Las imágenes de la presentación han sido obtenidas del libro:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Las imágenes de la presentación han sido obtenidas del libro:"

Transcripción

1

2 Las imágenes de la pesentación han sido obtenidas del libo: Physics fo Scientists and Enginees Paul A. Tiple Gene Mosca Copyight 2004 by W. H. Feeman & Company

3 Supongamos una función f = f ( x, y, z) Con las siguientes condiciones: unifome continua finita admite deivadas paciales Esta función es unívoca, asocia a cada punto del espacio un valo único y eal CAMPO ESCALAR. Está definido en una deteminada egión del espacio Ejemplos: densidad, pesión

4 Luga geomético de los puntos del espacio en los que el campo escala toma un valo constante. f ( x, y, z) = C Paa cada valo de la constante obtenemos una supeficie de la familia. f ( x, y, z) = C f ( x, y, z) = C 1 f ( x, y, z) = C 2 n f ( x, y, z) = C Las supeficies de nivel no se cotan aunque pueden esta tan póximas como queamos, es deci, no tienen puntos en común.

5 Consideamos tes funciones escalaes y fomamos un vecto: v = v ( x, y, z) i + v ( x, y, z) j + v ( x, y, z) k x y z Este campo vectoial es una función unívoca, asocia a cada punto del espacio un único vecto. Ejemplos: velocidad, aceleación, fueza.

6 Cuvas tales en cada punto del espacio son tangentes al vecto asociado a dicho punto. Se cumple: v ds ds v = 0 Sistema de ecuaciones difeenciales dx d y d z = = v v v x y z Su integación popociona dos supeficies cuya intesección nos da las líneas de campo. campo. po un punto del espacio pasa una sola línea de

7 f = f ( x, y, z) uuuuu f f f gad f = i + j + k x y z uuuuu gad f dx dy dz = = f f f x y z f = Cte El gadiente es pependicula a la supeficie de nivel. Las líneas de gadiente son tangentes al vecto gadiente. En consecuencia, las líneas de gadiente son pependiculaes a la supeficie de nivel en el punto consideado

8 uuuuu uuuuu uuuuu gad( f + f ) = gad f + gad f uuuuu uuuuu uuuuu gad( f f ) = f gad f + f gad f uuuuu f 1 uuuuu uuuuu gad = f gad f f gad f ( 1 ) ( ) f2 f2 uuuuu gad( 1 ) = f 1 f 2 uuuuu gad f

9 v = v ( x, y, z) i + v ( x, y, z) j + v ( x, y, z) k div v Si div v x y z v v x y v z = + + = v x y z = 0 v : solenoidal o adivegente Si la divegencia de en un punto del espacio es: div v > div v < div v = v Punto SURGENTE Punto SUMENTE Punto de flujo estacionaio o consevativo

10 div v f 0 Flujo positivo o saliente div v p 0 Flujo negativo o entante

11 div ( ρ v) = ρ div v + v uuuuu gadρ ( ρ v ) = ρ v + v ρ Siendo: ρ: campo de densidades v : campo de velocidades NOTA: Esta expesión apaece en la ecuación de continuidad (Mecánica de fluidos)

12 div( gad f ) f f f = + + = x y z lap f Si f f f : lap f = 0; + + = x y z El campo escala f es una función amónica ya que cumple la ecuación de Laplace

13 = i + j + k x y z Si se aplica el opeado nabla a un campo escala se obtiene su gadiente f f f f = i + j + k x y z Si se aplica el opeado nabla a un campo vectoial se obtiene su divegencia v v x y v v = + + x y z z

14 = = + + x y z Si se aplica el opeado laplacianoa un campo escala se obtiene: Si f f f f = + + ESCALAR x y z f f f x y z = 0; Si se aplica el opeado laplacianoa un campo vectoial se obtiene: v = v i + v j + v k x y z VECTOR

15 2 2 2 f f f f = x y z Si el laplacianode un campo escala es nulo: Si f f f + + = x y z ; El campo escala f es amónico,ya que cumple la ecuación de Laplace

16 uuu v v v lap v = + + = v x y z v = v i + v j + v k x y z Si v = x v = y v = z 0 0 0,, x y z v v v Son funciones amónicas

17 uuu ot v i j k = = x y z v v v x y z v uuu v v z y vx v v z y v x ot v = ( ) i + ( ) j + ( ) k y z z x x y

18 1. El otacional de un campo de gadientes es ceo uuu uuuuu ot ( gad f ) = f = 0 Los campos de gadientes son iotacionales Si uuu uuuuu ot v = 0 v = gad f 2. La divegencia del otacional de un campo vectoial es ceo uuu div( ot v ) = 0 Los campos otacionales son solenoidales

19 uuu uuu uuuuu ot ( ot v) = gad ( div v) lap v ( v) = ( v) v Casos paticulaes: 1. Si el campo es solenoidal 2. Si el campo es amónico ( v) = v ( v) = ( v) 3. Si el campo es solenoidaly amónico ( v) = 0

20 gad div ot gad gad ( div) div div ( gad) = lap div ( gad ) = 0 ot ot ( gad ) = 0 ot ( ot)

21 Dado un campo escala f = f( x, y, z) y una diección dada po el vecto v = vxi + vy j + vzk La deivada dieccional de un campo escala según una diección se obtiene a pati de la expesión: f f f v + v v f f v x y z = = v v v + v + v x y z x y z ESCALAR

22 La deivada dieccional de un campo escala según una diección es la poyección del gadiente sobe dicha diección. Es una magnitud escala que se obtiene multiplicando el vecto gadiente po un vecto unitaio en la diección dada. f = f uv = f cosϕ v f ϕ v diección

23 Se considea un punto M odeado de un volumen infinitesimal delimitado po una supeficie ceada. La supeficie se epesenta po vecto, de módulo la popia supeficie, sentido positivo hacia el exteio y diección pependicula a la supeficie en el punto consideado. La figua epesenta una supeficie esféica.

24 M dσ M: punto del espacio v: volumen infinitesimal (delimitado po σ) dσ: supeficie infinitesimal ceada dσ: vectosupeficie uuuuu 1 gad f = lim f dσ v 0 v 1 div v = lim v dσ v 0 v uuu 1 ot v = lim v dσ v 0 v

25 dφ = vndσ ; Flujo elemental v = v cos ϕ; v dσ = v cos ϕdσ = v d σ n n Φ = v d σ σ v ϕ v n dσ dσ σ Paa obtene el flujo de un campo vectoial a tavés de una supeficie (σ), tomamos una supeficie infinitesimal (dσ) y el vecto que la epesenta, poyectamos el campo vectoial sobe esa diección (v n ) se obtiene el flujo elemental y po integación el flujo total.

26 Flujo entante (-) v v dσ dσ Flujo saliente (+) Casos: Φ neto Φ > Φ Φ > sale enta = σ v dσ Φ = Φ Φ neto saliente entante 0 Φ = Φ Φ = sale sale enta Φ < Φ Φ < enta 0 0

27 Φ = v d σ σ Φ = v dydz + v dxdz + v dxdy dz dx σ x y z dσ dσ yz xz dσ xy dz dy d σ = d σ yz i + d σ xz j + d σ xy k dσ = dydz i + dxdz j + dxdy k dx dy

28 σ f dσ = uuuuu gad f dv v σ v d σ = div v dv v dσ = ot uuu v dv σ v v Condición: Supeficie ceada

29 La figua epesenta un volumen limitado po supeficie ceada, cuyo inteio se ha dividido en paalelepípedos infinitesimales contiguos. Definición de divegencia: 1 div v = lim v dσ v 0 v ( div v) dv = v dσ ( div v ) dv = v 1d σ1 + v 2d σ 2 Φ = v dσ = div v dv σ v

30 El flujo saliente del infeio es el flujo entante del supeio. Los flujos inteioes se compensan y se anulan, solo queda el flujo a tavés de la supeficie que limita el volumen. Φ = v dσ = div v dv σ v El flujo de v a tavés de la supeficie ceada es equivalente a la integal tiple de la divegencia de v extendida al volumen limitado po la supeficie ceada.

31 A v ds ϕ t v = vx ( x, y, z) i + vy ( x, y, z) j + vz ( x, y, z) k ds = dx i + dy j + dz k Ciculación elemental B Cuva C dl = t v ds v = v cos ϕ ; dl = v cos ϕ ds = v ds t La suma de todas las ciculaciones elementales es: B L = v ds B L v ds v dx v dy v dz = = + + AB x y z A A C

32 dl = v ds ciculación elemental dw = F d tabajo elemental B A En geneal: La ciculación (tabajo) ente dos puntos A y B depende del camino seguido. L L AB( cuva1) AB( cuva 2)

33 El campo vectoial es un campo de gadientes (consevativo o iotacional) f f f v = f = i + j + k x y z f f f dl = f ds = dx + dy + dz = df x y z La ciculación elemental coincide con la difeencial de f B A ( ) ( ) LAB = df = f B f A La ciculación es independiente del camino seguido; solo dependedelvalodelcampoescalafenlospuntosayb.

34 El campo vectoial es un campo de gadientes y la cuva es ceada A f ds = 0 A A df = f ( A ) f ( A ) = 0 Cuando la cuva es ceada, la ciculación de un campo de gadientes es ceo.

35 1. Si un campo vectoial es iotacional es condición necesaia y suficiente paa que la ciculación a lo lago deunacuvaceadaseaceo. v = 0 v = f ; L = f ds = 0 2. Silaciculaciónalolagodeunacuvaceadaseaceo es condición necesaia peo no suficiente paa que el campo vectoial sea iotacional. L = f ds = 0 v = 0 La ciculación puede se ceo y el otacional distinto de ceo.

36 uuu L = v ds = ( ot v) dσ σ La ciculación de v a lo lago de una cuva ceada es equivalente al flujo del otacional a tavés de la supeficie limitada po dicha cuva ceada. uuu uuu Si ot v = 0 L = v ds = ot v dσ = 0 La ciculación de un campo iotacional(campo de gadientes) a lo lago de una cuva ceada es ceo. σ

37 Dado un campo vectoial iotacional v = v ( x, y, z) i + v ( x, y, z) j + v ( x, y, z) k x y z v = 0 Es condición necesaia y suficiente paa que exista una función escala f=f(x,y,z) tal que el campo vectoial se expese como el gadiente de la función escala f = f x y z (,, ) v = 0 v = f Potencial escala matemático Si el campo vectoial es una magnitud física (velocidad, fueza ), f = f ( x, y, z) v = 0 v = f Potencial escala físico

38 Dado un campo vectoial iotacional v 0 f = f ( x, y, z) / v = f f f f f v df = dx+ dy+ dz = x x y z x f integando f=f(x,y,z) = vy y f f f f= dx+ dy+ dz+cte f x y z = v z z =

39 Dado un campo vectoial solenoidal(adiveegente) v = v ( x, y, z) i + v ( x, y, z) j + v ( x, y, z) k x y z v = 0 Es condición necesaia y suficiente paa que exista un campo vectoial A tal que se expese como: A = A i + A j + A k v = 0 v = A x y z Potencial vecto Su divegencia es nula, ya que los campos otacionales son solenoidales v = ( A) = 0

40 1. Calculamos una solución paticula imponiendo tes condiciones v = 0 v = A 2. Calculamos una solución geneal añadiendo un campo abitaio de gadientes A = A + Φ Se cumple que: v = ( A + Φ ) = A + Φ = A ceo

41 v = 0 v = A v i j k = x y z A A A x y z A A z y = vx y z Ax Az = vy integando A z x A A y A x = v z x y A x y z

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS 1. Dado un campo vectoial v = ( x + y ) i + xy j + ϕ( x, y, k en donde ϕ es una función tal que sus deivadas paciales son las funciones

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

r u,v ( ) = x u,v ( )î + y u,v ( ) ĵ + z u,v ( ) ˆk

r u,v ( ) = x u,v ( )î + y u,v ( ) ĵ + z u,v ( ) ˆk Supeficies Se ha visto que una cuva en el espacio se puede epesenta po una ecuación paamética del tipo: t = x t î + y t ĵ + z t ˆk En donde inteviene un solo paámeto t. La epesentación paamética de cuvas

Más detalles

Tema 1: Análisis vectorial

Tema 1: Análisis vectorial Tema 1: Análisis vectoial Campos Electomagnéticos º Cuso Ingenieía Industial Dpto.Física Aplicada III Cuso 010/011 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Benal Ménde 1 Tema 1: Índice (I)

Más detalles

VECTORES EN DIFERENTES SISTEMAS DE COORDENADAS. TRANSFORMACIONES ENTRE SISTEMAS

VECTORES EN DIFERENTES SISTEMAS DE COORDENADAS. TRANSFORMACIONES ENTRE SISTEMAS VECTRES EN DIFERENTES SISTEMAS DE CRDENADAS. TRANSFRMACINES ENTRE SISTEMAS Sistema ectangula Se explica especto de tes ejes pependiculaes ente sí (,,) que se cotan fomando un tiedo y sobe los que están

Más detalles

Primer curso de Ingeniería Industrial. Curso 2009/2010 Dpto. Física Aplicada III 1

Primer curso de Ingeniería Industrial. Curso 2009/2010 Dpto. Física Aplicada III 1 Tema 4: Potencial eléctico Fundamentos Físicos de la Ingenieía Pime cuso de Ingenieía Industial Cuso 9/1 Dpto. Física Aplicada III 1 Índice Intoducción: enegía potencial electostática Difeencia de potencial

Más detalles

I. Fundamentos matemáticos. ticos. Campos Electromagnéticos. ticos. Herramientas matemáticas. ticas. Ingeniero de Telecomunicación

I. Fundamentos matemáticos. ticos. Campos Electromagnéticos. ticos. Herramientas matemáticas. ticas. Ingeniero de Telecomunicación I. Fundamentos matemá Heamientas matemáticas ticas Gabiel Cano Gómez, G 7/8 Dpto. Física F Aplicada III (U. Sevilla) Campos Electomagné Ingenieo de Telecomunicación Álgeba del opeado nabla Gabiel Cano

Más detalles

CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas

CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas ETS. Ingenieía de Telecomunicación Dpto. Teoía de la Señal Comunicaciones CAMPOS ELECTROMAGNÉTICOS Tema. Cálculo Vectoial Coodenadas Catesianas, Cilíndicas Esféicas P.- Dado un vecto A = + (a) su magnitud

Más detalles

Tema 4.-Potencial eléctrico

Tema 4.-Potencial eléctrico Tema 4: Potencial eléctico Fundamentos Físicos de la Ingenieía Pime cuso de Ingenieía Industial Cuso 6/7 Dpto. Física plicada III Univesidad de Sevilla 1 Índice Intoducción: enegía potencial electostática

Más detalles

II. Electrostática tica en el vacío

II. Electrostática tica en el vacío II. lectostática tica en el vacío 6. otencial electostá Gabiel Cano Gómez, G 29/1 Dpto. Física F plicada III (U. Sevilla) Campos lectomagnés s Ingenieo de Telecomunicación II. lectostática tica en el vacío

Más detalles

ˆk, donde f 1. son funciones escalares, entonces su producto cruz o vectorial del operador con la función es: y f 2

ˆk, donde f 1. son funciones escalares, entonces su producto cruz o vectorial del operador con la función es: y f 2 Rotacional de una función vectoial Si una función vectoial es f = f 1 î + f 2 ĵ + f 3 ˆk, donde f 1, f 2, f 3 son funciones escalaes, entonces su poducto cuz o vectoial del opeado con la función es: f

Más detalles

Tema 6. Apéndice. Operadores vectoriales.

Tema 6. Apéndice. Operadores vectoriales. 6.A.. Campos. Tema 6. Apéndice. Opeadoes vectoiales. 6.A.. Campos. 6.A.. Gadiente. 6.A.3. Divegencia. 6.A.4. Rotacional. 6.A.. Campos. Intoducción. Concepto de campo. Campo:función que depende de la posición.

Más detalles

( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( )

( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( ) CAMPOS: OPERADOR NABLA Repesenta los campos vectoiales A i + j, B i j. Halla la divegencia el otacional de cada uno de ellos eplica el significado físico de los esultados obtenidos. Solución: I.T.I., 3,

Más detalles

CAMPOS ELECTROMAGNÉTICOS

CAMPOS ELECTROMAGNÉTICOS CAMPOS ELECTROMAGNÉTICOS GRADO EN INGENIERÍA AEROESPACIAL EN AERONAVEGACIÓN UNIVERSIDAD RE JUAN CARLOS «ANÁLISIS VECTORIAL» CURSO ACADÉMICO 15/16 Índice 1. Escalaes vectoes 2 1.1. Nociones básicas de análisis

Más detalles

Las imágenes de la presentación han sido obtenidas del libro:

Las imágenes de la presentación han sido obtenidas del libro: Las imágenes de la pesentación han sido obtenidas del libo: Physics fo Scientists and Enginees Paul A. iple Gene Mosca Copyight 004 by W. H. Feeman & Company Pogama Conceptos fundamentales Ecuación vectoial

Más detalles

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide egio Yansen Núñez Teoema de tokes y Gauss Actividad Nº Considee el campo vectoial F( x, y, z) ( y, x, z ). Calcule F d donde C es C la intesección ente el plano x + y + z y el cilindo x + y. Actividad

Más detalles

Hidrostática y Fluidos Ideales.

Hidrostática y Fluidos Ideales. Hidostática y Fluidos Ideales. Intoducción a la Física Ambiental. Tema 5. Tema IFA5. (Pof. M. RAMOS Tema 5.- Hidostática y Fluidos Ideales. Hidostática: Pesión. Distibución de pesiones con la pofundidad:

Más detalles

ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas

ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas ELECTROSTTIC La electostática es la pate de la física que estudia las cagas elécticas en equilibio. Cagas elécticas Existen dos clases de cagas elécticas, llamadas positiva y negativa, las del mismo signo

Más detalles

El potencial en un punto de un campo de fuerzas eléctrico es la energía potencial que poseería la unidad de carga situada en dicho punto:

El potencial en un punto de un campo de fuerzas eléctrico es la energía potencial que poseería la unidad de carga situada en dicho punto: Campo eléctico Hemos visto hasta ahoa un tipo de inteacción, la gavitatoia, siendo siempe una fueza atactiva. En la mateia, además de esta, nos encontamos con: inteacción eléctica, inteacción débil,...

Más detalles

TEORIA DE CAMPOS ESCALARES Y CAMPOS VECTORIALES MIGUEL ANGEL PASCUAL IGLESIAS

TEORIA DE CAMPOS ESCALARES Y CAMPOS VECTORIALES MIGUEL ANGEL PASCUAL IGLESIAS TEORIA DE CAMPOS ESCALARES Y CAMPOS VECTORIALES MIGUEL ANGEL PASCUAL IGLESIAS TEORIA DE CAMPOS ESCALARES Y CAMPOS VECTORIALES GUIÓN DEL TEMA 1. Campos Escalaes Vectoiales.. Supeficies de nivel de un campo

Más detalles

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( )

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( ) CÁLCULO VECTOIAL Opeaciones con vectoes libes Suma de vectoes libes La suma de n vectoes libes P P P n es un vecto libe llamado esultante = i j k la suma de las componentes espectivas, siendo las componentes

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 13 de Junio de 2001 Primera parte. ; y = u v ; z = u2 v 2

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 13 de Junio de 2001 Primera parte. ; y = u v ; z = u2 v 2 CÁLCULO Pime cuso de Ingenieo de Telecomunicación Segundo Examen Pacial. 1 de Junio de 1 Pimea pate Ejecicio 1. Obtene la expesión en que se tansfoma z xx +z xy +z yy ; al cambia las vaiables independientes

Más detalles

Tema 1: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Flujo, divergencia y teorema de Gauss

Tema 1: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Flujo, divergencia y teorema de Gauss Tema 1: Fundamentos Matemáticos 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 4/7 Flujo, divegencia y teoema de Gauss Concepto

Más detalles

Ecuaciones del movimiento de un fluido

Ecuaciones del movimiento de un fluido Ecuaciones del movimiento de un fluido 1 Foma fundamental El tenso de tensiones Relación constitutiva paa un fluido Newtoniano La ecuación de Navie-Stokes El tenso de tensiones paa flujos incompesibles

Más detalles

Teoremas Integrales. V(x j ) ds

Teoremas Integrales. V(x j ) ds Semana 2 - Clase 5 24/03/09 Tema : Algeba ectoial Teoemas Integales. Teoema de la Divegencia o de Gauss Sea = x j ) un campo vectoial definido sobe un volumen cuya fontea es la supeficie y ˆn el vecto

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

Lección 2. El campo de las cargas en reposo: campo electrostático.

Lección 2. El campo de las cargas en reposo: campo electrostático. Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés

Más detalles

Fundamentos Matemáticos

Fundamentos Matemáticos Tema 1: Fundamentos Matemáticos Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Índice Intoducción I. Sistemas de coodenadas II. Campos escalaes. Gadiente III. Campos

Más detalles

Apunte FII-1-RM: Repaso de Matemática

Apunte FII-1-RM: Repaso de Matemática Física II Física B - Electomagnetismo Pofesoa: Da. C. Caletti : Repaso de Matemática I. Gadiente A fin de compende mejo el concepto de gadiente comenzaemos po las bases, analizando, peviamente, qué tipo

Más detalles

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio. Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia

Más detalles

. Estos vectores unitarios apuntan siempre en la misma dirección y en el mismo sentido, y no cambian, por tanto, de un punto a otro del espacio.

. Estos vectores unitarios apuntan siempre en la misma dirección y en el mismo sentido, y no cambian, por tanto, de un punto a otro del espacio. CAPÍTUL 7.01 ÁLGEBRA VECTRIAL Sistemas de coodenadas Un sistema de coodenadas es un conjunto de valoes numéicos que deteminan unívocamente la posición de un punto en el espacio euclidiano. Las coodenadas

Más detalles

CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS

CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS Paa los inteeses de la Física, los Campos Vectoiales se clasifican en dos gupos: -CAMPOS VECTORIALES CONSERVATIVOS.CAMPOS VECTORIALES NO CONSERVATIVOS Los de

Más detalles

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática Tema : Pincipios de la electostática 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 4/7 Leyes de la electostática Leyes de la electostática:

Más detalles

CAMPO ELÉCTRICO Y POTENCIAL

CAMPO ELÉCTRICO Y POTENCIAL CMPO ELÉCTRICO Y POTENCIL INTERCCIONES ELECTROSTÁTICS (CRGS EN REPOSO) Caga eléctica: popiedad intínseca de la mateia ue se manifiesta a tavés de fuezas de atacción o epulsión Ley de Coulomb: expesa la

Más detalles

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 5/7 Potencial eléctrico

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 5/7 Potencial eléctrico Tema : Pincipios de la electostática 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 5/7 Potencial eléctico La ciculación del campo

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

Profesor BRUNO MAGALHAES

Profesor BRUNO MAGALHAES POTENCIL ELÉCTRICO Pofeso RUNO MGLHES II.3 POTENCIL ELÉCTRICO Utilizando los conceptos de enegía impatidos en Física I, pudimos evalua divesos poblemas mecánicos no solo a tavés de las fuezas (vectoes),

Más detalles

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundamentos Físicos y Tecnológicos de la Infomática Cicuitos de Coiente Continua -Caga eléctica. Ley de Coulomb. Campo eléctico. -Potencial eléctico. Conductoes en euilibio electostático. Agustín Álvaez

Más detalles

UNIVERSIDAD SIMON BOLIVAR Departamento de Conversión y Transporte de Energía Sección de Máquinas Eléctricas Prof. E. Daron B.

UNIVERSIDAD SIMON BOLIVAR Departamento de Conversión y Transporte de Energía Sección de Máquinas Eléctricas Prof. E. Daron B. FUNDAMENTOS GENERALES SOBRE LAS MAQUINAS ELÉCTRICAS REPASO SOBRE LAS MAGNITUDES DEL CAMPO MAGNÉTICO Hoja Nº I- INDUCCION MAGNETICA B Definida a pati del efecto electodinámico de fueza De la fueza F ejecida

Más detalles

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 5-. Ejemplo 1º. Aplicando el teoema de Gauss halla el campo eléctico ceado po una distibución esféica de

Más detalles

Fig. 1 Esquema para el cálculo de B

Fig. 1 Esquema para el cálculo de B P1- CAMPO DE UN AAMRE (EY DE OT-SAVART). Considee una poción de un alambe ecto de longitud po el que cicula una coiente constante. (a) Calcule la inducción magnética paa puntos sobe el plano que divide

Más detalles

Tema 1- CAMPOS ELÉCTRICOS

Tema 1- CAMPOS ELÉCTRICOS 1 Intoducción. Caga eléctica.(1.1) Tema 1- CAMPOS LÉCTRICOS 3 Conductoes y aislantes (1.) 4 Ley de Coulomb.(1.3) 5 Campo eléctico y pincipio de supeposición.(1.4) 6 Dipolo eléctico(1.4) 7 Líneas de campo

Más detalles

L Momento angular de una partícula de masa m

L Momento angular de una partícula de masa m Campo gavitatoio Momento de un vecto con especto a un punto: M El momento del vecto con especto al punto O se define como el poducto vectoial M = O Es un vecto pependicula al plano fomado po los vectoes

Más detalles

Flujo eléctrico. Michael Faraday, septiembre de íd. 25 de agosto de 1867) fue un físico y químico inglés)

Flujo eléctrico. Michael Faraday, septiembre de íd. 25 de agosto de 1867) fue un físico y químico inglés) Flujo eléctico Michael Faaday, (Londes, 22 de septiembe de 1791 - íd. 25 de agosto de 1867) fue un físico y químico inglés) Flujo eléctico (Φ) 2 N m φ E da A C Flujo eléctico (Φ) Cuál es el flujo eléctico

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

1 Campos conservativos

1 Campos conservativos ampos consevativos Un campo F se dice consevativo si es un gadiente. Esto es, si existe una función f (potencial) tal que F = f: Po lo tanto, si F es un campo consevaivo de clase ; él es iotacional. Esto

Más detalles

LECCIÓN 5: CINEMÁTICA DEL PUNTO

LECCIÓN 5: CINEMÁTICA DEL PUNTO LECCIÓN 5: CINEMÁTICA DEL PUNTO 5.1.Punto mateial. 5.. Vecto de posición. Tayectoia. 5.3. Vecto velocidad. 5.4. Vecto aceleación. 5.5. Algunos tipos de movimientos. 5.1. PUNTO MATERIAL. Un punto mateial

Más detalles

Modelo Pregunta 3A. El campo electrostático creado por una carga puntual q, situada en el

Modelo Pregunta 3A. El campo electrostático creado por una carga puntual q, situada en el Modelo 2014. Pegunta 3A. El campo electostático ceado po una caga puntual q, situada en el 9 1 oigen de coodenadas, viene dado po la expesión: E = u 2 N C, donde se expesa en m y u es un vecto unitaio

Más detalles

Transferencia de Momentum

Transferencia de Momentum Tansfeencia de Momentum 1740-. 014-0-5 8ª Contenido Sistemas coodenados convencionales Ecuación de continuidad; Balance de momentum. 014-0-5 y t z x v 0 =0 cuando Ecuación de continuidad, notación vectoial:

Más detalles

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL 0.1 CURVAS EN R 3 ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

Más detalles

SERIE # 3 CÁLCULO VECTORIAL

SERIE # 3 CÁLCULO VECTORIAL SERIE # 3 ÁLULO VETORIAL ÁLULO VETORIAL Página 1 1) Sea el campo vectoial F (x,y,)=( 3x+ y)i+( x+ y ) j ( x) k. alcula lago de la cuva : 4 5 x = + y y =, del punto A ( 3, 1, 1) al punto B ( 3, 1, -1).

Más detalles

E r = 0). Un campo irrotacional proviene de un campo escalar; es el gradiente de un campo escalar. En el caso del campo electrostático,

E r = 0). Un campo irrotacional proviene de un campo escalar; es el gradiente de un campo escalar. En el caso del campo electrostático, L OTNIAL LÉTRIO l campo electostático es iotacional ( = ). Un campo iotacional poiene de un campo escala; es el gadiente de un campo escala. n el caso del campo electostático, esta función se denomina

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles

CONTENIDO FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. Campos escalares y vectoriales. Gradiente y rotacional. Campos conservativos.

CONTENIDO FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. Campos escalares y vectoriales. Gradiente y rotacional. Campos conservativos. CONTENIDO FUERZS CONSERVTIVS Y NO CONSERVTIVS Campos escalaes y vectoiales Gadiente y otacional Campos consevativos. Potencial Tabajo ealizado po una fueza consevativa Fuezas no consevativas: Fueza de

Más detalles

Campo Estacionario. Campos Estacionarios

Campo Estacionario. Campos Estacionarios Electicidad y Magnetismo Campo Estacionaio Campo Estacionaio EyM 4- Campos Estacionaios Se denomina situación estacionaia a aquella en la que no hay vaiación con el tiempo. Existen sin embago movimientos

Más detalles

Ejemplos de cálculo del potencial, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp

Ejemplos de cálculo del potencial, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp Ejemplos de cálculo del potencial, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 6-. Ejemplo º. Calcula el potencial eléctico ceado po un hilo ectilíneo e infinito, que pesenta

Más detalles

CAPITULO 6. CIRCULACIÓN Y VORTICIDAD.

CAPITULO 6. CIRCULACIÓN Y VORTICIDAD. CAPITULO 6. CIRCULACIÓN Y VORTICIDAD. En mecánica de cuepo ígido, los puntos que constituyen el cuepo son tatados como un todo. Un enfoque simila se puede hace en fluidos. Se puede considea un gupo de

Más detalles

Transferencia de Energía. Grupo ª

Transferencia de Energía. Grupo ª Tansfeencia de Enegía 547 Gupo 3. 204-08-25 6ª 204-08-25 ontenido El 204-08-20 no hubo clase. Ejemplo de tansfeencia de enegía po difusión a tavés de mateiales compuestos. A 0 T 0 M M 2 A 2L T 2L B T B

Más detalles

EJERCICIOS SOBRE VECTORES

EJERCICIOS SOBRE VECTORES EJERCICIOS SOBRE VECTORES 1) Dados los puntos A = ( 2, 1,4) ( 3,1, 5) uuu vecto AB B =, calcula las componentes del 2) Dados los puntos A = ( 2, 1,4), B = ( 3,1, 5) ( 4,2, 3) C =, detemina las uuu uuu

Más detalles

r r F a La relación de proporcionalidad que existe entre la fuerza y la aceleración que aparece sobre un punto material se define como la masa:

r r F a La relación de proporcionalidad que existe entre la fuerza y la aceleración que aparece sobre un punto material se define como la masa: LECCION 7: DINAMICA DEL PUNTO 7.. Fueza. Leyes de Newton. Masa. 7.. Cantidad de movimiento. Impulso mecánico. 7.3. Momento cinético. Teoema del momento cinético. 7.4. Ligaduas. Fuezas de enlace. 7.5. Ecuación

Más detalles

Electrostática Clase 2 Vector Desplazamiento o densidad de flujo eléctrico. Ley de Gauss..

Electrostática Clase 2 Vector Desplazamiento o densidad de flujo eléctrico. Ley de Gauss.. Electostática Clase 2 Vecto Desplazamiento o densidad de flujo eléctico. Ley de Gauss.. Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA En cietos casos que se analizan

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO EL POTENCIAL ELÉCTRICO. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Pofeso: José Fenando Pinto Paa UNIDAD 7 POTENCIAL ELECTROSTÁTICO Dos cagas en la misma posición tienen dos veces más enegía

Más detalles

Interacción Electromagnética

Interacción Electromagnética Inteacción lectomagnética Campo léctico Campo Magnético Inducción lectomagnética Coulomb mpèe Faaday Lenz Maxwell La Fueza con que se ataen o epelen dos cagas es: Campo eléctico c. eléctico q 3 F 1 Una

Más detalles

TEMA10. VECTORES EN EL ESPACIO.

TEMA10. VECTORES EN EL ESPACIO. TEMA0. VECTORES EN EL ESPACIO..- Coodenadas en el espacio: En el espacio tidimensional, un punto P iene deteminado po tes coodenadas P(x, y, z) que epesentan las distancias diigidas desde los planos de

Más detalles

Las situaciones de variación temporal lenta se caracterizan porque en las ecuaciones de Maxwell se puede despreciar el término:

Las situaciones de variación temporal lenta se caracterizan porque en las ecuaciones de Maxwell se puede despreciar el término: Electicidad y Magnetismo Vaiación tempoal lenta 16/1/28 EyM 7-1 Electodinámica Vaiación tempoal lenta Vaiación tempoal lenta Las situaciones de vaiación tempoal lenta se caacteizan poque en las ecuaciones

Más detalles

ELECTROSTÁTICA DEL VACÍO

ELECTROSTÁTICA DEL VACÍO Física II 7-8 ELECTROTÁTICA DEL VACÍO D. José Manuel Donoso http://plasmalab.aeo.upm.es/~mdv/ Dpto. Física Aplicada, ETIAE, Univesidad Politécnica de Madid TOPIC: Ley de Coulomb, Campo ceado po distibuciones

Más detalles

r r 3 producido por una carga Q localizada en el origen, con ε constante. a. Demuestre que (3 puntos)

r r 3 producido por una carga Q localizada en el origen, con ε constante. a. Demuestre que (3 puntos) U..V. F.I.U..V. ÁLULO VETORIAL (54) PRIMER PARIAL (3%) 5/1/9 MATEMÁTIA APLIADA Pof. 1. Sean el campo posición (x,, z) = (x,, z) el campo eléctico E = ε Q poducido po una caga Q localizada en el oigen,

Más detalles

Tema 0 Conocimientos previos al curso de Física

Tema 0 Conocimientos previos al curso de Física Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional

Más detalles

Electrostática. Campo electrostático y potencial

Electrostática. Campo electrostático y potencial Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes

Más detalles

Trabajo y Energía I. r r = [Joule]

Trabajo y Energía I. r r = [Joule] C U R S O: FÍSICA MENCIÓN MATERIAL: FM-11 Tabajo y Enegía I La enegía desempeña un papel muy impotante en el mundo actual, po lo cual se justifica que la conozcamos mejo. Iniciamos nuesto estudio pesentando

Más detalles

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo Cuso: FISICA II CB 3U 1I Halla el CE de una esfea hueca con caga Q adio a. ad a d asen P de a Las componentes en el eje Y se anulan El CE esultante de la esfea hueca se encontaa sobe el eje X. El áea de

Más detalles

práctica FÍSICA Y QUÍMICA Problemas Muestra de ejercicio para la preparación de la prueba práctica

práctica FÍSICA Y QUÍMICA Problemas Muestra de ejercicio para la preparación de la prueba práctica FÍSIC Y QUÍMIC Poblemas páctica Muesta de ejecicio paa la pepaación de la pueba páctica 25-22420-13 FÍSIC Y QUÍMIC Páctica 3 1 Se dispone de un conducto ectilíneo indefinido cagado unifomemente. a) Emita

Más detalles

Potencial Escalar - Integrales de superposición. 2010/2011

Potencial Escalar - Integrales de superposición. 2010/2011 Potencial Escala - Integales de supeposición. / Electostática Definición os conductoes en electostática. Campo de una caga puntual. Aplicaciones de la ey de Gauss Integales de supeposición. Potencial electostático

Más detalles

Elementos de Elasticidad:

Elementos de Elasticidad: Elementos de Elasticidad: Consideemos el sólido como un continuo. Ondas de λ ~ 0-6 cm ν ~ 0, 0 H. Le de Hooke: Las defomaciones son popocionales a las fueas que las povocan. Si no se cumple, estamos en

Más detalles

87. Un cierto campo de fuerzas viene dado por la expresión F 4y

87. Un cierto campo de fuerzas viene dado por la expresión F 4y Campos 5 81. El témino potencial, es elativamente modeno, dado que tampoco existía el de enegía potencial, que Helmholtz, denominaba tensión. Fue Rankine el que en 1842 (algunos histoiadoes de la ciencia,

Más detalles

TEMA 0: PRELIMINARES FISICOS Y MATEMÁTICOS

TEMA 0: PRELIMINARES FISICOS Y MATEMÁTICOS TEMA 0: PRELIMINARE FIICO Y MATEMÁTICO 0.1 Campos escalaes y vectoiales Una unción escala es una unción que está deinida en un cieto conjunto de puntos en el espacio y cuyos valoes son númeos eales que

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

Plano Tangente a una superficie

Plano Tangente a una superficie Plano Tangente a una supeficie Plano Tangente a una supeficie Sea z f ( una función escala con deivadas paciales continuas en (a b del dominio de f. El plano tangente a la supeficie en el punto P( a b

Más detalles

ϕ de la posición que le hace

ϕ de la posición que le hace Ing. Lino pagnolo Capítulo Mecánica Racional Análisis Vectoial Campos Escalaes y Vectoiales e define como campo escala a una función ( x, yz, ) ϕ de la posición que le hace coesponde en foma unívoca un

Más detalles

3) (1p) Estudia la posición relativa de recta y plano.

3) (1p) Estudia la posición relativa de recta y plano. CURSO 007-008. 16 de mayo de 008. 1) (1p) Si A(x 1,y 1,z 1 ) y B(x,y,z ) son dos puntos del espacio, demuesta que [AB ]=(x -x 1,y -y 1,z -z 1 ). ) (1p) Deduce la ecuación vectoial de la ecta. ) (1p) Estudia

Más detalles

Una nueva teoría electromagnetica I. Propiedades del electrón en reposo: masa, carga, spin y estabilidad.

Una nueva teoría electromagnetica I. Propiedades del electrón en reposo: masa, carga, spin y estabilidad. Una nueva teoía electomagnetica I. Popiedades del electón en eposo: masa, caga, spin y estabilidad. Manuel Henández Rosales. 18 de Junio de 215 Abstact En este atículo a pati de nuevas ecuaciones paa el

Más detalles

MATEMÁTICAS I Grupos F, H

MATEMÁTICAS I Grupos F, H MATEMÁTICAS I Gupos F, H 2--2 APELLIDOS: NOMBRE: En cada pegunta no sólo se valoaá la coección del pocedimiento y el esultado, sino también, en la misma medida, la coección en la expesión de los cálculos

Más detalles

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas.

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas. º-Halla a y b paa que las ectas siguientes sean paalelas: x+ay - z s 4x y +6 z a ; b- x+y +bz º-Dadas las ectas de ecuaciones x z - y - (x, y,z) (,0,)+ (,,-) a) Estudia su posición elativa en el espacio.

Más detalles

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables (x 0 ). x ik. x ik 1

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables (x 0 ). x ik. x ik 1 1. RESUMEN Ingenieía Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Vaias Vaiables 08-1 Ingenieía Matemática Univesidad de Chile Guía Semana 5 Teoema del valo medio.

Más detalles

Tema VII. Dos tipos de carga (Ex. aula).

Tema VII. Dos tipos de carga (Ex. aula). Tema VII (Capítulos: al 6,8,30 de Física, P. A Tiple 4ª ed. ; 16, 17 y 18.3 de Laboatoio de Física, Hidalgo et al.) Tema VII Cagas elécticas. Conductoes y aislantes. Ley de Coulomb. Campo eléctico estático.

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO

UNIVERSIDAD NACIONAL DEL CALLAO UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA Cuso: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS PROFESOR: ING. JORGE MONTAÑO PISFIL TEORÍA

Más detalles

Trabajo, Energía, Potencial y Campo Eléctrico

Trabajo, Energía, Potencial y Campo Eléctrico Cáteda de Física Expeimental II Física III Tabajo, Enegía, Potencial y Campo Eléctico Pof. D. Victo H. Rios 2010 Contenidos - El concepto físico de tabajo. - Enegía potencial eléctica. - Enegía paa la

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo.

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo. LY D GAU La ley de Gauss es un enunciado ue es deivable de las popiedades matemáticas ue tiene el Vecto de intensidad de Campo léctico con especto a las supeficies en el espacio. ste enunciado constituye

Más detalles

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1 PAUTA CONTROL CÁLCULO EN VARIAS VARIABLES, 14/1 (1) (a) Demueste que el máximo de la función x y z sobe la esfea x + y + z = a es (a /) y que el mínimo de la función x + y + z sobe la supeficie x y z =

Más detalles

CAMPO MAGNÉTICO. El campo magnético B, al igual que el campo eléctrico, es un campo vectorial.

CAMPO MAGNÉTICO. El campo magnético B, al igual que el campo eléctrico, es un campo vectorial. CAMPO MAGNÉTICO Inteacciones elécticas Inteacciones magnéticas Una distibución de caga eléctica en eposo genea un campo eléctico E en el espacio cicundante. El campo eléctico ejece una fueza qe sobe cualquie

Más detalles

Campo magnético. Introducción a la Física Ambiental. Tema 8. Tema 8.- Campo magnético.

Campo magnético. Introducción a la Física Ambiental. Tema 8. Tema 8.- Campo magnético. Campo magnético. ntoducción a la Física Ambiental. Tema 8. Tema8. FA (pof. RAMO) 1 Tema 8.- Campo magnético. Campos magnéticos geneados po coientes elécticas: Ley de Biot- avat. Coientes ectilíneas. Ciculación

Más detalles

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1 Tema Geometía en el espacio Matemáticas II º Bachilleato ÁNGULOS EJERCICIO 5 : λ Dados las ectas : λ, s : λ calcula el ángulo que foman: a) s b) s π el plano π : ; i j k a) Hallamos el vecto diecto de

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA Electostática táti Clase 3 Ecuación de Laplace y Ecuación de Poisson Teoema de Unicidad. Métodos de las Imágenes Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA 2 E V m

Más detalles