1 Campos conservativos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1 Campos conservativos"

Transcripción

1 ampos consevativos Un campo F se dice consevativo si es un gadiente. Esto es, si existe una función f (potencial) tal que F = f: Po lo tanto, si F es un campo consevaivo de clase ; él es iotacional. Esto es, F = 0: (Ya sabemos que el oto del gadiente de una función de clase 2 es ceo). También sabemos que las integales de línea de campos consevativos no dependen del camino: Si dos cuvas y 2 paten ambas de un punto a y llegan al mismo punto b; F ds = F ds; 2 siempe que F sea consevativo. En efecto, si f es un potencial paa F; ambas integales igualan a f (b) f (a) : El mismo agumento asegua que si es una cuva ceada entonces R Fds = 0: Los dos agumentos pecedentes se ven sugestivamente entelazados po el teoema de Stokes, que identi ca el ujo del oto de un campo a tavés de una supe cie con su ciculación a lo lago de su bode, que es una cuva ceada. Teoema. Sea F = P i + Qj + Rk un campo de clase en R 3 salvo tal vez en un númeo nito de puntos. Entonces son equivalentes las siguientes poposiciones:. R F ds = 0 paa toda cuva simple ceada : 2. R Fds no depende del camino. Esto es, R Fds = R 2 Fds paa dos cuvas con iguales puntos iniciales y nales. 3. F es consevativo. 4. F es iotacional. emostación. El plan de la demostación es : ) 2: ) 3: ) 4: ) : : ) 2: Si la difeencia 2 es simple, 0 = F ds = 2 F ds 2 F ds demuesta la a mación. Si no, siempe se puede pone como una suma de cuvas simples (más, eventualmente, cuvas ecoidas de ida y vuelta). 2: ) 3: Hay que elegi un punto jo. Po ejemplo el oigen, si él no es de los puntos excepcionales, y de ni f (p) como la integal del campo desde ese punto hasta p; ya que dicha integal no depende del camino. Paa poba que f = F; se elige un camino adecuado paa cada deivada pacial. Haemos la pueba de que =z F = R: Sea p = (x; y; z) y tomemos la cuva = + 2 ; donde es cualquie cuva que une 0 con (x; y; 0) y 2 es el segmento que va de (x; y; 0) a (x; y; z) : Entonces f (x; y; z) = F ds + F ds: 2

2 álculo II Peo la pimea integal no depende de z; de modo que es sólo una función (x; y) : En cuanto a la segunda, paametizando el segmento 2 po (x; y; t) ; 0 t z; z F ds = R (x; y; t) dt 2 0 ya que x e y son constantes (especto de t ) y po lo tanto dx = dy = 0: Po lo tanto, z f (p) = d dz f (x; y; z) = d dz (x; y) + d dz = 0 + R (x; y; z) = R (p) ; po aplicación del teoema fundamental del álculo. 3: ) 4: Es ya conocido. z 0 R (x; y; t) dt = 4: ) : Si la cuva ceada simple sobe la que hay que poba que la ciculación es nula es la fontea oientada de una supe cie S y vale paa ellas el teoema de Stokes, puesto que F = 0; la a mación : queda pobada: F ds = F ds = 0: S La pueba de que una cuva simple ceada siempe es la fontea de una supe cie, apela a una Matemática totalmente ajena a la que manejamos en este cuso. Sin embago, es bueno tene algún agumento convincente: Identi quemos la cuva con un alambe y metámoslo en una solución jabonosa. Saldá con una película que epesenta a la supe cie buscada. Si la película pasa po alguno de los puntos excepcionales (en cuanto a la egulaidad de F), soplando un poco tendemos ota supe cie que lo elude. Los esultados son válidos en R 2 ; sumegiendo el plano en R 3 y consideando al campo P i+qj como P i+qj+0k: Peo los puntos excepcionales de egulaidad paa el campo oiginal se convieten en ectas excepcionales paa el campo extendido. Y una ecta no se puede eludi soplando. Po eso el esultado en R 2 no admite puntos excepcionales. ontaejemplos paa el caso en que éstos existan se encuentan en la guía de ejecitación. 2 El lenguaje de las fomas difeenciales omo ya vimos, de la de nición de integal de línea de un campo bajo la paametización x = x (t) ; y = y (t) ; z = z (t): F ds = b a P x 0 + Qy 0 + Rz 0 dt suge la expesión, en pincipio apenas una abeviatua del segundo miembo, P dx + Qdy + Rdz = F ds: En pincipio, el miembo de la izquieda se de ne "íntego" po el de la deecha (que sí tiene sentido) y sus elementos caecen de sentido po sepaado. Elaboa una teoía que dé sentido a estos elementos es posible peo no vale la pena. Sin embago, algunas de niciones paciales son útiles y se usan con éxito en la páctica. 2

3 álculo II adas tes funciones P; Q; R de nidas en R 3 ; la expesión! = P dx + Qdy + Rdz es una foma difeencial de gado. Si f es una función, su difeencial es una -foma poniendo df = f f f dx + dy + x y z dz: Una foma tiene el gado de egulaidad que tienen sus coe cientes y con un gupo de tes funciones tanto se puede ama una foma como un campo. Hay entonces una taducción de los esultados aceca de campos a enunciados aceca de fomas. Si F = P i + Qj + Rk y! = P dx + Qdy + Rdz;! es exacta si F es consevativo. La función f tal que F = f y! = df se llama potencial. Si! es se dice que es ceada cuando F es iotacional. Toda foma exacta es ceada, como todo campo consevativo es iotacional. Recípocamente, si! es de clase en todo R 3 (salvo un conjunto nito), ceada implica exacta. En la demostación del teoema se vio cómo constui la función potencial de una foma ceada. Veamos con un ejemplo cómo se hace en la páctica. Supongamos que queemos halla f tal que df = yzdx + zxdy + xydz: Lo pimeo es vei ca si la condición necesaia (! ceada) se vei ca: y = Q z = x; P z = x = y; Q x = P y = z: umplido ese paso, estaemos buscando una función f (x; y; z) tal que f=x = yz: onsideando y; z jos, debeá entonces se f (x; y; z) = xyz a menos de una constante. Peo esa constante paa x sí depende de y y z que dejamos jos. Entonces, f (x; y; z) = xyz + (y; z) : Ahoa, de f=y = zx aplicado en la última igualdad, sigue que xz + =y = zx: e donde se deduce que = (z) no depende de y: f (x; y; z) = xyz + (z) : La última condición: f=z = xy se conviete entonces en xy + 0 (z) = xy; y de allí suge que es constante. El potencial geneal de! es f (x; y; z) = xyz + : 3 El teoema de la divegencia de Gauss Una egión simética elemental del espacio euclídeo es la vesión tidimensional de lo que ea una egión simple en el plano. Es una egión que es a la vez x simple, y simple y z simple. La fontea de una egión simética elemental se puede ve como la unión de a lo sumo seis supe cies (caas) que se intesecan unas a otas solamente en los bodes. Esa unión foma una supe cie sobe la que se pueden calcula integales y que limita a la egión. Oienta la fontea de una egión simética elemental "hacia afuea", signi ca elegi en cada punto p el vecto nomal N tal que, paa " positivo chico, p + "N 2 c : Hay descipciones más pecisas, peo no vale la pena. 3

4 álculo II Teoema de la divegencia. Sea una egión simética elemental con fontea egula oientada hacia afuea. F un campo de clase en : Entonces F ds = FdV: () emostación. Po la descomposición F = P i + Qj + Rk; la igualdad () se conviete en P i ds + Qj ds + Rk ds (2) P = x dv + Q y dv + z dv Esta igualdad queda su cientemente pobada si se establece la igualdad de cada sumando del pime miembo con su homólogo del segundo. Y cada una de esas tes igualdades se pueba usando que la egión simética es, espectivamente, x simple, y simple y z simple. omo muesta pobaemos la última. Po se z simple, se descibe po: (x; y) 2 ; ' (x; y) z (x; y) ; paa ' y funciones de nidas en ; una egión elemental del plano x; y: consta de una supe cie supeio (S : z = (x; y)), una supe cie infeio (S 2 : z = ' (x; y)) y una supe cie lateal S 3, fomada po a lo sumo cuato caas, peo siempe "vetical". Esto signi ca que en la supe cie lateal la nomal es hoizontal, pependicula a k: Esta a mación intuitivamente evidente admite una pueba fomal que el lecto debeía sabe hace. Rk ds = S (0; 0; R (x; y; (x; y))) x ; y ; da = R (x; y; (x; y)) da: Un cálculo simila teniendo en cuenta la oientación hacia abajo de S 2 ; mostaá que Rk ds = R (x; y; ' (x; y)) da: S 2 Po último, como ya se dijo, en S 3 la nomal unitaia n es pependicula a k: Po lo tanto, Rk ds = Rk nds = 0: S 3 S 3 En de nitiva, Rk ds = R (x; y; (x; y)) da Ahoa se debe calcula la integal de volumen: z da = (x;y) '(x;y) z (x; y; z) dz R (x; y; (x; y)) da! R (x; y; ' (x; y)) da: da = R (x; y; ' (x; y)) da: Así como el teoema de Geen, el teoema de la divegencia se aplica a egiones que sin se siméticas se pueden epesenta como una unión de ellas con fonteas comunes que se cancelan de a paes. 4

5 álculo II Teoema (Ley de Gauss). 0 =2 M; M M Sea M una egión simética elemental en R 3 : Entonces, si 8 < 3 ds = : 4 si 0 2 M 0 si 0 =2 M: emostación. Si 0 =2 M; como tampoco petenece a M; el campo es egula y 3 ds = dv = 0: 3 El cómputo que demuesta que = 3 = 0 queda a cago del lecto. Si 0 2 M es un punto inteio y existe una bola B (0; ") totalmente contenida en M: Aplicaemos el teoema de Gauss a la egión (no elemental) = M B (0; ") ; cuya fontea es M ; siendo la caa exteio de la esfea de cento en 0 y adio ": Nótese que al toma estamos eligiendo la nomal inteio de la esfea, que es exteio paa : En el campo es egula y se aplica el teoema de Gauss. omo la integal de volumen es nula, igual que en el caso anteio, M 3 ds = 3 ds = 3 n ds: Ahoa bien, en n = y = "; luego M 3 n ds = " 2 ds = 4: El Teoema de Gauss pemite obtene ota caacteización de la divegencia, tal como se hizo con el oto vía el teoema de Stokes. Situándonos en una bola B " de adio " con cento en el punto p donde queemos caacteiza la divegencia, y llamando a la fontea de la bola oientada hacia afuea, el teoema de Gauss asegua que F dv = F ds: B " Si se divide miembo a miembo po el volumen de la bola y se toma límite paa "! 0; lim F dv = lim F ds: (3) "!0 B " "!0 Ahoa obsevamos que si F es continua en p; entonces el pime miembo de la igualdad tiende hacia F (p) : En efecto, F dv F (p) = F dv F (p) dv B " B " B " f F (q) F (p)g dv (q) j F (q) F (p)j dv (q) B " B " j F (q) F (p)j! 0 paa "! 0: max kq pk" Entonces (3) da como esultado F (p) = lim "!0 F ds; que expesa a la divegencia en el punto como la tasa de ujo hacia el exteio po unidad de volumen. 5

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide egio Yansen Núñez Teoema de tokes y Gauss Actividad Nº Considee el campo vectoial F( x, y, z) ( y, x, z ). Calcule F d donde C es C la intesección ente el plano x + y + z y el cilindo x + y. Actividad

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 13 de Junio de 2001 Primera parte. ; y = u v ; z = u2 v 2

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 13 de Junio de 2001 Primera parte. ; y = u v ; z = u2 v 2 CÁLCULO Pime cuso de Ingenieo de Telecomunicación Segundo Examen Pacial. 1 de Junio de 1 Pimea pate Ejecicio 1. Obtene la expesión en que se tansfoma z xx +z xy +z yy ; al cambia las vaiables independientes

Más detalles

Las imágenes de la presentación han sido obtenidas del libro:

Las imágenes de la presentación han sido obtenidas del libro: Las imágenes de la pesentación han sido obtenidas del libo: Physics fo Scientists and Enginees Paul A. Tiple Gene Mosca Copyight 2004 by W. H. Feeman & Company Supongamos una función f = f ( x, y, z) Con

Más detalles

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS 1. Dado un campo vectoial v = ( x + y ) i + xy j + ϕ( x, y, k en donde ϕ es una función tal que sus deivadas paciales son las funciones

Más detalles

Teoremas Integrales. V(x j ) ds

Teoremas Integrales. V(x j ) ds Semana 2 - Clase 5 24/03/09 Tema : Algeba ectoial Teoemas Integales. Teoema de la Divegencia o de Gauss Sea = x j ) un campo vectoial definido sobe un volumen cuya fontea es la supeficie y ˆn el vecto

Más detalles

Cálculo diferencial e integral en una variable. Examen Febrero de 2018

Cálculo diferencial e integral en una variable. Examen Febrero de 2018 Cálculo difeencial e integal en una vaiable 2do semeste de 207 Examen Febeo de 208 Ejecicios: Múltiple opción (Total: 6 puntos) Ejecicio Sea f : [, + ) R una función continua tal que x R. Indique la opción

Más detalles

FRANCISCO JAVIER GARCÍA CAPITÁN

FRANCISCO JAVIER GARCÍA CAPITÁN MÁXIMOS SIN DERIVDS FRNCISCO JVIER GRCÍ CPITÁN Resumen Este atículo eune vaios ejemplos de cómo calcula extemos sin necesidad de usa el cálculo difeencial Solo usaemos conocidas desigualdades ente las

Más detalles

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL 0.1 CURVAS EN R 3 ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

Más detalles

r u,v ( ) = x u,v ( )î + y u,v ( ) ĵ + z u,v ( ) ˆk

r u,v ( ) = x u,v ( )î + y u,v ( ) ĵ + z u,v ( ) ˆk Supeficies Se ha visto que una cuva en el espacio se puede epesenta po una ecuación paamética del tipo: t = x t î + y t ĵ + z t ˆk En donde inteviene un solo paámeto t. La epesentación paamética de cuvas

Más detalles

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables (x 0 ). x ik. x ik 1

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables (x 0 ). x ik. x ik 1 1. RESUMEN Ingenieía Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Vaias Vaiables 08-1 Ingenieía Matemática Univesidad de Chile Guía Semana 5 Teoema del valo medio.

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

Electrostática Clase 2 Vector Desplazamiento o densidad de flujo eléctrico. Ley de Gauss..

Electrostática Clase 2 Vector Desplazamiento o densidad de flujo eléctrico. Ley de Gauss.. Electostática Clase 2 Vecto Desplazamiento o densidad de flujo eléctico. Ley de Gauss.. Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA En cietos casos que se analizan

Más detalles

Tema 5.3: Teorema de Bloch-Landau. Teorema (pequeño) de Picard

Tema 5.3: Teorema de Bloch-Landau. Teorema (pequeño) de Picard Tema 5.3: Teoema de Bloch-Landau. Teoema (pequeño) de Picad Facultad de Ciencias Expeimentales, Cuso 008-09 Enique de Amo, Univesidad de Almeía Picad demostó (en 879) que las funciones enteas no constantes

Más detalles

Tema 7. Propiedades de la luz.

Tema 7. Propiedades de la luz. Tema 7. Popiedades de la luz. Poblemas esueltos. Poblema.- Se tiene un dioptio esféico convexo que sepaa una egión donde hay aie (n = ) de ota donde hay vidio (n =, 5). El adio del diptio esféico es de

Más detalles

Apunte FII-1-RM: Repaso de Matemática

Apunte FII-1-RM: Repaso de Matemática Física II Física B - Electomagnetismo Pofesoa: Da. C. Caletti : Repaso de Matemática I. Gadiente A fin de compende mejo el concepto de gadiente comenzaemos po las bases, analizando, peviamente, qué tipo

Más detalles

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática Tema : Pincipios de la electostática 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 4/7 Leyes de la electostática Leyes de la electostática:

Más detalles

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1 PAUTA CONTROL CÁLCULO EN VARIAS VARIABLES, 14/1 (1) (a) Demueste que el máximo de la función x y z sobe la esfea x + y + z = a es (a /) y que el mínimo de la función x + y + z sobe la supeficie x y z =

Más detalles

CAMPOS ELECTROMAGNÉTICOS

CAMPOS ELECTROMAGNÉTICOS CAMPOS ELECTROMAGNÉTICOS GRADO EN INGENIERÍA AEROESPACIAL EN AERONAVEGACIÓN UNIVERSIDAD RE JUAN CARLOS «ANÁLISIS VECTORIAL» CURSO ACADÉMICO 15/16 Índice 1. Escalaes vectoes 2 1.1. Nociones básicas de análisis

Más detalles

CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS

CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS Paa los inteeses de la Física, los Campos Vectoiales se clasifican en dos gupos: -CAMPOS VECTORIALES CONSERVATIVOS.CAMPOS VECTORIALES NO CONSERVATIVOS Los de

Más detalles

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo Cuso: FISICA II CB 3U 1I Halla el CE de una esfea hueca con caga Q adio a. ad a d asen P de a Las componentes en el eje Y se anulan El CE esultante de la esfea hueca se encontaa sobe el eje X. El áea de

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO EL POTENCIAL ELÉCTRICO. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Pofeso: José Fenando Pinto Paa UNIDAD 7 POTENCIAL ELECTROSTÁTICO Dos cagas en la misma posición tienen dos veces más enegía

Más detalles

VECTORES EN DIFERENTES SISTEMAS DE COORDENADAS. TRANSFORMACIONES ENTRE SISTEMAS

VECTORES EN DIFERENTES SISTEMAS DE COORDENADAS. TRANSFORMACIONES ENTRE SISTEMAS VECTRES EN DIFERENTES SISTEMAS DE CRDENADAS. TRANSFRMACINES ENTRE SISTEMAS Sistema ectangula Se explica especto de tes ejes pependiculaes ente sí (,,) que se cotan fomando un tiedo y sobe los que están

Más detalles

Profesor BRUNO MAGALHAES

Profesor BRUNO MAGALHAES POTENCIL ELÉCTRICO Pofeso RUNO MGLHES II.3 POTENCIL ELÉCTRICO Utilizando los conceptos de enegía impatidos en Física I, pudimos evalua divesos poblemas mecánicos no solo a tavés de las fuezas (vectoes),

Más detalles

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial RECTAS EN EL PLANO Ecuación de la ecta La ecuación de una ecta puede dase de difeentes fomas, que veemos a continuación. Conocidos un punto P(p 1, p ) y un vecto de diección d = (d 1, d ) (o sea, un vecto

Más detalles

Electromagnetismo I. Solución Tarea 3

Electromagnetismo I. Solución Tarea 3 Electomagnetismo I Semeste: 25-2 Pof. Alejando Reyes Coonado Ayud. Calos Albeto Maciel Escudeo Ayud. Chistian Espaza López Solución po Calos Maciel Escudeo Solución Taea 3. Poblema: (pts) El potencial

Más detalles

Flujo eléctrico. Michael Faraday, septiembre de íd. 25 de agosto de 1867) fue un físico y químico inglés)

Flujo eléctrico. Michael Faraday, septiembre de íd. 25 de agosto de 1867) fue un físico y químico inglés) Flujo eléctico Michael Faaday, (Londes, 22 de septiembe de 1791 - íd. 25 de agosto de 1867) fue un físico y químico inglés) Flujo eléctico (Φ) 2 N m φ E da A C Flujo eléctico (Φ) Cuál es el flujo eléctico

Más detalles

Campos gravitoelectromagnéticos dependientes del tiempo

Campos gravitoelectromagnéticos dependientes del tiempo 6 Campos gavitoelectomagnéticos dependientes del tiempo 1.6 Campos gavitomagnéticos dependientes del tiempo Los campos gavitomagnéticos que hemos manejado hasta ahoa, como (.5), (4.5) y (5.5), coesponden

Más detalles

Leyes de Kepler. Antes de demostrar las tres leyes de Kepler, haré un análisis matemático de lo que es una elipse.

Leyes de Kepler. Antes de demostrar las tres leyes de Kepler, haré un análisis matemático de lo que es una elipse. Leyes de Keple. Antes de demosta las tes leyes de Keple, haé un análisis matemático de lo que es una elipse. Una elipse (Fig.) es el luga geomético de un punto que se mueve en un plano de tal manea que

Más detalles

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 5/7 Potencial eléctrico

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 5/7 Potencial eléctrico Tema : Pincipios de la electostática 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 5/7 Potencial eléctico La ciculación del campo

Más detalles

Modelo Pregunta 3A. El campo electrostático creado por una carga puntual q, situada en el

Modelo Pregunta 3A. El campo electrostático creado por una carga puntual q, situada en el Modelo 2014. Pegunta 3A. El campo electostático ceado po una caga puntual q, situada en el 9 1 oigen de coodenadas, viene dado po la expesión: E = u 2 N C, donde se expesa en m y u es un vecto unitaio

Más detalles

Ecuaciones generales Modelo de Maxwell

Ecuaciones generales Modelo de Maxwell Electomagnetismo 212/213 Ecuaciones geneales Modelo de Maxwell Intoducción Fuentes de campo: aga eléctica. oiente eléctica. Ecuación de continuidad. Definición del campo electomagnético. Ecuaciones de

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

Fig. 1 Esquema para el cálculo de B

Fig. 1 Esquema para el cálculo de B P1- CAMPO DE UN AAMRE (EY DE OT-SAVART). Considee una poción de un alambe ecto de longitud po el que cicula una coiente constante. (a) Calcule la inducción magnética paa puntos sobe el plano que divide

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

Ecuaciones generales Modelo de Maxwell

Ecuaciones generales Modelo de Maxwell Electicidad y Magnetismo uso 2004-2005 Ecuaciones geneales Modelo de Maxwell Intoducción Fuentes de campo: aga eléctica. oiente eléctica. Ecuación de continuidad. Definición del campo electomagnético.

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

E r = 0). Un campo irrotacional proviene de un campo escalar; es el gradiente de un campo escalar. En el caso del campo electrostático,

E r = 0). Un campo irrotacional proviene de un campo escalar; es el gradiente de un campo escalar. En el caso del campo electrostático, L OTNIAL LÉTRIO l campo electostático es iotacional ( = ). Un campo iotacional poiene de un campo escala; es el gadiente de un campo escala. n el caso del campo electostático, esta función se denomina

Más detalles

Tema 1: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Flujo, divergencia y teorema de Gauss

Tema 1: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Flujo, divergencia y teorema de Gauss Tema 1: Fundamentos Matemáticos 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 4/7 Flujo, divegencia y teoema de Gauss Concepto

Más detalles

. Esta segunda función es posible que no pueda explicitarse: no pueda encontrarse la fórmula y f (x)

. Esta segunda función es posible que no pueda explicitarse: no pueda encontrarse la fórmula y f (x) 1 FUNCIONES DE DOS VARIABLES DERIVACIÓN IMPLÍCITA (Tangente a una cuva de nivel); FUNCIONES HOMOGÉNEAS Deivación implícita ecta tangente a una cuva de nivel Si (a, b) es un punto que cumple la ecuación

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 5-. Ejemplo 1º. Aplicando el teoema de Gauss halla el campo eléctico ceado po una distibución esféica de

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas.

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas. º-Halla a y b paa que las ectas siguientes sean paalelas: x+ay - z s 4x y +6 z a ; b- x+y +bz º-Dadas las ectas de ecuaciones x z - y - (x, y,z) (,0,)+ (,,-) a) Estudia su posición elativa en el espacio.

Más detalles

Plano Tangente a una superficie

Plano Tangente a una superficie Plano Tangente a una supeficie Plano Tangente a una supeficie Sea z f ( una función escala con deivadas paciales continuas en (a b del dominio de f. El plano tangente a la supeficie en el punto P( a b

Más detalles

2º de Bachillerato Campo Eléctrico

2º de Bachillerato Campo Eléctrico Física TEM 6 º de achilleato ampo Eléctico.- Tes cagas elécticas puntuales iguales, de n, están situadas en el vacío ocupando los puntos cuyas coodenadas en metos son (,, (,4 y (,. alcula la fueza que

Más detalles

L Momento angular de una partícula de masa m

L Momento angular de una partícula de masa m Campo gavitatoio Momento de un vecto con especto a un punto: M El momento del vecto con especto al punto O se define como el poducto vectoial M = O Es un vecto pependicula al plano fomado po los vectoes

Más detalles

Tema 1: Análisis vectorial

Tema 1: Análisis vectorial Tema 1: Análisis vectoial Campos Electomagnéticos º Cuso Ingenieía Industial Dpto.Física Aplicada III Cuso 010/011 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Benal Ménde 1 Tema 1: Índice (I)

Más detalles

Lección 2. El campo de las cargas en reposo: campo electrostático.

Lección 2. El campo de las cargas en reposo: campo electrostático. Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009

Selectividad Septiembre 2009 SEPTIEMBRE 2009 Selectividad Septiembe 9 OPCIÓN A PROBLEMAS SEPTIEMBRE 9 1.- Sea la función f () =. + 1 a) Halla el dominio, intevalos de cecimiento y dececimiento, etemos elativos, intevalos de concavidad y conveidad,

Más detalles

CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas

CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas ETS. Ingenieía de Telecomunicación Dpto. Teoía de la Señal Comunicaciones CAMPOS ELECTROMAGNÉTICOS Tema. Cálculo Vectoial Coodenadas Catesianas, Cilíndicas Esféicas P.- Dado un vecto A = + (a) su magnitud

Más detalles

Electromagnetismo II

Electromagnetismo II Electomagnetismo II emeste: 15-1 EXAMEN FINAL D. A. Reyes-oonado Ayud. J. astejón-figueoa Ayud. P. E. Roman-Taboada Elaboó: Pedo Eduado Roman Taboada 1.- Poblema: (pts) (a) Escibe las cuato ecuaciones

Más detalles

LECCIÓN 5: CINEMÁTICA DEL PUNTO

LECCIÓN 5: CINEMÁTICA DEL PUNTO LECCIÓN 5: CINEMÁTICA DEL PUNTO 5.1.Punto mateial. 5.. Vecto de posición. Tayectoia. 5.3. Vecto velocidad. 5.4. Vecto aceleación. 5.5. Algunos tipos de movimientos. 5.1. PUNTO MATERIAL. Un punto mateial

Más detalles

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será:

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será: xyz0. Dados la ecta : y el punto P(, 0, ) exteio a : x y z a) Halla la ecuación en foma geneal del plano que contiene a y a P b) Halla la ecuación (como intesección de dos planos) de la ecta s que pasa

Más detalles

Instituto Nacional de Astrofísica, Óptica y Electrónica INAOE

Instituto Nacional de Astrofísica, Óptica y Electrónica INAOE INSTRUCCIONES: Instituto Nacional de Astofísica, Óptica y Electónica INAOE Cuso popedéutico de teoía electomagnética. Segundo examen pacial,. Lee atentamente los poblemas. Vienes 3 de noviembe de 27 2.

Más detalles

z + 1 = x + y situada debajo del plano

z + 1 = x + y situada debajo del plano CÁLCULO INTERMEIO APLICAO (64) EGUNO PARCIAL (%) 6/1/9 EPARTAMENTO E APLICAA JOÉ LUI QUINTERO 1. ea la poción de la esfea de ecuación del cono de ecuación supeficie. + y + z = a contenida dento + y = z,

Más detalles

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

Calcular el rango de ( AB )T. (1 punto)

Calcular el rango de ( AB )T. (1 punto) Pueba de Acceso a la Univesidad. JUNIO. Instucciones: Se poponen dos opciones A y B. Hay que elegi una de las dos opciones y contesta a sus cuestiones. La puntuación está detallada en cada una de las cuestiones

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN Puebas de selectividad PRUEBA DE ACCESO A LA UNIVERSIDAD.004 ENUNCIADO Y RESOLUCIÓN Instucciones: a)duación: 1 hoa y 0 minutos. b) Tienes que elegi ente ealiza únicamente los cuato ejecicios de la Opción

Más detalles

SERIE # 3 CÁLCULO VECTORIAL

SERIE # 3 CÁLCULO VECTORIAL SERIE # 3 ÁLULO VETORIAL ÁLULO VETORIAL Página 1 1) Sea el campo vectoial F (x,y,)=( 3x+ y)i+( x+ y ) j ( x) k. alcula lago de la cuva : 4 5 x = + y y =, del punto A ( 3, 1, 1) al punto B ( 3, 1, -1).

Más detalles

Las situaciones de variación temporal lenta se caracterizan porque en las ecuaciones de Maxwell se puede despreciar el término:

Las situaciones de variación temporal lenta se caracterizan porque en las ecuaciones de Maxwell se puede despreciar el término: Electicidad y Magnetismo Vaiación tempoal lenta 16/1/28 EyM 7-1 Electodinámica Vaiación tempoal lenta Vaiación tempoal lenta Las situaciones de vaiación tempoal lenta se caacteizan poque en las ecuaciones

Más detalles

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA Electostática táti Clase 3 Ecuación de Laplace y Ecuación de Poisson Teoema de Unicidad. Métodos de las Imágenes Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA 2 E V m

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo.

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo. LY D GAU La ley de Gauss es un enunciado ue es deivable de las popiedades matemáticas ue tiene el Vecto de intensidad de Campo léctico con especto a las supeficies en el espacio. ste enunciado constituye

Más detalles

ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas

ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas ELECTROSTTIC La electostática es la pate de la física que estudia las cagas elécticas en equilibio. Cagas elécticas Existen dos clases de cagas elécticas, llamadas positiva y negativa, las del mismo signo

Más detalles

ˆk, donde f 1. son funciones escalares, entonces su producto cruz o vectorial del operador con la función es: y f 2

ˆk, donde f 1. son funciones escalares, entonces su producto cruz o vectorial del operador con la función es: y f 2 Rotacional de una función vectoial Si una función vectoial es f = f 1 î + f 2 ĵ + f 3 ˆk, donde f 1, f 2, f 3 son funciones escalaes, entonces su poducto cuz o vectoial del opeado con la función es: f

Más detalles

Primer curso de Ingeniería Industrial. Curso 2009/2010 Dpto. Física Aplicada III 1

Primer curso de Ingeniería Industrial. Curso 2009/2010 Dpto. Física Aplicada III 1 Tema 4: Potencial eléctico Fundamentos Físicos de la Ingenieía Pime cuso de Ingenieía Industial Cuso 9/1 Dpto. Física Aplicada III 1 Índice Intoducción: enegía potencial electostática Difeencia de potencial

Más detalles

Consideremos dos placas paralelas en contacto, con sus correspondientes espesores y conductividades.

Consideremos dos placas paralelas en contacto, con sus correspondientes espesores y conductividades. Continuación: Tansfeencia de calo a tavés de placas compuestas: Consideemos dos placas paalelas en contacto, con sus coespondientes espesoes y conductividades. En la supeficie de contacto la tempeatua

Más detalles

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio. Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia

Más detalles

Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO

Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO Física Geneal III Potencial Eléctico Optaciano ásuez Gacía CPITULO I POTENCIL ELÉCTICO 136 Física Geneal III Potencial Eléctico Optaciano ásuez Gacía 4.1 INTODUCCIÓN. Es sabido ue todos los objetos poseen

Más detalles

226 Capítulo 4: Aplicaciones de las derivadas

226 Capítulo 4: Aplicaciones de las derivadas 4.6 Método de Newton 5 6. La deivada dtd del ejemplo 4 a. Demueste que es una función ceciente de. b. Puebe que es una función dececiente de. c. Demueste que dt d = ƒsd = gsd = c a + - es una función ceciente

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

RELACION DE ORDEN: PRINCIPALES TEOREMAS

RELACION DE ORDEN: PRINCIPALES TEOREMAS RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a

Más detalles

IV. SISTEMAS DE COORDENADAS Y ALGUNOS CONCEP TOS

IV. SISTEMAS DE COORDENADAS Y ALGUNOS CONCEP TOS IV. SISTEMAS DE COORDENADAS Y ALGUNOS CONCEP TOS A. COORDENADAS POLARES Dado un punto en el plano catesiano, (coodenadas ectangulaes), dicho punto puede se epesentado con otas coodenadas (coodenadas polaes)

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos OPCIÓN A IES STER DJOZ PRUE DE ESO (OGSE) UNIVERSIDD DE EXTREMDUR JUNIO (GENER) (RESUETOS po ntonio Menguiano) MTEMÁTIS II Tiempo máimo: hoa y minutos Instucciones: El alumno elegiá una de las dos opciones popuestas

Más detalles

z Región III Región II Región I

z Región III Región II Región I Capacito de placas ciculaes - solución completa amos a calcula el potencial electostático en todo el espacio paa un capacito de placas ciculaes y paalelas. Las placas conductoas están ubicadas en z = ±l/2,

Más detalles

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será:

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será: xyz0 1. Dados la ecta : y el punto P(1, 0, 1) exteio a : x y z a) Halla la ecuación en foma geneal del plano que contiene a y a P b) Halla la ecuación (como intesección de dos planos) de la ecta s que

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Tema. Sistemas consevativos Cuata pate: Movimiento planetaio. Satélites A) Ecuaciones del movimiento Suponemos que uno de los cuepos, de masa M mucho mayo que m, se encuenta en eposo en el oigen de coodenadas

Más detalles

Campo eléctrico. 3 m. respectivamente. Calcular el campo eléctrico en el punto A (4,3). Resp.:

Campo eléctrico. 3 m. respectivamente. Calcular el campo eléctrico en el punto A (4,3). Resp.: Campo eléctico 1. Calcula el valo de la fueza de epulsión ente dos cagas Q 1 = 200 µc y Q 2 = 300 µc cuando se hallan sepaadas po una distancia de a) 1 m. b) 2 m. c) 3 m. Resp.: a) 540 N, b) 135 N, c )

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

Soluciones de los ejercicios del examen Parcial de Cálculo Primer curso de Ingeniería de Telecomunicación - febrero de 2007

Soluciones de los ejercicios del examen Parcial de Cálculo Primer curso de Ingeniería de Telecomunicación - febrero de 2007 Soluciones de los ejecicios del eamen Pacial de Pime cuso de Ingenieía de Telecomunicación - febeo de 7 Ejecicio a) Paa todo > sea f ) log e, y f ). Justifica que lím f ). Estudia el signo de la deivada

Más detalles

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Los ángulos: Se pueden medi en: GRADOS RADIANES: El adián se define como el ángulo que limita un aco cuya longitud es igual al adio del aco. Po tanto, el ángulo, α,

Más detalles

Potencial Escalar - Integrales de superposición. 2010/2011

Potencial Escalar - Integrales de superposición. 2010/2011 Potencial Escala - Integales de supeposición. / Electostática Definición os conductoes en electostática. Campo de una caga puntual. Aplicaciones de la ey de Gauss Integales de supeposición. Potencial electostático

Más detalles

SISTEMA DIÉDRICO II Paralelismo, perpendicularidad y distancias Verdaderas magnitudes lineales TEMA 9 PARALELISMO

SISTEMA DIÉDRICO II Paralelismo, perpendicularidad y distancias Verdaderas magnitudes lineales TEMA 9 PARALELISMO SSTEMA ÉRCO Paalelismo, pependiculaidad y distancias Vedadeas magnitudes lineales Objetivos y oientaciones metodológicas TEMA 9 Esta unidad temática es fundamental y, a la vez, su explicación se puede

Más detalles

ALGEBRA Y GEOMETRÍA I

ALGEBRA Y GEOMETRÍA I FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE FORMACIÓN BÁSICA DEPARTAMENTO DE MATEMÁTICA ALGEBRA Y GEOMETRÍA I El Plano Ricado Sagistá EL PLANO - Definición del plano como luga geomético

Más detalles

Tema 4.-Potencial eléctrico

Tema 4.-Potencial eléctrico Tema 4: Potencial eléctico Fundamentos Físicos de la Ingenieía Pime cuso de Ingenieía Industial Cuso 6/7 Dpto. Física plicada III Univesidad de Sevilla 1 Índice Intoducción: enegía potencial electostática

Más detalles

CURSO DE DE ELECTROMAGNETISMO. FUERZAS ELÉCTRICAS CAMPOS ELÉCTRICOS Y FLUJO ELÉCTRICO. Ley de Colulomb. Ley de Gauss

CURSO DE DE ELECTROMAGNETISMO. FUERZAS ELÉCTRICAS CAMPOS ELÉCTRICOS Y FLUJO ELÉCTRICO. Ley de Colulomb. Ley de Gauss CURSO DE DE ELECTROMAGNETISMO. FUERZAS ELÉCTRICAS CAMPOS ELÉCTRICOS Y FLUJO ELÉCTRICO Este test contiene poblemas sobe los siguientes temas:. Caga eléctica. Ley de coulomb. Flujo eléctico 4. Campo eléctico

Más detalles

Transferencia de Energía. Grupo ª

Transferencia de Energía. Grupo ª Tansfeencia de Enegía 547 Gupo 3. 204-08-25 6ª 204-08-25 ontenido El 204-08-20 no hubo clase. Ejemplo de tansfeencia de enegía po difusión a tavés de mateiales compuestos. A 0 T 0 M M 2 A 2L T 2L B T B

Más detalles

Particularidades y consejos sobre la estela

Particularidades y consejos sobre la estela Paticulaidades y consejos sobe la estela 9 Aplicando la fómula de Kutta F = ρ U sobe un pefil se obseva como hay una dependencia diecta ente la eistencia de una ciculación alededo del pefil y la geneación

Más detalles

A para α = 1. ( α 2) 2 2( α 1) 1 α ( ) y además sabemos que A 0 A. Calculemos A 1 : A A = = A 1 1 0

A para α = 1. ( α 2) 2 2( α 1) 1 α ( ) y además sabemos que A 0 A. Calculemos A 1 : A A = = A 1 1 0 Pueba de cceso a la Univesidad. JUNIO 0. Instucciones: Se poponen dos opciones y B. Hay que elegi una de las dos opciones y contesta a sus cuestiones. La puntuación está detallada en cada una de las cuestiones

Más detalles

I. Fundamentos matemáticos. ticos. Campos Electromagnéticos. ticos. Herramientas matemáticas. ticas. Ingeniero de Telecomunicación

I. Fundamentos matemáticos. ticos. Campos Electromagnéticos. ticos. Herramientas matemáticas. ticas. Ingeniero de Telecomunicación I. Fundamentos matemá Heamientas matemáticas ticas Gabiel Cano Gómez, G 7/8 Dpto. Física F Aplicada III (U. Sevilla) Campos Electomagné Ingenieo de Telecomunicación Álgeba del opeado nabla Gabiel Cano

Más detalles

Interacción magnética

Interacción magnética Inteacción magnética Áea Física Resultados de apendizaje Utiliza las leyes de Gauss, Biot-Savat y Ampee paa calcula campos magnéticos en difeentes poblemas. Estudia el movimiento de una patícula cagada

Más detalles

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa: PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido

Más detalles

TANGENCIAS (Julio Catalán)

TANGENCIAS (Julio Catalán) NGENIS (Julio atalán) Los poblemas de tangencia que pueden pesentase son innumeables y van desde los muy sencillos a los más complejos, ecuiéndose paa su solución a pocedimientos muy distintos: desde los

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

CAPITULO 3 MÉTODO DE RESOLUCIÓN MEDIANTE INTEGRALES

CAPITULO 3 MÉTODO DE RESOLUCIÓN MEDIANTE INTEGRALES CAPÍTULO : METODO DE RESOLUCIÓN MEDIANTE INTEGRALES CAPITULO MÉTODO DE RESOLUCIÓN MEDIANTE INTEGRALES. Resumen En este capítulo se encuenta solución analítica mediante el método de sepaación de vaiables

Más detalles

CURSO DE DE ELECTROMAGNETISMO. FUERZAS ELÉCTRICAS CAMPOS ELÉCTRICOS Y FLUJO ELÉCTRICO. Ley de Gauss

CURSO DE DE ELECTROMAGNETISMO. FUERZAS ELÉCTRICAS CAMPOS ELÉCTRICOS Y FLUJO ELÉCTRICO. Ley de Gauss CURSO DE DE ELECTROMAGNETISMO. FUERZAS ELÉCTRICAS CAMPOS ELÉCTRICOS Y FLUJO ELÉCTRICO Este test contiene poblemas sobe los siguientes temas:. Caga eléctica. Ley de coulomb 3. Flujo eléctico 4. Campo eléctico

Más detalles

MATEMÁTICAS I Grupos F, H

MATEMÁTICAS I Grupos F, H MATEMÁTICAS I Gupos F, H 2--2 APELLIDOS: NOMBRE: En cada pegunta no sólo se valoaá la coección del pocedimiento y el esultado, sino también, en la misma medida, la coección en la expesión de los cálculos

Más detalles

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo: MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,

Más detalles