTAS Y PLANOS Los poblemas afines tatan de incidencias (ve si un punto está contenido en una ecta o en un plano y ve si una ecta está contenida en un
Bloque 3. Geometría y Trigonometría Tema 3 La recta en el plano Ejercicios resueltos
Bloque 3. Geometía y Tigonometía Tema 3 La ecta en el plano Ejecicio euelto 3.3-1 Halla la ecuación vectoial, en paamética, continua y geneal de la ecta que paa po el punto indicado y tiene po vecto dieccional
TEMA IV: DISTANCIA ENTRE ELEMENTOS
TEMA IV: DISTANCIA ENTRE ELEMENTOS 4.1.D Ditancia ente do punto Teniendo en cuenta la elacione mética que e etablecen ente la poyeccione otogonale obe un plano de un egmento AB e puede obtene la ditancia
Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1
Tema Geometía en el espacio Matemáticas II º Bachilleato ÁNGULOS EJERCICIO 5 : λ Dados las ectas : λ, s : λ calcula el ángulo que foman: a) s b) s π el plano π : ; i j k a) Hallamos el vecto diecto de
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A
Examen de Evaluación. Geometía. Matemática II. Cuo 009-00 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA Cuo 009-00 -V-00 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
2λ λ. La ecuación del plano que buscamos es p: 5x 2y + 2z
Poducto escala 060 Halla la ecuación de la ecta que cota a y s pependiculamente. x = 1 x = 6 µ : y = 11+ s: y = + µ z = 1+ z = + µ Hallamos un punto P y un punto Q s de modo que el vecto PQ sea pependicula
GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia
Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones
Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r
Fenando Baoso Loenzo GEOMETRÍA ANALÍTICA 1. Dados los vectoes cuyas coodenadas son u = ( 10, 2) y v = (13, 2), calcula el módulo u 43 u 298621 del vecto esultante de la siguiente combinación lineal w =
Tema 6 Puntos, rectas y planos en el espacio
Tema 6 Puntos, ectas planos en el espacio. Punto medio. Los puntos A (,, ) B (-,, -) son vétices de un paalelogamo cuo cento es el punto M (,, ). Halla Los otos dos vétices las ecuaciones del lado AB.
ECUACIONES DE LA RECTA
Tema 6 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos
81 BAC CNyS GEOMETRÍA ANALÍTICA PLANA ÍNDICE 1. PRESENTACIÓN DEL TEMA 2. PUNTOS Y VECTORES EN EL PLANO 3. ECUACIONES DE LA RECTA 4.
GEOMETRÍ NLÍTIC LN 81 C CNyS ÍNDICE 1. RESENTCIÓN DEL TEM 2. UNTOS Y VECTORES EN EL LNO 3. ECUCIONES DE L RECT 4. HZ DE RECTS 5. RLELISMO Y ERENDICULRIDD 6. OSICIONES RELTIVS DE DOS RECTS 7. NGULO QUE
58 EJERCICIOS de RECTAS y PLANOS 2º BACH.
58 EJERCICIOS de RECTAS y PLANOS 2º BACH. NOTA: En los ejercicios de Geometría se recomienda comenzar, antes de nada, por: Imaginarse la situación; podemos ayudarnos, para ello, de bolígrafos (para representar
MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias
Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente
200. Hallar la ecuación de la simetría ortogonal respecto de la recta:
Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto
Puntos, rectas y planos en el espacio. Problemas métricos en el espacio
1. Estudia la posición elativa de las ectas y s: x = 2t 1 x + 3y + 4z 6 = 0 : ; s : y = t + 1 2x + y 3z + 2 = 0 z = 3t + 2 Calcula la distancia ente ambas ectas (Junio 1997) Obtengamos un vecto diecto
de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r
Actividad SISTEMA IÉRICO II TEMA 9 Paa eolve eta actividad, emo de tene en cuenta lo iguiente: o ecta on paalela en el epacio, i u poyeccione obe lo do plano de poyección también lo on.. Sea el punto P(-P
TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA
TALLER GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 0- Pofeso: Jaime Andés Jaamillo González ([email protected]) Pate del mateial ha sido tomado de documentos
x+3y = 8 4y+z = 10 ; s: x 7 = y a-4 = z+6 5a-6 b) Para el valor del parámetro a = 4, determine, si es posible, el punto de corte de ambas rectas.
[04] [EXT-A] a) Estudie la posición relativa de las rectas r y s en función del parámetro a: r: x+y = 8 4y+z = 0 ; s: x = y a-4 = z+ 5a- b) Para el valor del parámetro a = 4, determine, si es posible,
IV. Geometría plana. v v2 2. u v = u v cos α
Talle de Matemáticas 16 IV. Geometía plana IR 2 = {(x, y)/x, y IR} puede identificase con el espacio de vectoes libes del plano utilizando la base canónica: v =(v 1,v 2 )=v 1 (1, 0) + v 2 (0, 1) = v 1
9 COMPRENDER LOS CONCEPTOS DE RECTA, SEMIRRECTA Y SEGMENTO.
REPASO Y APOYO OBJETIVO 1 9 COMPRENDER LOS CONCEPTOS DE RECTA, SEMIRRECTA Y SEGMENTO. ESTUDIAR LAS POSICIONES RELATIVAS RECTA ecta G A A y B A B A ACTIVIDADES 1 Dibuja un punto P y taza cuato ecta que
GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones
GEOMETRÍA ANALÍTICA 8. ECUACIONES DE UNA RECTA Para determinar una recta neceitamo una de eta do condicione 1. Un punto P(x, y ) y un vector V = (a,b). Do punto P(x, y ), Q(x 1, y 1 ) Un punto P(x, y )
TANGENCIAS ENTRE RECTAS Y CIRCUNFERENCIAS
ANGENCIAS ENRE RECAS Y CIRCUNFERENCIAS 1 RECA Y CIRCUNFERENCIA ANGENES. Una ecta y una cicunfeencia on tangente cuano tienen un único punto en común, llamao punto e tangencia. Ente una ecta y una cicunfeencia
. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.
1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes
TANGENCIAS Tangencias como aplicación de los conceptos de potencia e inversión TEMA5. Objetivos y orientaciones metodológicas. 1.
ANGNIAS angencia como aplicación de lo concepto de potencia e inveión A5 DIBUJ GÉI bjetivo y oientacione metodológica l objetivo de ete tema e hace aplicación de lo concepto de potencia e inveión en la
, 2 x+y+z = 2, = z 5 y s: 4x-2y+z = 0. ( ) ( ) y dado el punto P(0,3,-1) exterior a, obtener las ecuaciones en
x+y-z = 0 1. [2014] [EXT-A] Sea P el punto de coordenadas P(1,0,1) y r la recta de ecuación r x-2z = 1. a) Hallar la ecuación en forma continua de una recta que pase por el punto P y sea paralela a la
ECUACIONES DE LA RECTA
Temas 6 y 7 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos
VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES
VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la
RECTAS EN EL ESPACIO.
IES Pade Poeda (Guadi UNI 9 GEOETRÍ FÍN RETS EN EL ESPIO EUIONES E L RET Una ecta queda deteminada po Un punto ( a a a Un ecto de diección ( ( ; se le llama deteminación lineal de la ecta Si X ( es un
Selectividad Septiembre 2009 SEPTIEMBRE 2009
Selectividad Septiembe 9 OPCIÓN A PROBLEMAS SEPTIEMBRE 9 1.- Sea la función f () =. + 1 a) Halla el dominio, intevalos de cecimiento y dececimiento, etemos elativos, intevalos de concavidad y conveidad,
Si solo tenemos en cuenta las relaciones existentes entre los puntos del espacio y los vectores de V
IES Pae Poea (Guaix) UNIDAD 0 GEOMETRÍA MÉTRICA Si olo tenemo en cuenta la elacione exitente ente lo punto el epacio y lo ectoe e V, la geometía etingiá u etuio a la poicione elatia e punto, ecta y plano
ÁLGEBRA LINEAL GEOMETRÍA
ÁLGER LINEL GEOMETRÍ ESPCIO VECTORIL DE LOS VECTORES LIRES: V 3 Se llama vecto fijo de oigen y extemo al egmento oientado. Si el oigen y el extemo coinciden, hablamo del vecto nulo : = 0. Un vecto fijo
A) TRAZADO DE RECTAS TANGENTES
ecta tangente a una cicunfeencia que paan po un punto (pc). a) El punto etá en la cicunfeencia. (1 olución) A) TAZAD DE ECTAS TANGENTES ecta tangente a do cicunfeencia de ditinto adio (cc). a) Tangente
EJERCICIOS SOBRE VECTORES
EJERCICIOS SOBRE VECTORES 1) Dados los puntos A = ( 2, 1,4) ( 3,1, 5) uuu vecto AB B =, calcula las componentes del 2) Dados los puntos A = ( 2, 1,4), B = ( 3,1, 5) ( 4,2, 3) C =, detemina las uuu uuu
5 = z. 2. Hallar el valor de m para que los puntos A(3,m,1), B(1,1,-1) y C(-2,10,-4) pertenezcan a la misma recta.
. Expresar en forma paramétrica y reducida la recta x+ 3 = y- 5 = z -. Hallar el valor de m para que los puntos A(3,m,), B(,,-) y C(-,0,-4) pertenezcan a la misma recta. 3. Probar que todos los planos
EJERCICIOS DEL TEMA VECTORES
EJERCICIOS DEL TEMA VECTORES 1) Considea el vecto w, siguiente: w Dibuja, en cada caso uno de los siguientes casos, un vecto v, que sumado con u dé como esultado w : a) b) c) d) u u u u 2) A la vista de
9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes.
826464 _ 0341-0354.qxd 12/2/07 10:04 Página 341 Ángulo y ecta INTRODUCCIÓN RESUMEN DE LA UNIDAD A nueto alededo encontamo ecta y ángulo que influyen en nueto movimiento: calle, avenida, plano, etc. El
GEOMETRÍA ANALÍTICA EN EL ESPACIO
GEOMETRÍ NLÍTI EN EL ESPIO PROUTO ESLR a b a1 b1 + a b + a b (uando sepamos las coodenadas de a y b). a b a b cosx (uando queamos halla el ángulo que foman a y b). uando los vectoes son pependiculaes su
A continuación obligamos, aplicando el producto escalar, a que los vectores:
G1.- Se sabe que el tiángulo ABC es ectángulo en el vétice C, que petenece a la ecta intesección de los planos y + z = 1 e y 3z + 3 = 0, y que sus otos dos vétices son A( 2, 0, 1 ) y B ( 0, -3, 0 ). Halla
GEOMETRÍA ANALÍTICA PLANA
GEOMETRÍ NLÍTIC PLN / Ecuaciones de la ecta Un punto y un vecto Dos puntos Un punto y la pendiente,,,,,, Coodenadas del vecto diecto ECUCION VECTORIL (x, y) (p, p ) + τ (v, v ) ECUCION PRMETRIC x p + τ
EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS
EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto
RELACION DE ORDEN: PRINCIPALES TEOREMAS
RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a
7. [2013] [JUN-A] a) Pueden existir vectores u y v tales que u = 2, v = 3 y u v = 8? Justifique la respuesta.
1. [014] [EXT-A] a) Determine el valor o valores de m, si existen, para que la recta r: mx+y = x+ mz = : x-y-z+6 = 0. b) Determine la distancia del punto P= (,1,1) a la recta r cuando m =. sea paralela
8. Movimiento Circular Uniforme
8. Movimiento Cicula Unifome En la vida cotidiana e peentan ituacione donde un objeto gia alededo de oto cuepo con una tayectoia cicula. Un ejemplo de ello on lo planeta que gian alededo del ol en obita
TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano
LA LINEA RECTA: DEFINICIÓN. TALLER VERTICAL DE MATEMÁTICA Recibe el nombe de línea ecta el luga geomético de los puntos tales que, tomados dos puntos cualesquiea distintos P, ) P, ) el valo de la epesión:
El haz de planos paralelos queda determinado por un vector normal, n A, B,
HAZ DE PLANOS HAZ DE PLANOS PARALELOS Dado un plano, por ejemplo, π :3x4y2z1 cuyo vector normal es n 3, 4, 2, cualquier otro plano que tenga el mismo vector normal será un plano paralelo a. El plano π
GEOMETRÍA EN EL ESPACIO.
GEOMETRÍA EN EL ESPACIO.. ESPACIOS VECTORIALES VECTOR FIJO Segmento orientado. Queda determinado por Origen A(a, a, a ); extremo B(b, b, b ) Módulo: Longitud del AB ( b a) ( b a) ( b a) segmento AB Características:
LOS ERRORES EN QUÍMICA ANALÍTICA
LOS ERRORES EN QUÍMICA ANALÍTICA MONOGRAFÍA PARA ALUMNOS DE º DE LA LICENCIATURA EN QUÍMICA 00 DR. JOSÉ MARÍA FERNÁNDEZ ÁLVAREZ Edificio de Invetigación. C/Iunlaea,1. 31080 Pamplona. Epaña Tel. +34 948
EJERCICIOS DE GEOMETRÍA
EJERCICIOS DE GEOMETRÍA 1. Se consideran las rectas r x 2 = 0 x 2z = 1, s y + 3 = 0 y + z = 3 a) Estudiar la posición relativa de r y s. b) Hallar la mínima distancia entre ambas. Se pide: Sol: Se cruzan
x = - y = 1+2 z = -2+2 y s:
1. [ANDA] [EXT-A] Considera el plano de ecuación 2x+y+3z-6 = 0. a) Calcula el área del triángulo cuyos vértices son los puntos de corte del plano con los ejes coordenados. b) Calcula el volumen del tetraedro
es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no
El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i
EJERCICIO. Dadas las rectas y
EJERCICIO Dadas las rectas x4 y1 z y z 8 r : y s: x1 1 3 se pide: a) Comprueba que las rectas r y s se cruzan. b) Determina la ecuación de la perpendicular común. c) Calcula la distancia entre ambas. Perpendicular
Tema 6: Ángulos y distancias en el espacio
Tema 6: Ángulos y distancias en el espacio February, 017 1 Ángulos entre elementos del espacio Los ángulos entre elementos del espacio, es una aplicación sencilla del producto escalar. Recuerdo las condiciones
IES Mediterráneo de Málaga Examen de Septiembre 2009 Juan Carlos Alonso Gianonatti. Opción A
IES Mediterráneo de Málaga Examen de Septiembre 009 Juan Carlos Alonso Gianonatti Opción A m m Ejercicio.- Dada la matriz: M m, se pide: 0 (,5 puntos)determinar los valores del parámetro m para los cuales
3. Campo eléctrico de distribuciones continuas de carga. M.A.Monge / B. Savoini Dpto. Física UC3M
Campo eléctico II: Ley de Gau 1. Intoducción 2. Ditibucione continua de caga. 3. Campo eléctico de ditibucione continua de caga. 4. Flujo del campo eléctico. 5. Ley de Gau. 6. Aplicacione de la ley de
EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 25 AÑOS SIN CICLO MEDIO COMPLETO. PRACTICO 3 Función Lineal Rectas Noviembre 2011
EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 5 AÑOS SIN CICLO MEDIO COMPLETO PRACTICO Función Lineal Rectas Noviembe RECORDAR: Una unción lineal es de la oma popiedad que los cocientes incementales:
GEOMETRÍA ANALÍTICA EN EL ESPACIO
GEOMETRÍ NLÍTI EN EL ESPIO PRODUTO ESLR a b a b cosx (uando sepamos el ángulo que foman a y b). a ba b a b a b (uando sepamos las coodenadas de a y b ). uando los ectoes son pependiculaes su poducto escala
AFININDAD: CARACTERISTICAS Y PROPIEDADES
La finia e una tanfomación homogáfica que cumple la iguiente leye: - o punto fine etán alineao con una ecta que igue la iección e afinia - o ecta fine e cotan iempe en una ecta fija llamaa e afinia. La
4. [ANDA] [JUN-B] Dados los puntos A(2,1,1) y B(0,0,1), halla los puntos C en el eje OX tales que el área del triángulo de vértices A, B y C es 2.
Selectividad CCNN 008 x-z = -. [ANDA] [SEP-A] Sea la recta dada por y+z = a) Halla la ecuación del plano que es paralelo a la recta s y contiene a la recta r, dada por x- = -y+ = z-. b) Estudia la posición
1. Escribir las ecuaciones paramétricas, reducida y continua de la recta que pasa por los puntos A(2,3,5) y B(-1,0,2).
1. Escribir las ecuaciones paramétricas, reducida y continua de la recta que pasa por los puntos A(,3,5) y B(-1,0,).. Dados los puntos A(,3,-1) y B(-4,1,-), hallar las coordenadas de un punto C perteneciente
Problemas de Geometría Analítica del Espacio
1) Dados los vectores u(4, 4, 8), v( 2,, 5), w(3, 5, 8) y a(22,, 11). Hallar los valores de x, y, z que verifican la combinación lineal a = x u + y v + z w. 2) Dados los vectores a( 5, 19, n) y b( h, 3,
Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:
MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,
c) Hallar los planos del haz que cumplen que el ángulo que forman con el eje OY tiene por seno el valor
1. [ANDA] [JUN-A] De un paralelogramo ABCD conocemos tres vértices consecutivos A(,-1,0), B(-,1,0) y C(0,1,). a) Calcula la ecuación de la recta que pasa por el centro del paralelogramo y es perpendicular
GEOMETRÍA ANALÍTICA EN EL ESPACIO
DP. - S - 59 7 Matemáticas ISSN: 988-79X a b = a b cos(a, b) a b = a b + a b + a b GEOMETRÍ NLÍTI EN EL ESPIO PRODUTO ESLR ando sabemos el ánglo qe foman a y b ando sabemos las coodenadas de a y b a =
sea paralela al plano
x = 1+2t 1. [ANDA] [EXT-A] Considera los puntos A(1,1,2) y B(1,-1,-2) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por
ejerciciosyexamenes.com GEOMETRIA
GEOMETRIA 1.- Dado el vector AB= (2,-1,3) y el punto B(3,1,2) halla las coordenadas del punto A. Sol: A =(1,2,-1) 2.- Comprobar si los vectores AB y CD son equipolentes, siendo A(1,2,-1), B(0,3,1), C(1,1,1)
a) Los vectores base de V 2? Razonar la respuesta. b) Expresar u como combinación lineal de x e y c) Comprobar gráficamente lo anterior.
PARCIAL 2ª EVALUACIÓN MATEMÁTICAS I 1º BACH. A+B CURSO 2008-2009 1. u a) Los vectores x e y de la figura pueden ser base de V 2? Razonar la respuesta. y b) Expresar u como combinación lineal de x e y c)
TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 9: FORMAS GEOMÉTRICAS. Pime Cuso de Educación Secundaia Obligatoia. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 09: FORMAS GEOMÉTRICAS. 1. Ideas Elementales de Geometía
CI51J HIDRAULICA DE AGUAS SUBTERRANEAS Y SU APROVECHAMIENTO
CI5J CI5J HIDRAULICA DE AGUAS SUBTERRANEAS Y SU AROVECHAIENTO TEA 5 ECUACIONES GENERALES DE LA HIDRAULICA EN EDIOS OROSOS SOLUCION DIRECTA DE LA ECUACION DE LALACE ETODO DE LAS IAGENES OTOÑO 8 UNIVERSIDAD
Geometría Analítica. Ejercicio nº 1.-
Geomeía Analíica Ejecicio nº.- a Aveigua el puno iméico de A ) con epeco a B ). b Halla el puno medio del egmeno de eemo A ) B ). Ejecicio nº.- a Halla el puno medio del egmeno cuo eemo on A( ) con epeco
C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I
C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I La Cinemática etudia el movimiento de lo cuepo, in peocupae de la caua que lo genean. Po ejemplo, al analiza el deplazamiento de un automóvil, diemo
EXÁMENES DE ALGEBRA Y GEOMETRÍA MATEMÁTICAS II CURSO
EXÁMENES DE ALGEBRA Y GEOMETRÍA MATEMÁTICAS II CURSO 2016-17 1 2 Ejercicio 1º.- Considera las matrices A 1 1 y B 0 1 1 0 a) (1,25 puntos) Encuentra las matrices X e Y tales que X Y = A T y 2X Y = B. b)
