Transferencia de Momentum

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Transferencia de Momentum"

Transcripción

1 Tansfeencia de Momentum ª

2 Contenido Sistemas coodenados convencionales Ecuación de continuidad; Balance de momentum

3 y t z x v 0 =0 cuando Ecuación de continuidad, notación vectoial: En coodenadas catesianas: x, y, z i j k v iv jv kv x y z ; x y z i j i j 1 ; cuando i j i j 0 v ( v x ) ( v y ) ( v z ) x y z Po lo tanto, la ecuación de continuidad en coodenadas catesianas es: t x (v x ) y (v y ) z (v z ) 0 La ecuación de continuidad es escala; es el balance de masa de un sistema de un solo componente; po ello, en el EC no puede habe tanspote po difusión ni tansfomación, peo sí puede habe acumulación y/o tanspote po convección de masa.

4 Ecuación de continuidad: v 0 t Sistema coodenado catesiano vx vy vz 0 t x y z

5 Ecuación de continuidad: v 0 t Sistema coodenado cilíndico x cos y sin z z 1 1 v v vz 0 t z

6 Ecuación de continuidad: v 0 t Coodenadas esféicas x sincos y sinsin z cos v v sin v 0 t sin sin

7 BSL Tabla Ecuación de Continuidad en difeentes sistemas coodenados (A) Coodenadas ectangulaes (x,y,z) ( v x ) ( v y ) ( v z ) 0 t x y z (B) Coodenadas cilíndicas (,,z) 1 1 v v vz 0 t t z (C) Coodenadas esféicas (,,) v v sin v 0 t t sin sin

8 Balance de Momentum v vv g P 0 t Acumulación Flujo po Convección Fuezas de Campo (Gavitación) Fuezas Estáticas (Pesión) Fuezas Dinámicas (Defomación) Donde quedó el tanspote de momentum po difusión molecula?

9 Vecto de esfuezos ( t ) y Tenso de Esfuezos ( T ) Se asume que ρ, v y t son funciones continuas tanto de las coodenadas espaciales como del tiempo. Además, t esta efeida al vecto nomal n que sale de la supeficie del elemento de contol. El vecto de esfuezos t cumple con las siguientes condiciones: 1. Dos vectoes de esfuezos que: i) actúen sobe una misma supeficie; ii) tengan la misma magnitud; y iii) estén ubicados en lados opuestos de dicha supeficie, satisfacen la siguiente igualdad : t (n) t (n). El vecto de esfuezos t (n) puede escibise en téminos del tenso de esfuezos T de la siguiente manea: t( n ) T n 3. El tenso de esfuezos T es simético, po lo tanto: T ik T ki Posteiomente se utilizaán estas popiedades

10 igualdad: Balance de Momentum v vv g P 0 t Como : t v v t v t wv w v v w... (A.4-30) BSL vv vv v v v v vv v v v v v t t t v v vv v v v v t t t Po la ecuacion de continuidad: v 0 t v Po lo tanto: v vv v v t t

11 v vv g P 0 t Consideando coodenadas catesianas ectangulaes, el opeado es: i j k x y z Po oto lado, a delta de Konecke esta definida como: ii00 0 j j0 ii j j kk ij 1 cuando i j ; ij 0 cuando i j 00kk ii00 P 0 j j0p iip j jp kkp 00kk Po lo tanto: P i j k iip j jp kkp x y z

12 como: P i j k iip j jp kkp x y z P P P i iip j j jp k kkp i j k P x y z x y z P i j k P x y z P P

13 v vv g P 0 t como: i j k x y z Se considea el caso de un fluido Newtoniano, lo cual implica que su viscosidad es el facto de popocionalidad ente su tenso de esfuezos y su tenso de apidez de defomación ente sus tensoes de esfuezos dinámicos y de defomación es la viscosidad del fluido : v v v Po lo tanto: v Como no depende de la posición (ni del tiempo) : v v

14 como: v v y: i j k x y z v i j k i j k v x y z x y z i j k i j k x y z x y z x x y y z z x y z v v v Po lo tanto, paa el fluido Newtoniano: v

15 Balance de Momentum Po lo tanto, el balance de momentum paa un fluido que tenga un compotamiento Newtoniano puede expesase en téminos medibles : v v vv v v t t P P v v vv g P v 0 t Donde quedó el tanspote de momentum po difusión molecula? v v

16 Ecuación de Movimiento. BSL Tabla 3.4- Coodenadas Rectangulaes (x,y,z). En téminos de v x t v x v y t v x v x x v y v y x v y (A) Componente-x v x y v v x z p z x xx x yx y zx z (B) Componente-y v y y v v y z p z y xy x yy y zy z g x g y v z t v x v z x v y v z y v z (C) Componente-z v z z p z xz x yz y zz z g z

17 Ecuación de Movimiento. BSL Tabla 3.4- Coodenadas Rectangulaes (x,y,z). En téminos de gadientes de velocidad. Fluido de compotamiento Newtoniano. Densidad y viscosidad constantes v x t v x v x x v y v x y v z (D) Componente-x v x z p x v x x v x y v x z g x v y t v x v z t v x v y x v y v z x v y (E) Componente-y v y y v v y z p z y v y x v y y z v y g y (F) Componente-z v z y v v z z p z z v z x v z y v z g z z

18 (A) Componente- (B) Componente- (C) Componente-z Ecuación de Movimiento. BSL Tabla Cilíndicas (,,z). En téminos de v v v v v v p v vz t z 1 1 z z g v v v v vv v 1 p v vz t z 1 1 z g z vz vz v vz vz p v vz t z z 1 1 z z zz z g z

19 Ecuación de Movimiento. BSL Tabla Cilíndicas (,,z). Gadientes de velocidad. Fluido Newtoniano. y constantes (D) Componente- (E) Componente-y (C) Componente-z v v v v v v p v vz t z 1 1 v v v v g z v v v v vv v 1 p v vz t z 1 1 v v v v g z vz vz v vz vz p v vz t z z 1 vz 1 vz v z g z z

20 Ecuación de Movimiento BSL Tabla Esféicas (,,z). En téminos de A) componente- v v v v v v v v p v g t sin sin sin sin

21 Ecuación de Movimiento BSL Tabla Esféicas (,,z). En téminos de B) Componente- v v v cot v v v v vv 1 p v g t sin cot sin sin sin C) Componente- v v v v v v v v v v 1 p v cot t sin sin z cot sin g

22 Ecuación de Movimiento. BSL Tabla Esféicas (,,). Gadientes de velocidad. Fluido Newtoniano. y constantes v v v v v v v v p v g t sin D) Componente- v v sin v v v cot sin sin sin

23 Ecuación de Movimiento. BSL Tabla Esféicas (,,). Gadientes de velocidad. Fluido Newtoniano. y constantes E) Componente- v v v cot v v v v vv 1 p v g t sin v v v cos v sin sin sin sin sin

24 Ecuación de Movimiento. BSL Tabla Esféicas (,,). Gadientes de velocidad. Fluido Newtoniano. y constantes F) Componente- v v v v v v v v v v 1 p v cot t sin sin z v v cos v v g sin sin sin 1 1 sin sin 1 sin

25 Tansfeencia de Momentum Fin de ª

Transferencia de Energía. Grupo ª

Transferencia de Energía. Grupo ª Tansfeencia de Enegía 547 Gupo 3. 204-08-25 6ª 204-08-25 ontenido El 204-08-20 no hubo clase. Ejemplo de tansfeencia de enegía po difusión a tavés de mateiales compuestos. A 0 T 0 M M 2 A 2L T 2L B T B

Más detalles

Ecuaciones del movimiento de un fluido

Ecuaciones del movimiento de un fluido Ecuaciones del movimiento de un fluido 1 Foma fundamental El tenso de tensiones Relación constitutiva paa un fluido Newtoniano La ecuación de Navie-Stokes El tenso de tensiones paa flujos incompesibles

Más detalles

Las imágenes de la presentación han sido obtenidas del libro:

Las imágenes de la presentación han sido obtenidas del libro: Las imágenes de la pesentación han sido obtenidas del libo: Physics fo Scientists and Enginees Paul A. Tiple Gene Mosca Copyight 2004 by W. H. Feeman & Company Supongamos una función f = f ( x, y, z) Con

Más detalles

Hidrostática y Fluidos Ideales.

Hidrostática y Fluidos Ideales. Hidostática y Fluidos Ideales. Intoducción a la Física Ambiental. Tema 5. Tema IFA5. (Pof. M. RAMOS Tema 5.- Hidostática y Fluidos Ideales. Hidostática: Pesión. Distibución de pesiones con la pofundidad:

Más detalles

Fluidos: generalidades y definiciones.

Fluidos: generalidades y definiciones. Fluidos: genealidades y definiciones. Intoducción a la Física Ambiental. Tema 4. Tema 4. IFA (Pof. RAMOS) 1 Tema 4.- Fluidos Genealidades y Definiciones. El fluido como medio continuo. Mecánica de los

Más detalles

XIII.- TEOREMA DEL IMPULSO

XIII.- TEOREMA DEL IMPULSO XIII.- TEOREMA DEL IMPULSO http://libos.edsauce.net/ XIII.1.- REACCIÓN DE UN FLUIDO EN MOVIMIENTO SOBRE UN CANAL GUÍA El cálculo de la fueza ejecida po un fluido en movimiento sobe el canal que foman los

Más detalles

Paredes Delgadas. Clase 6 Recipiente de Revolución de Paredes Delgadas. Facultad de Ingeniería - UNA

Paredes Delgadas. Clase 6 Recipiente de Revolución de Paredes Delgadas. Facultad de Ingeniería - UNA Paedes Delgadas Clase 6 Recipiente de Revolución de Paedes Delgadas Impotancia páctica de la evolución de los cálculos Catedal de San Pedo, edificada en el siglo XVI, Luz 40 m, espeso pomedio de 3 metos

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

Transferencia de Momentum

Transferencia de Momentum Transferencia de Momentum 1740-2. 2014-02-18 6ª Contenido 1. Flux difusivo y flux convectivo 2. Balance de una propiedad conservativa 2014-02-18 Sea la propiedad conservativa de interés Sea la concentración

Más detalles

Transferencia de Momentum

Transferencia de Momentum Transferencia de Momentum 1740-2. 2014-02-20 7ª 2014-02-20 Contenido 1. Observaciones de algunas operaciones entre escalares, vectores y tensores 2. Balance de momentum Elemento de Control, EC Región del

Más detalles

Tema 1: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Flujo, divergencia y teorema de Gauss

Tema 1: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Flujo, divergencia y teorema de Gauss Tema 1: Fundamentos Matemáticos 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 4/7 Flujo, divegencia y teoema de Gauss Concepto

Más detalles

Apunte FII-1-RM: Repaso de Matemática

Apunte FII-1-RM: Repaso de Matemática Física II Física B - Electomagnetismo Pofesoa: Da. C. Caletti : Repaso de Matemática I. Gadiente A fin de compende mejo el concepto de gadiente comenzaemos po las bases, analizando, peviamente, qué tipo

Más detalles

Electrostática. Campo electrostático y potencial

Electrostática. Campo electrostático y potencial Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES U R S O: FÍSI OMÚN MTERIL: F-01 Sistema intenacional de medidas MGNITUDES ESLRES VETORILES En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales. El sistema

Más detalles

Ecuaciones de Navier-Stokes. Fenómenos Turbulentos.

Ecuaciones de Navier-Stokes. Fenómenos Turbulentos. Capítulo 3 Ecuaciones de Navier-Stokes. Fenómenos Turbulentos. 3.1. Ecuaciones de Navier-Stokes. 3.1.1. ntroducción. Antes de obtener las ecuaciones fundamentales que gobiernan el comportamiento de los

Más detalles

Transferencia de Momentum ª

Transferencia de Momentum ª Transferencia de Momentum 174-2. 214-3-11 1ª Contenido 1. Estrategia para resolver los problemas; 2. Ejemplos 214-3-11 Estrategia para resolver los problemas 1. Leer cuidadosamente la información proporcionada.

Más detalles

CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas

CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas ETS. Ingenieía de Telecomunicación Dpto. Teoía de la Señal Comunicaciones CAMPOS ELECTROMAGNÉTICOS Tema. Cálculo Vectoial Coodenadas Catesianas, Cilíndicas Esféicas P.- Dado un vecto A = + (a) su magnitud

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 0- Pofeso: Jaime Andés Jaamillo González ([email protected]) Pate del mateial ha sido tomado de documentos

Más detalles

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será:

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será: xyz0 1. Dados la ecta : y el punto P(1, 0, 1) exteio a : x y z a) Halla la ecuación en foma geneal del plano que contiene a y a P b) Halla la ecuación (como intesección de dos planos) de la ecta s que

Más detalles

DINAMICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES

DINAMICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES DINAMICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES 4.1 OBJETIVOS Aplicar los principios de la física sobre la: conservación de masa, cantidad de movimiento y de la energía. Representar los conceptos del

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

U.D. 3. I NTERACCIÓN GRAVITATORIA

U.D. 3. I NTERACCIÓN GRAVITATORIA U.D. 3. I NERACCIÓN GRAVIAORIA RESUMEN Ley de gavitación univesal: odos los cuepos se ataen con una fueza diectamente popocional al poducto de sus masas e invesamente popocional al cuadado de la distancia

Más detalles

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática Tema : Pincipios de la electostática 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 4/7 Leyes de la electostática Leyes de la electostática:

Más detalles

APÉNDICE : COORDENADAS CURVILÍNEAS

APÉNDICE : COORDENADAS CURVILÍNEAS PÉNDICE : COORDENDS CURVILÍNES Cantal Fee Roca 008 Las coodenadas esféicas se tiliaban en el siglo IV-III a.c., tanto paa la deteminación de posiciones estelaes (po ejemplo, catalogación estela de Hipaco)

Más detalles

Ayudantía 11. Problema 1. Considere un cascarón esférico de radio interno a y radio externo b con polarización

Ayudantía 11. Problema 1. Considere un cascarón esférico de radio interno a y radio externo b con polarización Pontificia Univesidad Católica de Chile Facultad de Física FIS1533 Electicidad y Magnetismo Pofeso: Máximo Bañados Ayudante: Felipe Canales, coeo: [email protected] Ayudantía 11 Poblema 1. Considee un cascaón

Más detalles

LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA

LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA OBJETIVOS I.- Loga el equilibio estático de objetos que pueden ota en tono a un eje, po medio de la aplicación de fuezas y toques. INTRODUCCIÓN

Más detalles

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas.

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas. º-Halla a y b paa que las ectas siguientes sean paalelas: x+ay - z s 4x y +6 z a ; b- x+y +bz º-Dadas las ectas de ecuaciones x z - y - (x, y,z) (,0,)+ (,,-) a) Estudia su posición elativa en el espacio.

Más detalles

CLASE 1. Fuerza Electrostática LEY DE COULOMB

CLASE 1. Fuerza Electrostática LEY DE COULOMB CLASE Fueza Electostática LEY DE COULOMB FQ Fisica II Sem.0- Definiciones Qué es ELECTRICIDAD?. f. Fís. Popiedad fundamental de la mateia que se manifiesta po la atacción o epulsión ente sus pates, oiginada

Más detalles

P xx ( r) P xy ( r) P xz ( r) P xy ( r) P yy ( r) P yz ( r) P xz ( r) P yz ( r) P zz ( r) d S = ds ˆn( r) (2)

P xx ( r) P xy ( r) P xz ( r) P xy ( r) P yy ( r) P yz ( r) P xz ( r) P yz ( r) P zz ( r) d S = ds ˆn( r) (2) EL TENSOR DE PRESIONES La discusión siguiente se centra en el tensor de presiones; sin embargo, los conceptos matemáticos pueden ser extendidos a otras clases de tensores. El tensor de presiones es un

Más detalles

Ejemplos Desarrollados

Ejemplos Desarrollados Universidad de Santiago de Chile Departamento de Ingeniería Mecánica Mecánica de Medios Continuos Eugenio Rivera Mancilla Ejemplos Desarrollados 1. Una placa rectangular homogénea, de masa m, cuyas aristas

Más detalles

Electromagnetismo I. Solución Tarea 3

Electromagnetismo I. Solución Tarea 3 Electomagnetismo I Semeste: 25-2 Pof. Alejando Reyes Coonado Ayud. Calos Albeto Maciel Escudeo Ayud. Chistian Espaza López Solución po Calos Maciel Escudeo Solución Taea 3. Poblema: (pts) El potencial

Más detalles

Ley de Fourier. dt k dy. y = Y. t < 0. t = 0. x y = 0 T 0 T 1. t > 0. y Q

Ley de Fourier. dt k dy. y = Y. t < 0. t = 0. x y = 0 T 0 T 1. t > 0. y Q Ley de Fouie y = Y t < 0 y x y = 0 t = 0 0 0 Q t > 0 ( t, y 0 Q t y ( 0 y Q Q A* t Y Q ( 0 k A* t Y q d k dy CONDUCCION UNIDIMENSIONAL EN ESADO ESACIONARIO Consideemos la conducción de calo a tavés de

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

Desarrollo multipolar del potencial.

Desarrollo multipolar del potencial. c Rafael R. Boix y Francisco Medina Desarrollo multipolar del potencial. Consideremos un cuerpo cargado que ocupa una región volumétrica. Sea ρ(r ) la densidad volumétrica de carga del cuerpo cargado.

Más detalles

Transferencia de Momentum

Transferencia de Momentum Transferencia de Momentum 1740-014-03-18 1ª. Es bueno distinguir lo esencial de lo superfluo ups! Qué se celebraba el 18 de Maro? Contenido Ejercicios Flujo en tabla inclinada.; Flujo en tubo cilíndrico

Más detalles

IV. Geometría plana. v v2 2. u v = u v cos α

IV. Geometría plana. v v2 2. u v = u v cos α Talle de Matemáticas 16 IV. Geometía plana IR 2 = {(x, y)/x, y IR} puede identificase con el espacio de vectoes libes del plano utilizando la base canónica: v =(v 1,v 2 )=v 1 (1, 0) + v 2 (0, 1) = v 1

Más detalles

Tema 0 Conocimientos previos al curso de Física

Tema 0 Conocimientos previos al curso de Física Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional

Más detalles

2. Sea f(x, y) = x 2 2xy+y 2. Aquí el discriminante es igual a cero. Qué son los puntos críticos: mínimos locales, máximos locales o puntos silla?

2. Sea f(x, y) = x 2 2xy+y 2. Aquí el discriminante es igual a cero. Qué son los puntos críticos: mínimos locales, máximos locales o puntos silla? 1. Sea f(x, y) = Ax 2 + B con A 0. Cuáles son los puntos críticos de f? Son máximos locales o mínimos locales? Solución. Los puntos críticos son aquellos en los que las derivadas parciales son iguales

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

Vectores Presentanción basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition.

Vectores Presentanción basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Vectoes Pesentanción basada en el mateial contenido en: Seway, R. Physics fo Scientists and Enginees. Saundes College Pub. 3d edition. Sistemas de Coodenadas Se usan paa descibi la posición de un punto

Más detalles

Bolilla 3: Leyes de Newton de Movimiento. 1

Bolilla 3: Leyes de Newton de Movimiento.  1 Bolilla 3: Leyes de Newton de Movimiento http://galia.fc.uaslp.mx/~medellin/applets/tio/tio.htm 1 Bolilla 3: Leyes de Newton de Movimiento Las tes Leyes de Newton de movimiento pemiten pedeci el movimiento

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA GEOMETRÍ NLÍTIC PLN / Ecuaciones de la ecta Un punto y un vecto Dos puntos Un punto y la pendiente,,,,,, Coodenadas del vecto diecto ECUCION VECTORIL (x, y) (p, p ) + τ (v, v ) ECUCION PRMETRIC x p + τ

Más detalles

TEMA 3 Dinámica de fluidos viscosos

TEMA 3 Dinámica de fluidos viscosos TEMA 3 Dinámica de fluidos viscosos 3.1. Intoducción: viscosidad y tipos de fluidos viscosos VISCOSIDAD µ: FLUDIOS VISCOSOS: Hay que tene en cuenta las fuezas de ozamiento: - ente patículas del fluido

Más detalles

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será:

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será: xyz0. Dados la ecta : y el punto P(, 0, ) exteio a : x y z a) Halla la ecuación en foma geneal del plano que contiene a y a P b) Halla la ecuación (como intesección de dos planos) de la ecta s que pasa

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO EL POTENCIAL ELÉCTRICO. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Pofeso: José Fenando Pinto Paa UNIDAD 7 POTENCIAL ELECTROSTÁTICO Dos cagas en la misma posición tienen dos veces más enegía

Más detalles