Curvas paramétricas. { x + 2y = 4 y = t. { x = 4 2t y = t y denimos f(t) = (4 2t, t) con t R. y = t. Facultad de Ciencias UNAM Geometría Analítica I

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Curvas paramétricas. { x + 2y = 4 y = t. { x = 4 2t y = t y denimos f(t) = (4 2t, t) con t R. y = t. Facultad de Ciencias UNAM Geometría Analítica I"

Transcripción

1 Unidad 2. Tigonometía 2.7 Cuvas paaméticas Cuvas paaméticas Supongamos que en un plano catesiano dibujamos una cuva, y que el punto de la cuva coespondiente al instante t se denota po P(t) entonces, como los puntos del plano pueden ubicase mediante su abscisa y su odenada, la dependencia de t indica que cada coodenada es función de t, es deci P (t) = (x(t), y(t)) donde t es el paámeto y x(t), y(t) son las ecuaciones paaméticas de la cuva. De hecho, toda cuva coespondiente a la gá?ca de una función eal de vaiable eal, f : R R tiene como ecuaciones paaméticas x = x, y(x) = f(x) Lo mismo ocue paa la cuva descita po un punto que se mueve en el espacio catesiano dependiendo de un paámeto, P (t) = (x(t), y(t), z(t)) Ejemplo Paametice la ecta cuya ecuación catesiana es x + 2y 4 = 0 Solución Tenemos que x + 2y 4 = 0 x = 4 2y aquí se obseva que y es libe, podemos asignale un paámeto t y hacemos y = t po lo que { x + 2y = 4 y = t { x = 4 2y y = t { x = 4 2t y = t y denimos f(t) = (4 2t, t) con t R Geometía Analítica I Pof. Esteban Rubén Hutado Cuz 1

2 Unidad 2. Tigonometía 2.7 Cuvas paaméticas Ciculo Halla las ecuaciones paaméticas del cículo de adio a Según la gua, dado un punto P en el ciculo y tomando las poyecciones a los ejes coodenados se tiene { x = a cos θ P = θ [0, 2π] y = a sen θ po lo tanto f(θ) = (x(θ), y(θ)) = (a cos θ, a sen θ) Cicloide Una cuva muy impotante en matemáticas es la llamada CICLOIDE, denida como la cuva que descibe un punto jo de una cicunfeencia de adio a, la cual ueda, sin deslizase, a una velocidad constante sobe el eje x. Paa obtene sus ecuaciones paaméticas pocedemos de la siguiente manea Geometía Analítica I Pof. Esteban Rubén Hutado Cuz 2

3 Unidad 2. Tigonometía 2.7 Cuvas paaméticas Según la gáca se tiene po oto lado x = OL = OA LA OA = ac P CA = θ LA = P N = sen θ Po lo tanto x = θ sen θ De manea análoga, según la gáca se tiene y = LP = AC NC po oto lado AC = NC = cos θ Po lo tanto po lo tanto y = cos θ f(θ) = (x(θ), y(θ)) = (θ sen θ, cos θ) Epicicloide Si un punto P es jo sobe una cicunfeencia y esta cicunfeencia está odando, sin esbala, sobe ota cicunfeencia, la tayectoia descita po el punto P se denomina Epicicloide Geometía Analítica I Pof. Esteban Rubén Hutado Cuz 3

4 Unidad 2. Tigonometía 2.7 Cuvas paaméticas Paa obtene sus ecuaciones paaméticas pocedemos de la siguiente manea De la gua se obseva que paa el punto A cos(θ) = sen(θ) = po tanto las coodenadas del punto A son: x 0 + ( 0 + ) cos(θ) = x y 0 + ( 0 + ) sen(θ) = y A = (( 0 + ) cos(θ), ( 0 + ) sen(θ)) Ahoa bien como el punto P se encuenta en un cículo de adio podemos paametiza dicho cículo asi: P ( cos β, sen β) ademas según la gua OAP β + θ = π β = OAP + θ π también po lo tanto β = θ 0 OAP = OAX θ 0 = OAP θ 0 = OAP ( ( ) ( )) θ 0 θ 0 + θ π P cos + θ π, sen + θ π ( ( ) ( )) θ 0 θ 0 P cos + θ, sen + θ Geometía Analítica I Pof. Esteban Rubén Hutado Cuz 4

5 Unidad 2. Tigonometía 2.7 Cuvas paaméticas Po lo tanto las coodenadas del punto P desde O son: ( ( θ 0 x = ( 0 + ) cos(θ) cos y = )) + θ ( ( )) θ 0 ( 0 + ) sen(θ) sen + θ Hipocicloide Es una cuva descita po un punto de una cicunfeencia que ueda sin esbala dento de ota cicunfeencia ja Paa obtene sus ecuaciones paaméticas pocedemos a pati de la gua de la siguiente manea 1. Tenemos la igualdad de las longitudes de los acos Rθ = (θ + α) Geometía Analítica I Pof. Esteban Rubén Hutado Cuz 5

6 Unidad 2. Tigonometía 2.7 Cuvas paaméticas en la gua el ángulo α se mide en diección de las manecillas del eloj desde X al punto P θ de ahí el signo menos 2. El cento C θ de la cicunfeencia inteio está dado po ((R ) cos (θ), (R ) sen θ) 3. Las coodenadas de los puntos P θ de la hipocicloide con especto al sistema coodenado punteado son ( cos( α), sen( α)) = ( cos(α), sen(α)) 4. Las coodenadas de P θ en el sistema de coodenadas con cento en 0 esulta de sumale C θ y como α = R θ 5. Se tiene que ( ( ) ( )) R R (R ) cos (θ) + cos θ, (R ) sen (θ) sen θ Geometía Analítica I Pof. Esteban Rubén Hutado Cuz 6

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

IV. Geometría plana. v v2 2. u v = u v cos α

IV. Geometría plana. v v2 2. u v = u v cos α Talle de Matemáticas 16 IV. Geometía plana IR 2 = {(x, y)/x, y IR} puede identificase con el espacio de vectoes libes del plano utilizando la base canónica: v =(v 1,v 2 )=v 1 (1, 0) + v 2 (0, 1) = v 1

Más detalles

Movimientos rectilíneos o de trayectoria recta. Movimientos curvilíneos o de trayectoria curva (circular, elíptica, parabólica, etc.).

Movimientos rectilíneos o de trayectoria recta. Movimientos curvilíneos o de trayectoria curva (circular, elíptica, parabólica, etc.). 1.- Clasificación de movimientos. 1. Tomando como efeencia la tayectoia: Movimientos ectilíneos o de tayectoia ecta. Movimientos cuvilíneos o de tayectoia cuva (cicula, elíptica, paabólica, etc.). 2. Tomando

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Tema. Sistemas consevativos Cuata pate: Movimiento planetaio. Satélites A) Ecuaciones del movimiento Suponemos que uno de los cuepos, de masa M mucho mayo que m, se encuenta en eposo en el oigen de coodenadas

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

Movimiento en dos dimensiones

Movimiento en dos dimensiones Movimiento en dos dimensiones Nivelatoio de Física ESPOL Ing. José David Jiménez Continuación Contenido: Movimiento cicula Movimiento cicula Existen muchos ejemplos de movimiento cicula: Discos de música

Más detalles

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( )

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( ) CÁLCULO VECTOIAL Opeaciones con vectoes libes Suma de vectoes libes La suma de n vectoes libes P P P n es un vecto libe llamado esultante = i j k la suma de las componentes espectivas, siendo las componentes

Más detalles

LECCIÓN 5: CINEMÁTICA DEL PUNTO

LECCIÓN 5: CINEMÁTICA DEL PUNTO LECCIÓN 5: CINEMÁTICA DEL PUNTO 5.1.Punto mateial. 5.. Vecto de posición. Tayectoia. 5.3. Vecto velocidad. 5.4. Vecto aceleación. 5.5. Algunos tipos de movimientos. 5.1. PUNTO MATERIAL. Un punto mateial

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

3) (1p) Estudia la posición relativa de recta y plano.

3) (1p) Estudia la posición relativa de recta y plano. CURSO 007-008. 16 de mayo de 008. 1) (1p) Si A(x 1,y 1,z 1 ) y B(x,y,z ) son dos puntos del espacio, demuesta que [AB ]=(x -x 1,y -y 1,z -z 1 ). ) (1p) Deduce la ecuación vectoial de la ecta. ) (1p) Estudia

Más detalles

MARCOSAPB CIENCIAS NATURALES FÍSICA M. CIRCULAR U N.S.Q INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ

MARCOSAPB CIENCIAS NATURALES FÍSICA M. CIRCULAR U N.S.Q INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ MARCOSAPB CIENCIAS NAURALES FÍSICA M. CIRCULAR U. -- 0 - - 03. N.S.Q INSIUCIÓN EDUCAIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ M.C.U. MOVIMIENO CIRCULAR UNIFORME Pieda atada a una cueda: estoy giando La tiea:

Más detalles

: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS

: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS UNVERSDAD NACONAL DEL CALLAO FACULTAD DE NGENERÍA ELÉCTRCA Y ELECTRÓNCA ESCUELA PROFESONAL DE NGENERÍA ELÉCTRCA CURSO : TEORÍA DE CAMPOS ELECTROMAGNÉTCOS PROFESOR : ng. JORGE MONTAÑO PSFL PROLEMAS RESUELTOS

Más detalles

1. (JUN 04) Se consideran la recta y los planos siguientes: 4

1. (JUN 04) Se consideran la recta y los planos siguientes: 4 Matemáticas II Cuso.. (JUN ) Se considean la ecta los planos siguientes ; ;. Se pide (a) Detemina la posición elativa de la ecta con especto a cada uno de los planos. (b) Detemina la posición elativa de

Más detalles

Tema 0 Conocimientos previos al curso de Física

Tema 0 Conocimientos previos al curso de Física Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional

Más detalles

Trigonometría. Positivo

Trigonometría. Positivo Seminaio Univesitaio de Ingeso 17 Tigonometía La tigonometía es una de las amas de la matemática, cuyo significado etimológico es la medición de los tiángulos. Se deiva del vocablo giego tigōno: "tiángulo"

Más detalles

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo: MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,

Más detalles

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

Ejemplos 1. Cinemática de una Partícula

Ejemplos 1. Cinemática de una Partícula Ejemplos 1. inemática de una atícula 1.1. Divesos Sistemas oodenadas 1.1.* La velocidad peiféica de los dientes de una hoja de siea cicula (diámeto 50mm) es de 45m/s cuando se apaga el moto y, la velocidad

Más detalles

Fig. 1 Esquema para el cálculo de B

Fig. 1 Esquema para el cálculo de B P1- CAMPO DE UN AAMRE (EY DE OT-SAVART). Considee una poción de un alambe ecto de longitud po el que cicula una coiente constante. (a) Calcule la inducción magnética paa puntos sobe el plano que divide

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

Ejemplos 2. Cinemática de los Cuerpos Rígidos

Ejemplos 2. Cinemática de los Cuerpos Rígidos Ejemplos. Cinemática de los Cuepos Rígidos.1. Rotación alededo de un eje fijo.1.** El bloque ectangula ota alededo de la ecta definida po los puntos O con una velocidad angula de 6,76ad/s. Si la otación,

Más detalles

SERIE # 3 CÁLCULO VECTORIAL

SERIE # 3 CÁLCULO VECTORIAL SERIE # 3 ÁLULO VETORIAL ÁLULO VETORIAL Página 1 1) Sea el campo vectoial F (x,y,)=( 3x+ y)i+( x+ y ) j ( x) k. alcula lago de la cuva : 4 5 x = + y y =, del punto A ( 3, 1, 1) al punto B ( 3, 1, -1).

Más detalles

SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO

SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO Sugeencias paa quien impate el cuso: Se espea que con la popuesta didáctica pesentada en conjunción con los apendizajes que sobe el estudio de la tigonometía

Más detalles

UNI DAD 5 ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES. Objetivos

UNI DAD 5 ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES. Objetivos UNI DAD 5 ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES Objetivos Geometía analítica Intoducción coodenadas polaes 5.1. Ecuaciones catesianas de cuvas planas Ecuaciones catesianas de las cónicas fundamentales

Más detalles

Soluciones de la Tarea #6 de Física I

Soluciones de la Tarea #6 de Física I Soluciones de la Taea #6 de Física I Tomás Rocha Rinza 4 de octube de 006 1. Puesto que la tayectoia del satélite alededo de la Tiea es cicula, entonces ocue en un plano. Si se considea a la Tiea fija

Más detalles

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Los ángulos: Se pueden medi en: GRADOS RADIANES: El adián se define como el ángulo que limita un aco cuya longitud es igual al adio del aco. Po tanto, el ángulo, α,

Más detalles

IV. SISTEMAS DE COORDENADAS Y ALGUNOS CONCEP TOS

IV. SISTEMAS DE COORDENADAS Y ALGUNOS CONCEP TOS IV. SISTEMAS DE COORDENADAS Y ALGUNOS CONCEP TOS A. COORDENADAS POLARES Dado un punto en el plano catesiano, (coodenadas ectangulaes), dicho punto puede se epesentado con otas coodenadas (coodenadas polaes)

Más detalles

1. MECÁNICA GENERAL 1.3. CINEMÁTICA DEL SÓLIDO RÍGIDO

1. MECÁNICA GENERAL 1.3. CINEMÁTICA DEL SÓLIDO RÍGIDO Fundamentos y Teoías Físicas ETS Aquitectua 1. MECÁNICA GENERAL 1.3. CINEMÁTICA DEL SÓLIDO RÍGIDO Se define sólido ígido como un sistema de puntos mateiales cuyas distancias son inaiables. Cuando un cuepo

Más detalles

2. CURVAS EN EL SISTEMA POLAR

2. CURVAS EN EL SISTEMA POLAR 2. CURVAS EN EL SISTEMA POLAR Objetivo: El alumno obtendá ecuaciones en foma pola de cuvas en el plano y deteminaá las caacteísticas de éstas a pati de su ecuación en foma pola. Contenido: 2.1 Sistema

Más detalles

EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 25 AÑOS SIN CICLO MEDIO COMPLETO. PRACTICO 3 Función Lineal Rectas Noviembre 2011

EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 25 AÑOS SIN CICLO MEDIO COMPLETO. PRACTICO 3 Función Lineal Rectas Noviembre 2011 EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 5 AÑOS SIN CICLO MEDIO COMPLETO PRACTICO Función Lineal Rectas Noviembe RECORDAR: Una unción lineal es de la oma popiedad que los cocientes incementales:

Más detalles

PREGUNTAS 1) El resultado de calcular. 100x es: A) ±10x B) 50 x C) 10x D) 10 x

PREGUNTAS 1) El resultado de calcular. 100x es: A) ±10x B) 50 x C) 10x D) 10 x La siguiente colección de ejecicios es una muesta de lo que podía contene la Evaluación Diagnóstica de Matemática, que se toma paa ingesa a cusa cualquiea de las caeas que se ofecen en la FACULTAD DE CIENCIAS

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

6: PROBLEMAS METRICOS

6: PROBLEMAS METRICOS Unidad 6: PROBLEMAS METRICOS 6.1.- DIRECCIONES DE RECTAS Y PLANOS Los poblemas afines tatan de incidencias (ve si un punto está contenido en una ecta o en un plano y ve si una ecta está contenida en un

Más detalles

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r Fenando Baoso Loenzo GEOMETRÍA ANALÍTICA 1. Dados los vectoes cuyas coodenadas son u = ( 10, 2) y v = (13, 2), calcula el módulo u 43 u 298621 del vecto esultante de la siguiente combinación lineal w =

Más detalles

. Estos vectores unitarios apuntan siempre en la misma dirección y en el mismo sentido, y no cambian, por tanto, de un punto a otro del espacio.

. Estos vectores unitarios apuntan siempre en la misma dirección y en el mismo sentido, y no cambian, por tanto, de un punto a otro del espacio. CAPÍTUL 7.01 ÁLGEBRA VECTRIAL Sistemas de coodenadas Un sistema de coodenadas es un conjunto de valoes numéicos que deteminan unívocamente la posición de un punto en el espacio euclidiano. Las coodenadas

Más detalles

TEMAS DE MATEMATICAS (Oposiciones de Secundaria)

TEMAS DE MATEMATICAS (Oposiciones de Secundaria) TEMAS DE MATEMATICAS (Oposiciones de Secundaia) TEMA 47 GENERACIÓN DE CURVAS COMO ENVOLVENTES.. Intoducción.. Envolvente... Definición de Envolvente... Existencia de Envolvente en el Plano..3. Deteminación

Más detalles

r 2 F 2 E = E C +V = 1 2 mv 2 GMm J O = mr 2 dθ dt = mr 2 ω = mrv θ v θ = J O mr E = O 2mr GMm 2 r

r 2 F 2 E = E C +V = 1 2 mv 2 GMm J O = mr 2 dθ dt = mr 2 ω = mrv θ v θ = J O mr E = O 2mr GMm 2 r Física paa Ciencias e Ingenieía 18.1 18.1 Leyes de Keple Supongamos que se ha lanzado un satélite atificial de masa m, sometido al campo gavitatoio teeste, de tal manea que su enegía mecánica sea negativa.

Más detalles

LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA

LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA OBJETIVOS I.- Loga el equilibio estático de objetos que pueden ota en tono a un eje, po medio de la aplicación de fuezas y toques. INTRODUCCIÓN

Más detalles

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula.

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula. Junio OPCÓN Poblema. a) Si obsevamos los desaollos de ) ( y ) ( vemos que se difeencian en el cuadado de la matiz unitaia. Dado que en este caso se veifica: ) ( ) ( ) ( ) ( + + ) ( ) ( ) ( b) b.) Paa que

Más detalles

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1 Tema Geometía en el espacio Matemáticas II º Bachilleato ÁNGULOS EJERCICIO 5 : λ Dados las ectas : λ, s : λ calcula el ángulo que foman: a) s b) s π el plano π : ; i j k a) Hallamos el vecto diecto de

Más detalles

ÓPTICA GEOMÉTRICA: REFLEXIÓN, REFRACCIÓN Y LENTES

ÓPTICA GEOMÉTRICA: REFLEXIÓN, REFRACCIÓN Y LENTES PRÁCTICA ÓPTICA GEOMÉTRICA: REFLEXIÓN, REFRACCIÓN Y LENTES A) MATERIAL Fuente de luz, banco óptico, lente delgada convegente, pantalla. B) OBJETIVO Intoduci los conceptos de ayo luminoso y de índice de

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 )

COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 ) COLEGIO ESTRADA DE MARIA AUILIADORA CIENCIA, TRABAJO VALORES: MI PROECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (0 ) Fecha: Nombe del estudiante: N O T A La nivelación es en foma de talle donde

Más detalles

FLUJO POTENCIAL BIDIMENSIONAL (continuación)

FLUJO POTENCIAL BIDIMENSIONAL (continuación) Pof. ALDO TAMBURRINO TAVANTZIS Pof. ALDO TAMBURRINO TAVANTZIS FLUJO POTENCIAL BIDIMENSIONAL (continuación) RESUMEN DE LA CLASE ANTERIOR Si un flujo es iotacional, V 0, entonces eiste una función escala

Más detalles

Vectores Presentanción basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition.

Vectores Presentanción basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Vectoes Pesentanción basada en el mateial contenido en: Seway, R. Physics fo Scientists and Enginees. Saundes College Pub. 3d edition. Sistemas de Coodenadas Se usan paa descibi la posición de un punto

Más detalles

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando MECNIC PLICD I. EXMEN PCIL. 17-04-99. PIME EJECICI TIEMP: 75 1. btene la expesión de la velocidad de ω V s ω V s sucesión del cento instantáneo de otación cuando =. 2 2. Indica qué afimaciones son cietas

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

Ejercicios de Gravitación

Ejercicios de Gravitación jecicios de Gavitación Seway.5: Calcule la magnitud y diección del campo gavitacional en un punto P sobe la bisectiz pependicula de la ecta que une dos cuepos de igual masa sepaados po una distancia a,

Más detalles

GRÁFICA DE LAS FUNCIONES TRIGONOMÉTRICAS

GRÁFICA DE LAS FUNCIONES TRIGONOMÉTRICAS FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: 6 SEMESTRE 1 GRÁFICA DE LAS FUNCIONES TRIGONOMÉTRICAS RESEÑA HISTÓRICA Leonhad Eule, (1707-1783) Fue un matemático

Más detalles

r u,v ( ) = x u,v ( )î + y u,v ( ) ĵ + z u,v ( ) ˆk

r u,v ( ) = x u,v ( )î + y u,v ( ) ĵ + z u,v ( ) ˆk Supeficies Se ha visto que una cuva en el espacio se puede epesenta po una ecuación paamética del tipo: t = x t î + y t ĵ + z t ˆk En donde inteviene un solo paámeto t. La epesentación paamética de cuvas

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR Númeos Complejos en Foma Pola 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta gáficamente mediante un

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles

REPARTIDO III CIRCUNFERENCIA

REPARTIDO III CIRCUNFERENCIA Pof.: Lucia Tafenabe Ecuación Geneal REPRTIDO III IRUNFERENI B B cento, Ecuación de la icunfeencia conociendo cento (α, β) adio. adio B MN ( - α) ( - β) Deteminación de la ecuación de la cicunfeencia conociendo:

Más detalles

Aplicaciones de la Integración. Universidad Diego Portales CALCULO II

Aplicaciones de la Integración. Universidad Diego Portales CALCULO II Aplicaciones de la Integación El valo medio de una función En muchas situaciones pácticas, se desea enconta el valo medio de una función continua sobe un intevalo, como el nivel medio de la polución del

Más detalles

DINÁMICA DEL CUERPO RÍGIDO

DINÁMICA DEL CUERPO RÍGIDO DINÁMIC DEL CUEP ÍGID 1 - El sistea de la fiua consiste de dos cuepos de asas 1 y 2 unidos po una cueda inextensible que pasa a tavés de una polea cilíndica hooénea de asa p, que no posee ozaiento con

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA UNIVERSI NCIONL E SN CRISTÓL E HUMNG (SEGUN UNIVERSI FUN EN EL PERÚ) FCULT E INGENIERÍ E MINS, GEOLOGÍ Y CIVIL ESCUEL E FORMCIÓN PROFESIONL E INGENIERÍ CIVIL EJERCICIOS PROPUESTOS E CINEMÁTIC E PRTÍCULS

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

Existe la costumbre de dividir el estudio de la Mecánica en tres partes:

Existe la costumbre de dividir el estudio de la Mecánica en tres partes: U I.- T : Cinemática del Punto Mateial 3 1.- LA MECÁNICA Y SUS PARTES Existe la costumbe de dividi el estudio de la Mecánica en tes pates: + Cinemática: es una descipción geomética del movimiento + Dinámica:

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano LA LINEA RECTA: DEFINICIÓN. TALLER VERTICAL DE MATEMÁTICA Recibe el nombe de línea ecta el luga geomético de los puntos tales que, tomados dos puntos cualesquiea distintos P, ) P, ) el valo de la epesión:

Más detalles

SELECTIVIDAD SEPTIEMBRE 2004 MATEMÁTICAS II

SELECTIVIDAD SEPTIEMBRE 2004 MATEMÁTICAS II Depatament de Matemàtiques Ieslaasuncionog/matematicas SELECTIVIDAD SEPTIEMBRE MATEMÁTICAS II EJERCICIO A PROBLEMA Obtene todos los valoes eales x, y, z, t paa los que se veifica AX XA, siendo X y A z

Más detalles

Soluciones de los ejercicios del examen Parcial de Cálculo Primer curso de Ingeniería de Telecomunicación - febrero de 2007

Soluciones de los ejercicios del examen Parcial de Cálculo Primer curso de Ingeniería de Telecomunicación - febrero de 2007 Soluciones de los ejecicios del eamen Pacial de Pime cuso de Ingenieía de Telecomunicación - febeo de 7 Ejecicio a) Paa todo > sea f ) log e, y f ). Justifica que lím f ). Estudia el signo de la deivada

Más detalles

VECTORES EN DIFERENTES SISTEMAS DE COORDENADAS. TRANSFORMACIONES ENTRE SISTEMAS

VECTORES EN DIFERENTES SISTEMAS DE COORDENADAS. TRANSFORMACIONES ENTRE SISTEMAS VECTRES EN DIFERENTES SISTEMAS DE CRDENADAS. TRANSFRMACINES ENTRE SISTEMAS Sistema ectangula Se explica especto de tes ejes pependiculaes ente sí (,,) que se cotan fomando un tiedo y sobe los que están

Más detalles

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL EMA 3 MOIMIENO CICULA Y GAIACIÓN UNIESAL El movimiento cicula unifome (MCU) Movimiento cicula unifome es el movimiento de un cuepo que tiene po tayectoia una cicunfeencia y descibe acos iguales en tiempos

Más detalles

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2).

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2). GUIA 0 1 - Halla el módulo del vecto de oigen en (20,-5,8) etemo en (-4,-3,2). 2 - a) Halla las componentes catesianas de los siguientes vectoes: (i) A (ii) A = 4 A = θ = 30º 4 θ =135º A (iii) (iv) A θ

Más detalles

5.2 PROBLEMAS PRACTICOS DE MÁXIMOS Y MINIMOS

5.2 PROBLEMAS PRACTICOS DE MÁXIMOS Y MINIMOS 8. Un avión que vuela a velocidad constante de Km/h pasa sobe una estación teeste de ada a una altua de 1 Km. Y se eleva a un ángulo de º. qué velocidad aumenta la distancia ente el avión la estación de

Más detalles

PROBLEMAS DE DINÁMICA

PROBLEMAS DE DINÁMICA PROBLEMAS DE DINÁMICA 1- Detemina el módulo y diección de la esultante de los siguientes sistemas de fuezas: a) F 1 = 3i + 2j ; F 2 = i + 4j ; F 3 = i 5j ; b) F 1 = 3i + 2j ; F 2 = i 4j ; F 3 = 2i c) F

Más detalles

Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice

Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice Cáteda de Física Índice Figua - Enunciado Solución Ecuación - Momento de inecia definición Figua - Sistema de estudio 3 Ecuación - Descomposición del momento de inecia3 Figua 3 - Cálculo del momento de

Más detalles

CAPITULO 3 MÉTODO DE RESOLUCIÓN MEDIANTE INTEGRALES

CAPITULO 3 MÉTODO DE RESOLUCIÓN MEDIANTE INTEGRALES CAPÍTULO : METODO DE RESOLUCIÓN MEDIANTE INTEGRALES CAPITULO MÉTODO DE RESOLUCIÓN MEDIANTE INTEGRALES. Resumen En este capítulo se encuenta solución analítica mediante el método de sepaación de vaiables

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

3.2. MOVIMIENTO DEL CENTRO DE MASAS

3.2. MOVIMIENTO DEL CENTRO DE MASAS .. MOVIMIENTO DEL CENTRO DE MASAS..1. Si dos cuepos de masas iguales se mueven en una tayectoia ectilínea peo en sentidos opuestos con velocidades de igual módulo v, la velocidad del cento de masas del

Más detalles

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 0- Pofeso: Jaime Andés Jaamillo González (jaimeaj@conceptocomputadoes.com) Pate del mateial ha sido tomado de documentos

Más detalles

FUNCIONES VECTORIALES DE UNA VARIABLE REAL

FUNCIONES VECTORIALES DE UNA VARIABLE REAL FUNCIONES VECTORIALES DE UNA VARIABLE REAL Las funciones con las que se ha abajado hasa el momeno son funciones eales de una vaiable eal (su ango es un subconjuno de los eales. Se esudiaán en ese capíulo

Más detalles

TRIGONOMETRÍA. Estudia las relaciones entre los lados y los ángulos de los triángulos.

TRIGONOMETRÍA. Estudia las relaciones entre los lados y los ángulos de los triángulos. TRIGONOMETRÍA Estudia las elaciones ente los lados los ángulos de los tiángulos. Los ángulos en maúsculas. Los lados como el ángulo opuesto, peo en minúsculas. Ángulo. Poción de plano compendida ente dos

Más detalles

5. ROTACION; CINEMATICA Y DINAMICA

5. ROTACION; CINEMATICA Y DINAMICA 73 5. OTACION; CINEMATICA Y DINAMICA Los movimientos cuvilíneos se dan en el plano o en el espacio, son, po tanto, movimientos bi o incluso tidimensionales. Ello hace que paa expesa la posición sea necesaio

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA GEOMETRÍ NLÍTIC PLN / Ecuaciones de la ecta Un punto y un vecto Dos puntos Un punto y la pendiente,,,,,, Coodenadas del vecto diecto ECUCION VECTORIL (x, y) (p, p ) + τ (v, v ) ECUCION PRMETRIC x p + τ

Más detalles

2x y 2z. Entonces Rang A = 4 > Rang A Sistema incompatible r y s no se cortan y el problema no tiene solución. = =

2x y 2z. Entonces Rang A = 4 > Rang A Sistema incompatible r y s no se cortan y el problema no tiene solución. = = Geometía analítica del epacio. Matemática II Mazo 04 Opción A Ejecicio. (untuación máxima: punto) z Calcula la ecuación de una efea que tiene u cento en la ecta x 3 y, y e tangente al plano x y z 4 0,,.

Más detalles

Leyes de Kepler. Antes de demostrar las tres leyes de Kepler, haré un análisis matemático de lo que es una elipse.

Leyes de Kepler. Antes de demostrar las tres leyes de Kepler, haré un análisis matemático de lo que es una elipse. Leyes de Keple. Antes de demosta las tes leyes de Keple, haé un análisis matemático de lo que es una elipse. Una elipse (Fig.) es el luga geomético de un punto que se mueve en un plano de tal manea que

Más detalles

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide egio Yansen Núñez Teoema de tokes y Gauss Actividad Nº Considee el campo vectoial F( x, y, z) ( y, x, z ). Calcule F d donde C es C la intesección ente el plano x + y + z y el cilindo x + y. Actividad

Más detalles

TEMA 1: Álgebra Vectorial

TEMA 1: Álgebra Vectorial TEMA 1: Álgeba Vectoial 07/10/2008 Depatamento de Física Aplicada II. Miguel Galindo del Pozo 1 Magnitudes escalaes y vectoiales. Escalaes Vectoiales Nº eal y unidad Nº eal y unidad Diección Sentido 07/10/2008

Más detalles

UNIDAD 4: CIRCUNFERENCIA CIRCULO:

UNIDAD 4: CIRCUNFERENCIA CIRCULO: UNIDD 4: CIRCUNFERENCI CIRCULO: CONTENIDO: I. CONCEPTO DE CIRCUNFERENCI: Es una cuva ceada y plana cuyos puntos equidistan de un punto llamado cento. Una cicunfeencia se denota con la expesión: O C, y

Más detalles

RELACION DE ORDEN: PRINCIPALES TEOREMAS

RELACION DE ORDEN: PRINCIPALES TEOREMAS RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a

Más detalles

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx Nombe y apellidos: Puntuación:. Las gáficas del oscilado amónico En la figua se muesta al gáfica elongacióntiempo de una patícula de,5 kg de masa que ealiza una oscilación amónica alededo del oigen de

Más detalles

I = de orden 2. Hallar la relación entre los parámetros a, b c, a 4 ab 2a ac ab ac + + ac = 0

I = de orden 2. Hallar la relación entre los parámetros a, b c, a 4 ab 2a ac ab ac + + ac = 0 Puebas de Aptitud paa el Acceso a la Univesidad SEPTIEMBRE 9 Matemáticas II ÁLGEBRA a [,5 puntos] Sean las matices A = b c, I = de oden Halla la elación ente los paámetos a, b y c paa que se veifique que

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL 0.1 CURVAS EN R 3 ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

Más detalles

U.D. 3. I NTERACCIÓN GRAVITATORIA

U.D. 3. I NTERACCIÓN GRAVITATORIA U.D. 3. I NERACCIÓN GRAVIAORIA RESUMEN Ley de gavitación univesal: odos los cuepos se ataen con una fueza diectamente popocional al poducto de sus masas e invesamente popocional al cuadado de la distancia

Más detalles

Tema 7. Propiedades de la luz.

Tema 7. Propiedades de la luz. Tema 7. Popiedades de la luz. Poblemas esueltos. Poblema.- Se tiene un dioptio esféico convexo que sepaa una egión donde hay aie (n = ) de ota donde hay vidio (n =, 5). El adio del diptio esféico es de

Más detalles

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será:

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será: xyz0 1. Dados la ecta : y el punto P(1, 0, 1) exteio a : x y z a) Halla la ecuación en foma geneal del plano que contiene a y a P b) Halla la ecuación (como intesección de dos planos) de la ecta s que

Más detalles

Definición 39. Circunferencia de centro en O y radio r en un plano π. Figura 141. Podemos definir este conjunto por comprensión así: C O,

Definición 39. Circunferencia de centro en O y radio r en un plano π. Figura 141. Podemos definir este conjunto por comprensión así: C O, 9.1 NOCIONES BÁSICAS Definición 9. Cicunfeencia de cento en O y adio en un plano π. Es el conjunto (luga geomético) de todos los puntos de un plano un punto dado O, llamado cento, una distancia., que equidistan

Más detalles

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial RECTAS EN EL PLANO Ecuación de la ecta La ecuación de una ecta puede dase de difeentes fomas, que veemos a continuación. Conocidos un punto P(p 1, p ) y un vecto de diección d = (d 1, d ) (o sea, un vecto

Más detalles

Tema 51. Sistemas de referencia en el plano y en el espacio. Ecuación del plano y de la recta. Relaciones afines.

Tema 51. Sistemas de referencia en el plano y en el espacio. Ecuación del plano y de la recta. Relaciones afines. TEMA 5. Sistemas de efeencia en el plano en el espacio. Ecuaciones del plano la ecta. Relaciones afines Tema 5. Sistemas de efeencia en el plano en el espacio. Ecuación del plano de la ecta. Relaciones

Más detalles

TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1

TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 página 2 SEGUNDO BIMESTRE 1 FUNCIONES DE MAS DE 90 GRADOS 1.1 CONCEPTOS Y DEFINICIONES Los valoes de las funciones tigonométicas solamente eisten paa

Más detalles

Problema 1. Un cuerpo rígido gira alrededor de un eje fijo de ecuaciones x = y = z, con una

Problema 1. Un cuerpo rígido gira alrededor de un eje fijo de ecuaciones x = y = z, con una Fundamento y Teoía Fíica ETS quitectua 1 INEMÁTI DEL SÓLIDO RÍGIDO Poblema 1 Un cuepo ígido gia alededo de un eje fijo de ecuacione x = y = z, con una ad ad velocidad angula ω = y una aceleación angula

Más detalles

Orbital atómico Ψ 4f (Ψ/r) radio/ bohr. Fig.

Orbital atómico Ψ 4f (Ψ/r) radio/ bohr. Fig. ORBITALES ATÓMICOS HIDROGENOIDES tipo f ( pimea pate) Po lo geneal en el bachilleato, los pofesoes dejan al magen de sus explicaciones los obitales f. Desciben los d, estudian los poblemas que enciean,

Más detalles