FLUJO POTENCIAL BIDIMENSIONAL (continuación)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FLUJO POTENCIAL BIDIMENSIONAL (continuación)"

Transcripción

1 Pof. ALDO TAMBURRINO TAVANTZIS Pof. ALDO TAMBURRINO TAVANTZIS FLUJO POTENCIAL BIDIMENSIONAL (continuación) RESUMEN DE LA CLASE ANTERIOR Si un flujo es iotacional, V 0, entonces eiste una función escala φ tal ue V φ. De este modo paa el caso -D se tiene ue: u v La ecuación de continuidad paa un fluido incompesible en téminos de la función potencial φ está dada po: φ 0 La función φ constante se denomina línea euipotencial. Supeposición: Po se la ecuación de Laplace lineal, se cumple ue si φ 1 φ son soluciones de la ecuación de Laplace, entonces φ φ 1 + φ también lo es. De acá esulta ue el campo de velocidades también se puede supepone, o sea si V 1 deiva de φ 1 V deiva de φ, entonces V V 1 + V. En coodenadas polaes: φ u uθ φ 0 θ 1 θ - 1 -

2 Pof. ALDO TAMBURRINO TAVANTZIS Las líneas de coiente se definen como las tangentes al vecto velocidad. DE popoción de tiángulos esulta: V d v d u Línea de coiente u v d d ud vd 0 Definamos una función ψ. Si la función es constante, entonces dψ 0. O sea: d ψ d + d 0 De donde esulta ue: u v La función ψ se denomina función de coiente. u v En un flujo iotacional se cumple ue ω z 0. Al epesa la voticidad en téminos de la función de coiente esulta: ψ 0 Ecuaciones de Riemman: u v En coodenadas polaes: u 1 uθ θ 1 θ Las líneas euipotenciales las de coiente son pependiculaes ente sí. ψ ψ 1 El caudal (D) ue escue ente dos líneas de coiente es igual a la difeencia de las funciones de coiente: ψ - ψ

3 Pof. ALDO TAMBURRINO TAVANTZIS Deteminación del campo de velocidades condiciones de bode Paa detemina el campo de velocidades de cualuie flujo debe esolvese la deteminación de Laplace paa φ o paa ψ con las condiciones de bode adecuadas. Conocida φ (o ψ), se detemina el campo de velocidades po simple deivación. Las condiciones de bode típica son: Condición de bode en el infinito:, ± ; V V Po ejemplo, si se desea conoce el campo de velocidades en tono a un cuepo sumegido V U,0, las condiciones de bode seán: en un flujo tal ue ( ) ±, ; u U, v 0 En téminos de la función potencial ±, ; U, 0 En téminos de la función de coiente: U, 0. Condición de bode en una fontea sólida impemeable en eposo: La velocidad nomal a la fontea debe se nula, o sea V nˆ 0, donde nˆ es la nomal a la supeficie. En téminos de la función potencial, esta condición se escibe como: φ nˆ 0 n Paa escibila en téminos de la función de coiente debemos ecoda ue la fontea es una línea de coiente. Si ŝ es el vecto tangente a la supeficie ue define la fontea, se tiene: s 0 o, lo ue es lo mismo ψ cte. a lo lago de la fontea. Conocido el campo de velocidades es fácil detemina la pesión a pati de la ecuación de Benoulli

4 Pof. ALDO TAMBURRINO TAVANTZIS EJEMPLOS DE FLUJOS POTENCIALES USUALES FLUJO PARALELO UNIFORME φ cte. Consideemos un flujo unifome paalelo al eje con velocidad V. La función de coiente está dada po: ψ cte. u V φ (, ) V + const. v 0 La constante de integación es abitaia po simplicidad podemos elegi φ 0 paa 0. La línea de coiente está dada po : (se impuso ue en 0, ψ 0) u V, v 0 ψ (, ) V Si el flujo foma un ángulo α con el eje, las funciones potencial de coiente están dadas po: ( cos sin ), ( cos sin ) φ V α + α ψ V α α α - 4 -

5 Pof. ALDO TAMBURRINO TAVANTZIS FUENTE u θ u Busuemos una solución de la función potencial ue sólo dependa de la coodenada : φ φ(). φ const. θ La ecuación de Laplace en coodenadas polaes ueda: ψ const. 1 0 de donde φ c ln + A. De este modo, las componentes del campo de velocidad están dadas po: c 1 u uθ 0 θ El caudal ue ataviesa un cículo de adio centado en el oigen del sistema de coodenadas polaes es: πu πc de donde c. Eligiendo abitaiamente ue en 1, φ 0, la función potencial las π velocidades debido a una fuente son: φ ln, u, u θ 0 π π Conocidas las velocidades, se obtiene la función de coiente: 1 u u θ 0 θ π Integando las ecuaciones anteioes se obtiene: ψ θ π Si > 0, el flujo se debe a una fuente. Si < 0, se está en pesencia de un sumideo

6 Pof. ALDO TAMBURRINO TAVANTZIS VÓRTICE LIBRE u θ u Busuemos una solución de la función potencial ue sólo dependa de la coodenada θ: φ φ(θ). La ecuación de Laplace en coodenadas polaes ueda: 1 φ 0 θ De donde esulta ue la función potencial las componentes de velocidad están dadas po: 1 cθ, u 0, u θ φ θ Calculemos la ciculación del vótice. La definición de ciculación es: V ds c π θ π 0 c d c Nota ue, aunue el flujo es iotacional, eiste ciculación. Si calculamos la voticidad, encontaemos ue es nula en todo el dominio del flujo, ecepto en el oigen, donde la u ( ) voticidad es infinita. Veifica esto es mu fácil. (Usa ω 1 ( θ) z u θ ). De este modo, la función potencial en téminos de la ciculación está dada po: φ π θ Conocidas las velocidades, se obtiene la función de coiente: u 1 0 u θ θ π Integando las ecuaciones anteioes se obtiene: ψ ln π El signo de define el sentido del gio de las líneas de coiente

7 DIPOLO Pof. ALDO TAMBURRINO TAVANTZIS Consideemos una fuente un sumideo sepaadas una distancia L, como se muesta en la figua, euidistantes del oigen. 1 Si φ1 es el potencial debido a la fuente φ al sumideo, φ φ1 + φ es el debido a la combinación de ambos: L θ - φ ln 1 ln ln 1 ln π π π ( ) Nos inteesa el caso cuando la fuente el sumideo están infinitamente ceca el poducto L se mantiene constante e igual a K. O sea: lim φ L 0 K cte. ( ln ln ) ( ln ln ) L 1 K 1 lim φ lim ( ln 1 ln ) lim lim 0 L 0 π L 0 π L π L 0. L L K cte. K cte. K cte. Peo el último límite no es más ue la definición de la deivada de ln especto a : lim L 0. ( ln ln ) 1 L d d ln d d ln + + Po lo tanto la función potencial de un dipolo es: φ K π + En coodenadas polaes: φ K cos θ π Deteminemos ahoa las líneas euipotenciales. Ellas están dadas po φ C, constante: - 7 -

8 Pof. ALDO TAMBURRINO TAVANTZIS K π + C K 4πC + K 4πC O sea, las líneas euipotenciales son cicunfeencias de adio 4 K π C con cento en ( ) 4 K π C,0. Conocida la función potencialφ, es fácil detemina la función de coiente ψ, esultando: K ψ π + En coodenadas polaes: ψ C K senθ ψ π Las líneas de coiente uedan definidas a pati de: K π + C φ C K + 4πC K 4πC O sea, las líneas de coiente son cicunfeencias de adio 4 K π C con 0, π. cento en ( ) 4 K C Si el dipolo no está oientado en la diección del eje, sino ue foma un ángulo α con este eje, la función potencial de coiente son: φ K cos π ( θ α) K sen( θ α) ψ π - 8 -

9 Pof. ALDO TAMBURRINO TAVANTZIS FLUJO ALREDEDOR DE UN CILINDRO Como se mostaá más adelante, el flujo en tono a un cilindo coesponde a la supeposición del flujo unifome el dipolo. En coodenadas cilíndicas, las funciones potenciales de coiente paa estos flujos son: φu V cos θ ψu V senθ φ ψ D D K cos θ π K senθ π Llamando K R : π R φ φu + φd V cosθ 1 + R ψ ψ + ψ θ U D V sen 1 Nota ue paa R, ψ 0. Po lo tanto, el cículo de adio R es una línea de coiente. La función de coiente también es nula paa θ 0 (ama positiva del eje ) paa θ π (ama negativa del eje ). A pati de las funciones anteioes, es posible detemina el campo de velocidades: u 1 R V θ cos 1 θ u V R senθ 1 + θ Las velocidades sobe la supeficie del cilindo se deteminan al evalua las epesiones anteioes en R, esultando: u 0 uθ V senθ Es fácil ve ue eisten dos puntos de estancamiento (u u θ 0), los ue se ubican en R paa θ 0 θ π. Un esuema de las líneas de coiente la distibución de velocidades se da en la figua siguiente

10 Pof. ALDO TAMBURRINO TAVANTZIS V La distibución de pesiones podemos calculala a pati de la ecuación de Benoulli, B B : V p γ V p V + + g γ g donde V u + uθ. En paticula se puede calcula la distibución de pesiones sobe la supeficie del cilindo, p cil p(r,θ): R p γ V + g p cil γ 4V senθ + g Consideemos ue p es la pesión atmosféica tabajemos con pesiones elativas: p cil γ V g ( 1 4senθ ) Conocida la distibución de pesiones, es posible calcula la fueza debido a la pesión sobe el cilindo: F π p 0 cil cosθrdθ F π p 0 cil senθrdθ Integando esulta F F 0. O sea, el flujo no tiene ningún efecto sobe el cilindo, lo ue va conta la onsevación empíica. Este esultado se conoce como la paadoja de d Alambet. Ya vimos ue esta paadoja fue esuelta po Pandtl con su concepto de capa límite. Jean le Rond d Alambet ( ) La fueza en la diección del flujo (F ) se denomina fueza de aaste la fueza en la diección nomal (F ) es la fueza de sustentación

11 Pof. ALDO TAMBURRINO TAVANTZIS FLUJO ALREDEDOR DE UN CILINDRO CON CIRCULACIÓN Impongamos ahoa una ciculación al flujo alededo de un cilindo. Esto esulta de agega un vótice a la supeposición del flujo unifome más el dipolo. La supeposición de funciones de coiente es: K senθ ψ V senθ + + ln π π Con el objeto de defini la función de coiente nula en R estamos la constante la epesión anteio, esultando: ψ V R senθ 1 + π ln R lnr π a de donde se detemina el campo de velocidades: u 1 θ R V cos 1 θ u θ V R sen θ 1 + π La velocidad en la supeficie del cilindo es: u 0 uθ Vsenθ πr Es inteesante estudia la eistencia de puntos de estancamiento. Imponiendo u u θ 0, se encuenta los siguientes casos: - 0 Dos puntos de estancamiento, en R θ 0, θ π (caso del cilindo sin ciculación). - 0 < < 4πRV Dos puntos de estancamiento, en R θ acsen. 4πRV 3 θ. - 4πRV Un punto de estancamiento en R π

12 Pof. ALDO TAMBURRINO TAVANTZIS - > 4πRV Dos puntos de estancamiento, uno dento del cilindo oto fuea, ubicados en θ 3 ( ) π ± R. 4πV 4πV Al igual ue en el caso del cilindo sin ciculación, la fueza de aaste (F ) es nula, peo sí eiste una fueza de sustentación hidodinámica (F): F π p 0 cil Rsenθdθ La distibución de pesiones sobe la supeficie del cilindo se calcula igualando Benoulli, al igual ue en el caso anteio, esultando: p γ cil V g senθ 1 4senθ πrv πrv pudiendo así evaluase la fueza de sustentación: F ρv Matin Wilhelm Kutta Nikolai Egoovich Joukowski El esultado anteio puede genealizase a cualuie geometía (en paticula, po ejemplo, el ala de un avión) coesponde al Teoema de Kutta-Joukowski

Capa límite. Flujo irrotacional. Figura 6.1: Flujo irrotacional y capa límite sobre un cuerpo.

Capa límite. Flujo irrotacional. Figura 6.1: Flujo irrotacional y capa límite sobre un cuerpo. 70 Capítulo 6 Flujo Potencial Se analizaá en éste capítulo un tipo paticula de flujo o escuimiento denominado flujo potencial. Este tipo de flujo se denomina así a ue es posible defini una función potencial

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

DESARROLLO de Unidad VIII: Movimiento Potencial Bidimensional

DESARROLLO de Unidad VIII: Movimiento Potencial Bidimensional Depatamento de Aeonáutica : Mecánica de los Fluidos IA 7 DESARROLLO de Unidad VIII: Movimiento Potencial Bidimensional Poblema 6 : Una fuente bidimensional de intensidad q está ubicada en una esquina ectangula

Más detalles

CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas

CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas ETS. Ingenieía de Telecomunicación Dpto. Teoía de la Señal Comunicaciones CAMPOS ELECTROMAGNÉTICOS Tema. Cálculo Vectoial Coodenadas Catesianas, Cilíndicas Esféicas P.- Dado un vecto A = + (a) su magnitud

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide egio Yansen Núñez Teoema de tokes y Gauss Actividad Nº Considee el campo vectoial F( x, y, z) ( y, x, z ). Calcule F d donde C es C la intesección ente el plano x + y + z y el cilindo x + y. Actividad

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo: MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,

Más detalles

Tema 1: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Flujo, divergencia y teorema de Gauss

Tema 1: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Flujo, divergencia y teorema de Gauss Tema 1: Fundamentos Matemáticos 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 4/7 Flujo, divegencia y teoema de Gauss Concepto

Más detalles

LECCIÓN 5: CINEMÁTICA DEL PUNTO

LECCIÓN 5: CINEMÁTICA DEL PUNTO LECCIÓN 5: CINEMÁTICA DEL PUNTO 5.1.Punto mateial. 5.. Vecto de posición. Tayectoia. 5.3. Vecto velocidad. 5.4. Vecto aceleación. 5.5. Algunos tipos de movimientos. 5.1. PUNTO MATERIAL. Un punto mateial

Más detalles

Ejemplos 2. Cinemática de los Cuerpos Rígidos

Ejemplos 2. Cinemática de los Cuerpos Rígidos Ejemplos. Cinemática de los Cuepos Rígidos.1. Rotación alededo de un eje fijo.1.** El bloque ectangula ota alededo de la ecta definida po los puntos O con una velocidad angula de 6,76ad/s. Si la otación,

Más detalles

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática Tema : Pincipios de la electostática 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 4/7 Leyes de la electostática Leyes de la electostática:

Más detalles

Electromagnetismo I. 1. Problema: (20pts) El potencial en la superficie de una esfera de radio R está dado por. Alm r l + B lm r (l+1)] Y lm (θ, ϕ).

Electromagnetismo I. 1. Problema: (20pts) El potencial en la superficie de una esfera de radio R está dado por. Alm r l + B lm r (l+1)] Y lm (θ, ϕ). Electomagnetismo I Semeste: 25-2 Pof. Alejando Reyes Coonado Ayud. Calos Albeto Maciel Escudeo Ayud. Chistian Espaza López Solución a la Taea 5 Solución po Calos Maciel Escudeo. Poblema: 2pts El potencial

Más detalles

Fig. 1 Esquema para el cálculo de B

Fig. 1 Esquema para el cálculo de B P1- CAMPO DE UN AAMRE (EY DE OT-SAVART). Considee una poción de un alambe ecto de longitud po el que cicula una coiente constante. (a) Calcule la inducción magnética paa puntos sobe el plano que divide

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO EL POTENCIAL ELÉCTRICO. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Pofeso: José Fenando Pinto Paa UNIDAD 7 POTENCIAL ELECTROSTÁTICO Dos cagas en la misma posición tienen dos veces más enegía

Más detalles

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS 1. Dado un campo vectoial v = ( x + y ) i + xy j + ϕ( x, y, k en donde ϕ es una función tal que sus deivadas paciales son las funciones

Más detalles

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo.

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo. LY D GAU La ley de Gauss es un enunciado ue es deivable de las popiedades matemáticas ue tiene el Vecto de intensidad de Campo léctico con especto a las supeficies en el espacio. ste enunciado constituye

Más detalles

Lección 2. El campo de las cargas en reposo: campo electrostático.

Lección 2. El campo de las cargas en reposo: campo electrostático. Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés

Más detalles

Consideremos dos placas paralelas en contacto, con sus correspondientes espesores y conductividades.

Consideremos dos placas paralelas en contacto, con sus correspondientes espesores y conductividades. Continuación: Tansfeencia de calo a tavés de placas compuestas: Consideemos dos placas paalelas en contacto, con sus coespondientes espesoes y conductividades. En la supeficie de contacto la tempeatua

Más detalles

Particularidades y consejos sobre la estela

Particularidades y consejos sobre la estela Paticulaidades y consejos sobe la estela 9 Aplicando la fómula de Kutta F = ρ U sobe un pefil se obseva como hay una dependencia diecta ente la eistencia de una ciculación alededo del pefil y la geneación

Más detalles

Tema 1- CAMPOS ELÉCTRICOS

Tema 1- CAMPOS ELÉCTRICOS 1 Intoducción. Caga eléctica.(1.1) Tema 1- CAMPOS LÉCTRICOS 3 Conductoes y aislantes (1.) 4 Ley de Coulomb.(1.3) 5 Campo eléctico y pincipio de supeposición.(1.4) 6 Dipolo eléctico(1.4) 7 Líneas de campo

Más detalles

Potencial Escalar - Integrales de superposición. 2010/2011

Potencial Escalar - Integrales de superposición. 2010/2011 Potencial Escala - Integales de supeposición. / Electostática Definición os conductoes en electostática. Campo de una caga puntual. Aplicaciones de la ey de Gauss Integales de supeposición. Potencial electostático

Más detalles

Primer curso de Ingeniería Industrial. Curso 2009/2010 Dpto. Física Aplicada III 1

Primer curso de Ingeniería Industrial. Curso 2009/2010 Dpto. Física Aplicada III 1 Tema 4: Potencial eléctico Fundamentos Físicos de la Ingenieía Pime cuso de Ingenieía Industial Cuso 9/1 Dpto. Física Aplicada III 1 Índice Intoducción: enegía potencial electostática Difeencia de potencial

Más detalles

: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS

: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS UNVERSDAD NACONAL DEL CALLAO FACULTAD DE NGENERÍA ELÉCTRCA Y ELECTRÓNCA ESCUELA PROFESONAL DE NGENERÍA ELÉCTRCA CURSO : TEORÍA DE CAMPOS ELECTROMAGNÉTCOS PROFESOR : ng. JORGE MONTAÑO PSFL PROLEMAS RESUELTOS

Más detalles

Tema 4.-Potencial eléctrico

Tema 4.-Potencial eléctrico Tema 4: Potencial eléctico Fundamentos Físicos de la Ingenieía Pime cuso de Ingenieía Industial Cuso 6/7 Dpto. Física plicada III Univesidad de Sevilla 1 Índice Intoducción: enegía potencial electostática

Más detalles

Electrostática Clase 2 Vector Desplazamiento o densidad de flujo eléctrico. Ley de Gauss..

Electrostática Clase 2 Vector Desplazamiento o densidad de flujo eléctrico. Ley de Gauss.. Electostática Clase 2 Vecto Desplazamiento o densidad de flujo eléctico. Ley de Gauss.. Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA En cietos casos que se analizan

Más detalles

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( )

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( ) CÁLCULO VECTOIAL Opeaciones con vectoes libes Suma de vectoes libes La suma de n vectoes libes P P P n es un vecto libe llamado esultante = i j k la suma de las componentes espectivas, siendo las componentes

Más detalles

FÍSICA II: 1º Curso Grado de QUÍMICA

FÍSICA II: 1º Curso Grado de QUÍMICA FÍSICA II: 1º Cuso Gado de QUÍMICA 5.- DIPOLOS Y DIELÉCTRICOS 5.1 Se tiene una distibución de cagas puntuales según la figua. P Calcula cuánto vale a) el momento monopola y b) el momento dipola 5.2 Calcula

Más detalles

SUPERPOSICIÓN DE M. A.S.

SUPERPOSICIÓN DE M. A.S. SUPERPOSICIÓN DE M. A.S. Enconta la ecuación del movimiento que esulta de la supeposición de dos movimientos amónicos simples paalelos cuas ecuaciones son sen t + π A sen t + π con m A m. Hace un gáfico

Más detalles

CAMPO ELÉCTRICO Y POTENCIAL

CAMPO ELÉCTRICO Y POTENCIAL CMPO ELÉCTRICO Y POTENCIL INTERCCIONES ELECTROSTÁTICS (CRGS EN REPOSO) Caga eléctica: popiedad intínseca de la mateia ue se manifiesta a tavés de fuezas de atacción o epulsión Ley de Coulomb: expesa la

Más detalles

MOVIMIENTOS EN EL PLANO 1- VECTORES

MOVIMIENTOS EN EL PLANO 1- VECTORES 1 MOVIMIENTOS EN EL PLANO 1- VECTORES Las medidas de magnitudes ectoiales son los ectoes. Un ecto se epesenta gáficamente po una flecha que a desde el punto llamado oigen al etemo. La longitud del ecto

Más detalles

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 5/7 Potencial eléctrico

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 5/7 Potencial eléctrico Tema : Pincipios de la electostática 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 5/7 Potencial eléctico La ciculación del campo

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Tema. Sistemas consevativos Cuata pate: Movimiento planetaio. Satélites A) Ecuaciones del movimiento Suponemos que uno de los cuepos, de masa M mucho mayo que m, se encuenta en eposo en el oigen de coodenadas

Más detalles

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundamentos Físicos y Tecnológicos de la Infomática Cicuitos de Coiente Continua -Caga eléctica. Ley de Coulomb. Campo eléctico. -Potencial eléctico. Conductoes en euilibio electostático. Agustín Álvaez

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

UNIVERSIDAD POLITÉCNICA DE MADRID

UNIVERSIDAD POLITÉCNICA DE MADRID UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO (EIAE) Mecánica de Fluidos I Poblema de ecuaciones geneales Un cilindo de adio R 0 y una cacasa concéntica con el cilindo

Más detalles

El potencial en un punto de un campo de fuerzas eléctrico es la energía potencial que poseería la unidad de carga situada en dicho punto:

El potencial en un punto de un campo de fuerzas eléctrico es la energía potencial que poseería la unidad de carga situada en dicho punto: Campo eléctico Hemos visto hasta ahoa un tipo de inteacción, la gavitatoia, siendo siempe una fueza atactiva. En la mateia, además de esta, nos encontamos con: inteacción eléctica, inteacción débil,...

Más detalles

r r F a La relación de proporcionalidad que existe entre la fuerza y la aceleración que aparece sobre un punto material se define como la masa:

r r F a La relación de proporcionalidad que existe entre la fuerza y la aceleración que aparece sobre un punto material se define como la masa: LECCION 7: DINAMICA DEL PUNTO 7.. Fueza. Leyes de Newton. Masa. 7.. Cantidad de movimiento. Impulso mecánico. 7.3. Momento cinético. Teoema del momento cinético. 7.4. Ligaduas. Fuezas de enlace. 7.5. Ecuación

Más detalles

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables (x 0 ). x ik. x ik 1

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables (x 0 ). x ik. x ik 1 1. RESUMEN Ingenieía Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Vaias Vaiables 08-1 Ingenieía Matemática Univesidad de Chile Guía Semana 5 Teoema del valo medio.

Más detalles

D = 4 cm. Comb. d = 2 mm

D = 4 cm. Comb. d = 2 mm UNIDAD 7 - POBLEMA 55 La figua muesta en foma simplificada el Ventui de un cabuado. La succión geneada en la gaganta, po el pasaje del caudal de aie debe se suficiente paa aspia un cieto caudal de combustible

Más detalles

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 5-. Ejemplo 1º. Aplicando el teoema de Gauss halla el campo eléctico ceado po una distibución esféica de

Más detalles

Teoremas Integrales. V(x j ) ds

Teoremas Integrales. V(x j ) ds Semana 2 - Clase 5 24/03/09 Tema : Algeba ectoial Teoemas Integales. Teoema de la Divegencia o de Gauss Sea = x j ) un campo vectoial definido sobe un volumen cuya fontea es la supeficie y ˆn el vecto

Más detalles

Capa límite laminar incompresible. Soluciones de semejanza

Capa límite laminar incompresible. Soluciones de semejanza Capa límite lamina incompesible. Soluciones de semejanza M. Rodíguez 1 Solución de Blasius (198) Las ecuaciones de la capa límite paa una placa plana son u x + v y = a intega con las condiciones u u x

Más detalles

ANEJO 2 CÁLCULO DE DEPÓSITOS CILÍNDRICOS CIRCULARES SEGÚN LA TEORIA DE LÁMINAS A2.1.- INTRODUCCIÓN

ANEJO 2 CÁLCULO DE DEPÓSITOS CILÍNDRICOS CIRCULARES SEGÚN LA TEORIA DE LÁMINAS A2.1.- INTRODUCCIÓN Anejo ANEJO CÁLCULO DE DEPÓSITOS CILÍNDRICOS CIRCULARES SEGÚN LA TEORIA DE LÁMINAS A.1.- INTRODUCCIÓN En el capítulo 3 se ha desaollado una fomulación paa el dimensionamiento y compobación de depósitos

Más detalles

Ecuaciones del movimiento de un fluido

Ecuaciones del movimiento de un fluido Ecuaciones del movimiento de un fluido 1 Foma fundamental El tenso de tensiones Relación constitutiva paa un fluido Newtoniano La ecuación de Navie-Stokes El tenso de tensiones paa flujos incompesibles

Más detalles

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores.

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores. CAPÍTULO Campo eléctico II: distibuciones continuas de caga Índice del capítulo.1 Cálculo del campo eléctico mediante la ley de Coulomb.. La ley de Gauss..3 Cálculo del campo eléctico mediante la ley de

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

XIII.- TEOREMA DEL IMPULSO

XIII.- TEOREMA DEL IMPULSO XIII.- TEOREMA DEL IMPULSO http://libos.edsauce.net/ XIII.1.- REACCIÓN DE UN FLUIDO EN MOVIMIENTO SOBRE UN CANAL GUÍA El cálculo de la fueza ejecida po un fluido en movimiento sobe el canal que foman los

Más detalles

OTRAS APLICACIONES DE LA APROXIMACIÓN DE CAPA LÍMITE LAMINAR. CORRIENTES LIBRES.

OTRAS APLICACIONES DE LA APROXIMACIÓN DE CAPA LÍMITE LAMINAR. CORRIENTES LIBRES. OTRAS APLICACIONES DE LA APROXIMACIÓN DE CAPA LÍMITE LAMINAR. CORRIENTES LIBRES. 1 Intoducción Los movimientos de choos de líquido en el seno del mismo líquido, la estela de cuepos en el seno de una coiente

Más detalles

Soluciones de la Tarea #6 de Física I

Soluciones de la Tarea #6 de Física I Soluciones de la Taea #6 de Física I Tomás Rocha Rinza 4 de octube de 006 1. Puesto que la tayectoia del satélite alededo de la Tiea es cicula, entonces ocue en un plano. Si se considea a la Tiea fija

Más detalles

Movimiento en dos dimensiones

Movimiento en dos dimensiones Movimiento en dos dimensiones Nivelatoio de Física ESPOL Ing. José David Jiménez Continuación Contenido: Movimiento cicula Movimiento cicula Existen muchos ejemplos de movimiento cicula: Discos de música

Más detalles

r 2 F 2 E = E C +V = 1 2 mv 2 GMm J O = mr 2 dθ dt = mr 2 ω = mrv θ v θ = J O mr E = O 2mr GMm 2 r

r 2 F 2 E = E C +V = 1 2 mv 2 GMm J O = mr 2 dθ dt = mr 2 ω = mrv θ v θ = J O mr E = O 2mr GMm 2 r Física paa Ciencias e Ingenieía 18.1 18.1 Leyes de Keple Supongamos que se ha lanzado un satélite atificial de masa m, sometido al campo gavitatoio teeste, de tal manea que su enegía mecánica sea negativa.

Más detalles

Tema 1: Electrostática en el vacío

Tema 1: Electrostática en el vacío Tema : lectostática en el vacío. Caga eléctica Le de Coulomb. Campo eléctico.3 Campo ceado po distibuciones continuas de caga.4 Le de Gauss.5 Potencial electostático.6 negía potencial electostática Masolle

Más detalles

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1 Tema Geometía en el espacio Matemáticas II º Bachilleato ÁNGULOS EJERCICIO 5 : λ Dados las ectas : λ, s : λ calcula el ángulo que foman: a) s b) s π el plano π : ; i j k a) Hallamos el vecto diecto de

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FÍSICA GENERAL II GUÍA - Campo eléctico: Ley de Gauss Objetivos de apendizaje Esta guía es una heamienta que usted debe usa paa loga los siguientes objetivos: Defini el concepto de Flujo de Campo Eléctico.

Más detalles

CAMPOS ELECTROMAGNÉTICOS

CAMPOS ELECTROMAGNÉTICOS CAMPOS ELECTROMAGNÉTICOS GRADO EN INGENIERÍA AEROESPACIAL EN AERONAVEGACIÓN UNIVERSIDAD RE JUAN CARLOS «ANÁLISIS VECTORIAL» CURSO ACADÉMICO 15/16 Índice 1. Escalaes vectoes 2 1.1. Nociones básicas de análisis

Más detalles

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2).

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2). GUIA 0 1 - Halla el módulo del vecto de oigen en (20,-5,8) etemo en (-4,-3,2). 2 - a) Halla las componentes catesianas de los siguientes vectoes: (i) A (ii) A = 4 A = θ = 30º 4 θ =135º A (iii) (iv) A θ

Más detalles

CAMPOS ELECTROMAGNÉTICOS Tema 3 Ecuaciones de Maxwell

CAMPOS ELECTROMAGNÉTICOS Tema 3 Ecuaciones de Maxwell CAMPOS ELECTROMAGNÉTICOS Tema Ecuaciones de Mawell P.- En una egión totalmente vacía ha un campo eléctico E = kt uˆ oto magnético con B B =. La magnitud k es constante. Calcula B. = B = ε µ + k k ' P.-

Más detalles

CAPÍTULO III EL POTENCIAL ELÉCTRICO. El trabajo que se realiza al llevar la carga prueba positiva

CAPÍTULO III EL POTENCIAL ELÉCTRICO. El trabajo que se realiza al llevar la carga prueba positiva Tópicos de Electicidad y Magnetismo J.Pozo y.m. Chobadjian. CPÍTULO III EL POTENCIL ELÉCTICO.. Definición de difeencia de potencial El tabajo ue se ealiza al lleva la caga pueba positiva del punto al punto

Más detalles

Curvas paramétricas. { x + 2y = 4 y = t. { x = 4 2t y = t y denimos f(t) = (4 2t, t) con t R. y = t. Facultad de Ciencias UNAM Geometría Analítica I

Curvas paramétricas. { x + 2y = 4 y = t. { x = 4 2t y = t y denimos f(t) = (4 2t, t) con t R. y = t. Facultad de Ciencias UNAM Geometría Analítica I Unidad 2. Tigonometía 2.7 Cuvas paaméticas Cuvas paaméticas Supongamos que en un plano catesiano dibujamos una cuva, y que el punto de la cuva coespondiente al instante t se denota po P(t) entonces, como

Más detalles

Las imágenes de la presentación han sido obtenidas del libro:

Las imágenes de la presentación han sido obtenidas del libro: Las imágenes de la pesentación han sido obtenidas del libo: Physics fo Scientists and Enginees Paul A. Tiple Gene Mosca Copyight 2004 by W. H. Feeman & Company Supongamos una función f = f ( x, y, z) Con

Más detalles

Ejemplos de cálculo del potencial, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp

Ejemplos de cálculo del potencial, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp Ejemplos de cálculo del potencial, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 6-. Ejemplo º. Calcula el potencial eléctico ceado po un hilo ectilíneo e infinito, que pesenta

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando MECNIC PLICD I. EXMEN PCIL. 17-04-99. PIME EJECICI TIEMP: 75 1. btene la expesión de la velocidad de ω V s ω V s sucesión del cento instantáneo de otación cuando =. 2 2. Indica qué afimaciones son cietas

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Los ángulos: Se pueden medi en: GRADOS RADIANES: El adián se define como el ángulo que limita un aco cuya longitud es igual al adio del aco. Po tanto, el ángulo, α,

Más detalles

CP; q v B m ; R R qb

CP; q v B m ; R R qb Campo Magnético Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos (N y S). Si acecamos

Más detalles

X I OLIMPIADA NACIONAL DE FÍSICA

X I OLIMPIADA NACIONAL DE FÍSICA X I LIMPIADA NACINAL D FÍSICA FAS LCAL - UNIVSIDADS D GALICIA - 18 de Febeo de 2000 APLLIDS...NMB... CNT... PUBA BJTIVA 1) Al medi la masa de una esfea se obtuvieon los siguientes valoes (en gamos): 4,1

Más detalles

5. ROTACION; CINEMATICA Y DINAMICA

5. ROTACION; CINEMATICA Y DINAMICA 73 5. OTACION; CINEMATICA Y DINAMICA Los movimientos cuvilíneos se dan en el plano o en el espacio, son, po tanto, movimientos bi o incluso tidimensionales. Ello hace que paa expesa la posición sea necesaio

Más detalles

Mecánica I Tema 1 Cinemática de la Partícula

Mecánica I Tema 1 Cinemática de la Partícula Mecánica I Tema 1 Cinemática de la Patícula Manuel Rui Delgado 27 de septiembe de 2010 Cinemática de la patícula Definiciones: Cinemática, punto, sólido Definiciones: Sistemas de efeencia, posición, coodenadas

Más detalles

2º de Bachillerato Campo Eléctrico

2º de Bachillerato Campo Eléctrico Física TEM 6 º de achilleato ampo Eléctico.- Tes cagas elécticas puntuales iguales, de n, están situadas en el vacío ocupando los puntos cuyas coodenadas en metos son (,, (,4 y (,. alcula la fueza que

Más detalles

II. Electrostática tica en el vacío

II. Electrostática tica en el vacío II. lectostática tica en el vacío 6. otencial electostá Gabiel Cano Gómez, G 29/1 Dpto. Física F plicada III (U. Sevilla) Campos lectomagnés s Ingenieo de Telecomunicación II. lectostática tica en el vacío

Más detalles

Las situaciones de variación temporal lenta se caracterizan porque en las ecuaciones de Maxwell se puede despreciar el término:

Las situaciones de variación temporal lenta se caracterizan porque en las ecuaciones de Maxwell se puede despreciar el término: Electicidad y Magnetismo Vaiación tempoal lenta 16/1/28 EyM 7-1 Electodinámica Vaiación tempoal lenta Vaiación tempoal lenta Las situaciones de vaiación tempoal lenta se caacteizan poque en las ecuaciones

Más detalles

Tema 1: Análisis vectorial

Tema 1: Análisis vectorial Tema 1: Análisis vectoial Campos Electomagnéticos º Cuso Ingenieía Industial Dpto.Física Aplicada III Cuso 010/011 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Benal Ménde 1 Tema 1: Índice (I)

Más detalles

ACTIVIDAD 3. Fecha de entrega:

ACTIVIDAD 3. Fecha de entrega: CTIVIDD 3 Fecha de entega: lumno: Tiempo inetido lumno: lumno: lumno: esuele el poblema CS_4 de Cinemática del sólido compobando su esultado con esta solución y a continuación ealiza los eecicios complementaios.

Más detalles

Física y Química 1ºBto. Profesor Félix Muñoz

Física y Química 1ºBto. Profesor Félix Muñoz 1. Tes cagas de + 3 µc, µc y + 1 µc se encuentan en el vacío situadas espectivamente en los puntos A (- 3,0), O (0, 0) y B (3, 0). Halla el potencial eléctico en el punto P (0, ). Las longitudes están

Más detalles

PROBLEMAS CON CONDICIONES DE CONTORNO

PROBLEMAS CON CONDICIONES DE CONTORNO PROBLEMAS CON CONDICIONES DE CONTORNO PREGUNTAS. Qué es el método de imágenes?, agumente.. Paa una caga puntual q fente a una esfea conductoa, mantenida a potencial V, indique cantidad y ubicación de cagas

Más detalles

U.D. 3. I NTERACCIÓN GRAVITATORIA

U.D. 3. I NTERACCIÓN GRAVITATORIA U.D. 3. I NERACCIÓN GRAVIAORIA RESUMEN Ley de gavitación univesal: odos los cuepos se ataen con una fueza diectamente popocional al poducto de sus masas e invesamente popocional al cuadado de la distancia

Más detalles

( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( )

( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( ) CAMPOS: OPERADOR NABLA Repesenta los campos vectoiales A i + j, B i j. Halla la divegencia el otacional de cada uno de ellos eplica el significado físico de los esultados obtenidos. Solución: I.T.I., 3,

Más detalles

Flujo eléctrico. Michael Faraday, septiembre de íd. 25 de agosto de 1867) fue un físico y químico inglés)

Flujo eléctrico. Michael Faraday, septiembre de íd. 25 de agosto de 1867) fue un físico y químico inglés) Flujo eléctico Michael Faaday, (Londes, 22 de septiembe de 1791 - íd. 25 de agosto de 1867) fue un físico y químico inglés) Flujo eléctico (Φ) 2 N m φ E da A C Flujo eléctico (Φ) Cuál es el flujo eléctico

Más detalles

Electromagnetismo II

Electromagnetismo II Electomagnetismo II emeste: 15-1 EXAMEN FINAL D. A. Reyes-oonado Ayud. J. astejón-figueoa Ayud. P. E. Roman-Taboada Elaboó: Pedo Eduado Roman Taboada 1.- Poblema: (pts) (a) Escibe las cuato ecuaciones

Más detalles

. Estos vectores unitarios apuntan siempre en la misma dirección y en el mismo sentido, y no cambian, por tanto, de un punto a otro del espacio.

. Estos vectores unitarios apuntan siempre en la misma dirección y en el mismo sentido, y no cambian, por tanto, de un punto a otro del espacio. CAPÍTUL 7.01 ÁLGEBRA VECTRIAL Sistemas de coodenadas Un sistema de coodenadas es un conjunto de valoes numéicos que deteminan unívocamente la posición de un punto en el espacio euclidiano. Las coodenadas

Más detalles

LA RUEDA PELTON (Shames)

LA RUEDA PELTON (Shames) LA RUEDA PELTON (Shames) Es una tubina de impulsión. Uno o más choos de agua, que sale(n) de una tobea a velocidad alta, incide sobe un sistema de cuchaas unidas a una ueda. El odete (cuchaas y ueda) tiene

Más detalles

Hidrostática y Fluidos Ideales.

Hidrostática y Fluidos Ideales. Hidostática y Fluidos Ideales. Intoducción a la Física Ambiental. Tema 5. Tema IFA5. (Pof. M. RAMOS Tema 5.- Hidostática y Fluidos Ideales. Hidostática: Pesión. Distibución de pesiones con la pofundidad:

Más detalles

TEORIA DE CAMPOS ESCALARES Y CAMPOS VECTORIALES MIGUEL ANGEL PASCUAL IGLESIAS

TEORIA DE CAMPOS ESCALARES Y CAMPOS VECTORIALES MIGUEL ANGEL PASCUAL IGLESIAS TEORIA DE CAMPOS ESCALARES Y CAMPOS VECTORIALES MIGUEL ANGEL PASCUAL IGLESIAS TEORIA DE CAMPOS ESCALARES Y CAMPOS VECTORIALES GUIÓN DEL TEMA 1. Campos Escalaes Vectoiales.. Supeficies de nivel de un campo

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso (Septiembre) MATERIA: FÍSICA

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso (Septiembre) MATERIA: FÍSICA UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Cuso 008-009 (Septiembe) MATERIA: FÍSICA INSTRUCCIONES GENERALES y VALORACIÓN La pueba consta de dos

Más detalles

Una función es creciente en un intervalo [a,b] si dados dos puntos cualesquiera del intervalo, x 1, x 2, x 1 < x 2 se cumple que f(x 1 ) < f(x 2 )

Una función es creciente en un intervalo [a,b] si dados dos puntos cualesquiera del intervalo, x 1, x 2, x 1 < x 2 se cumple que f(x 1 ) < f(x 2 ) Aplicaciones de la deivada MATEMÁTICAS II CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN.. Definiciones Se dice que una función f es ceciente en un punto si paa cualquie punto de un entono de, (, + ) se veifica:

Más detalles

HIDRODINÁMICA Roberto Laura (versión preliminar) Caudal de una corriente.

HIDRODINÁMICA Roberto Laura (versión preliminar) Caudal de una corriente. HIDODINÁMICA obeto Laua (esión pelimina) Caudal de una coiente Consideemos una coiente de agua como la de un ío o la que coe po una cañeía Se llama caudal Q de la coiente al cociente ente el olumen Δ V

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4

SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4 SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4 Ejecicio de aplicación 44 (Deivación) Se desea obtene una viga ectangula a pati de un tonco cilíndico de 6 cm de diámeto a) Demosta que la viga con

Más detalles

Iw La energía cinética de Rotación es simplemente una manera conveniente de expresar la energía cinética de un cuerpo que está girando.

Iw La energía cinética de Rotación es simplemente una manera conveniente de expresar la energía cinética de un cuerpo que está girando. DNAMCA ROTACONAL ENERGA CNÉTCA DE ROTACON Y MOMENTO DE NERCA Cada patícula en un cuepo en otación, tiene una cieta cantidad de enegía cinética, una patícula de masa a una distancia V ω Luego: La Enegía

Más detalles

Práctica 4 FLUJO POTENCIAL

Práctica 4 FLUJO POTENCIAL Ampliación de Fenómenos de Tanspote Áea de Mecánica de Fluidos PIV - 1 Ampliación de Fenómenos de Tanspote Áea de Mecánica de Fluidos PIV - Páctica 4 FLUJO POTENCIAL 4.1. INTRODUCCIÓN Mucos poblemas de

Más detalles

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL EMA 3 MOIMIENO CICULA Y GAIACIÓN UNIESAL El movimiento cicula unifome (MCU) Movimiento cicula unifome es el movimiento de un cuepo que tiene po tayectoia una cicunfeencia y descibe acos iguales en tiempos

Más detalles

BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION

BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION FACULTAD DE CIENCIAS CURSO DE INTRODUCCION A LA METEOROLOGIA 11 BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION 1. INTRODUCCION A LA CINEMATICA El oigen de la dinámica se emonta a los pimeos expeimentos

Más detalles

Elementos de Elasticidad:

Elementos de Elasticidad: Elementos de Elasticidad: Consideemos el sólido como un continuo. Ondas de λ ~ 0-6 cm ν ~ 0, 0 H. Le de Hooke: Las defomaciones son popocionales a las fueas que las povocan. Si no se cumple, estamos en

Más detalles

Tema 0 Conocimientos previos al curso de Física

Tema 0 Conocimientos previos al curso de Física Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional

Más detalles

Electrostática. Campo electrostático y potencial

Electrostática. Campo electrostático y potencial Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes

Más detalles

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los

Más detalles