Tema 6. Apéndice. Operadores vectoriales.
|
|
|
- Elisa Roldán de la Fuente
- hace 9 años
- Vistas:
Transcripción
1 6.A.. Campos. Tema 6. Apéndice. Opeadoes vectoiales. 6.A.. Campos. 6.A.. Gadiente. 6.A.3. Divegencia. 6.A.4. Rotacional.
2 6.A.. Campos. Intoducción. Concepto de campo. Campo:función que depende de la posición. T(x,y,z) h(x,y,z) Foco calo Campo escala: tempeatua. Campo escala: altitud. v ( x, y, z) Campo vectoial: velocidad líquido en tubeía.
3 6.A.. Campos. Líneas de campo: - Las líneas de campo se dibujan tangentes al campo eléctico. E q q Repesentación con vectoes campo Repesentación con líneas de campo - Condición matemática tangencia: 3
4 6.A.. Campos. - El númeo de líneas de campo po unidad de supeficie es popocional al campo: q q - Las líneas de campo no pueden cuzase... E E... ya que en ese caso tendíamos dos valoes del campo en un mismo punto 4
5 6.A.. Gadiente. Tema 6. Apéndice. Opeadoes vectoiales. 6.A.. Campos. 6.A.. Gadiente. 6.A.3. Divegencia. 6.A.4. Rotacional. 5
6 - Gadiente: - En D el cambio de una función lo deteminamos con la deivada: 6.A.. Gadiente. f dx df - Si tenemos una función T(x,y,z) (un campo escala): x Desplazamiento Gadiente de T 6
7 6.A.. Gadiente. - Intepetación geomética: T θ dl - Cuanto mayo sea T más vaiaá la función - Si θ= el aumento es máximo - Si θ=9 no hay vaiación La diección del gadiente coincide con la del aumento máximo de la función. - Ejemplo: Esquiado en lo alto de una cadena montañosa. v h v 7
8 6.A.. Gadiente. - Ejemplo: Gadiente de la función T=/. T=8 T T= T=4 T= En la diección pependicula al gadiente no hay cambio. 8
9 6.A.. Gadiente. - El opeado gadiente: Opeado gadiente T es un opeado hambiento de funciones. - Teoema: T b dl a G ( Análogo en 3D de: ) 9
10 6.A.3. Divegencia. Tema 6. Apéndice. Opeadoes vectoiales. 6.A.. Campos. 6.A.. Gadiente. 6.A.3. Divegencia. 6.A.4. Rotacional.
11 6.A.3. Divegencia. - Flujo: Agua A v n ( Flujo de agua!) h θ A h a n θ v da n v
12 - Divegencia: 6.A.3. Divegencia. - La divegencia actúa sobe un vecto y devuelve un escala. - Regla mnemotécnica: es como si multiplicáamos escalamente dos vectoes: - T. de Gauss: da Supeficie ceada τ Flujo de v a tavés de A v Intepetación de la divegencia: es el flujo po unidad de volumen.
13 6.A.3. Divegencia. - Ejemplo: Ejemplo:
14 6.A.3. Divegencia. - Ejemplo: Ejemplo:
15 - Visión intuitiva del T. de Gauss: 6.A.3. Divegencia. - Descomponemos el volumen τ en volúmenes muy pequeños. - La divegencia da el flujo que sale de cada elemento de volumen. τ - Consideamos el flujo a tavés de la supeficie común de dos cubos contiguos: da v da - Cuando sumamos el flujo de todos los cubos, la contibución al flujo de las caas comunes se anula, y sólo queda el flujo a tavés de la supeficie exteio. 5
16 6.A.4. Rotacional. Tema 6. Apéndice. Opeadoes vectoiales. 6.A.. Campos. 6.A.. Gadiente. 6.A.3. Divegencia. 6.A.4. Rotacional. 6
17 6.A.4. Rotacional. - Ciculación: - Imaginemos que tenemos un líquido que se está moviendo abitaiamente. Líquido Líquido congelado - Congelamos instantáneamente todo el líquido salvo un tubo. Si la velocidad del líquido está oganizada de modo coheente en el tubo, existe una ciculación de líquido po el tubo. v v t dl v v t dl - Matemáticamente se define la ciculación a lo lago de una tayectoia G como: Γ v v t dl (se suma la componente tangencial del campo a lo lago de la tayectoia) 7
18 - Rotacional: 6.A.4. Rotacional. - T. de Stokes. Γ dl A dl - El otacional da la ciculación po unidad de supeficie. - Si v es un campo de velocidades, como en un fluido, el otacional de v es distinto de ceo en los ptos. en los que, si dejáamos una hoja, ésta giaía. 8
19 6.A.4. Rotacional. - Ejemplo: Ejemplo:
20 6.A.4. Rotacional. - Ejemplo: Ejemplo:
21 6.A.4. Rotacional. - Intepetación intuitiva del T. de Stokes: - Descomponemos la supeficie en elementos muy pequeños. - El otacional da la ciculación en cada lazo. - Consideamos la ciculación en el segmento común de dos lazos contiguos: v t d l dl v - Cuando sumamos la ciculación de todos los lazos, la contibución a la ciculación de los lados comunes se anula, y sólo queda la ciculación a tavés del lazo exteio.
Electrostática. Campo electrostático y potencial
Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes
ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas
ELECTROSTTIC La electostática es la pate de la física que estudia las cagas elécticas en equilibio. Cagas elécticas Existen dos clases de cagas elécticas, llamadas positiva y negativa, las del mismo signo
CONTENIDO FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. Campos escalares y vectoriales. Gradiente y rotacional. Campos conservativos.
CONTENIDO FUERZS CONSERVTIVS Y NO CONSERVTIVS Campos escalaes y vectoiales Gadiente y otacional Campos consevativos. Potencial Tabajo ealizado po una fueza consevativa Fuezas no consevativas: Fueza de
El campo electrostático
1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos
Hidrostática y Fluidos Ideales.
Hidostática y Fluidos Ideales. Intoducción a la Física Ambiental. Tema 5. Tema IFA5. (Pof. M. RAMOS Tema 5.- Hidostática y Fluidos Ideales. Hidostática: Pesión. Distibución de pesiones con la pofundidad:
ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES
FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL 0.1 CURVAS EN R 3 ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES
Ecuaciones generales Modelo de Maxwell
Electomagnetismo 212/213 Ecuaciones geneales Modelo de Maxwell Intoducción Fuentes de campo: aga eléctica. oiente eléctica. Ecuación de continuidad. Definición del campo electomagnético. Ecuaciones de
Fluidos: generalidades y definiciones.
Fluidos: genealidades y definiciones. Intoducción a la Física Ambiental. Tema 4. Tema 4. IFA (Pof. RAMOS) 1 Tema 4.- Fluidos Genealidades y Definiciones. El fluido como medio continuo. Mecánica de los
avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el
/5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado
Tema 0 Conocimientos previos al curso de Física
Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional
Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO
Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,
GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO
GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones
Cinemática del Sólido Rígido (SR)
Cinemática del Sólido Rígido (SR) OBJETIVOS Intoduci los conceptos de sólido ígido, taslación, otación y movimiento plano. Deduci la ecuación de distibución de velocidades ente puntos del SR y el concepto
TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL
EMA 3 MOIMIENO CICULA Y GAIACIÓN UNIESAL El movimiento cicula unifome (MCU) Movimiento cicula unifome es el movimiento de un cuepo que tiene po tayectoia una cicunfeencia y descibe acos iguales en tiempos
CAPÍTULO III EL POTENCIAL ELÉCTRICO. El trabajo que se realiza al llevar la carga prueba positiva
Tópicos de Electicidad y Magnetismo J.Pozo y.m. Chobadjian. CPÍTULO III EL POTENCIL ELÉCTICO.. Definición de difeencia de potencial El tabajo ue se ealiza al lleva la caga pueba positiva del punto al punto
PROBLEMAS DE ELECTROESTÁTICA
PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín
TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES
TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o
De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz.
Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los polos
q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb
Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los
Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría
Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice
TEMA3: CAMPO ELÉCTRICO
FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo
Tema 3. Campo eléctrico
Tema 3 Campo eléctico Pogama 1. Inteacción eléctica. Campo eléctico.. Repesentación mediante líneas de campo. Flujo eléctico: Ley de Gauss. 3. Enegía y potencial elécticos. Supeficies equipotenciales.
www.fisicaeingenieria.es Vectores y campos
www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que
Campo Magnético. Campo magnético terrestre. Líneas de campo magnético creadas por un imán. Líneas de campo creado por una espira circular
CAMPO MAGNÉTICO (I) Intoducción Fueza ejecida po un campo magnético Movimiento de una caga puntual en un campo magnético Pa de fuezas sobe espias de coiente Efecto Hall BIBLIOGRAFÍA - Tiple. "Física".
INTRODUCCIÓN A LOS CAMPOS ESCALARES Y VECTORIALES
INTRODUCCIÓN A LOS CAMPOS ESCALARES Y VECTORIALES 1. QUÉ ES UN CAMPO. Se denomina CAMPO en geneal, a toda magnitud física cuyo valo depende del punto del plano o del espacio, y del instante que se considee.
Campo magnético. Introducción a la Física Ambiental. Tema 8. Tema 8.- Campo magnético.
Campo magnético. ntoducción a la Física Ambiental. Tema 8. Tema8. FA (pof. RAMO) 1 Tema 8.- Campo magnético. Campos magnéticos geneados po coientes elécticas: Ley de Biot- avat. Coientes ectilíneas. Ciculación
A r. 1.5 Tipos de magnitudes
1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante
VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES
VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la
MAGNITUDES ESCALARES Y VECTORIALES
C U R S O: FÍSIC Mención MTERIL: FM-01 MGNITUDES ESCLRES VECTORILES Sistema intenacional de medidas En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales.
Oposiciones Secundaria Física y Química Antonio Abrisqueta García, 1999 Temario Específico Tema 19
www.eltemaio.com Oposiciones ecundaia Física y Química Antonio Abisqueta Gacía, 999 Temaio Específico Tema 9 TEMA DE FÍICA Y QUÍMICA (Oposiciones de Enseñanza ecundaia) -------------------------------------------------------------------------------
Parte 3: Electricidad y Magnetismo
Pate 3: Electicidad y Magnetismo 1 Pate 3: Electicidad y Magnetismo Los fenómenos ligados a la electicidad y al magnetismo, han sido obsevados y estudiados desde hace muchos siglos. No obstante ello, las
2 Ecuaciones de Maxwell
Ecuaciones de Maxwell 11 Ecuaciones de Maxwell En el capítulo anteio se tataon las leyes fundamentales que igen la electostática y la magnetostática sin tene en cuenta la dependencia o la vaiación tempoal
GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia
Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones
CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS
PÍTULO 15: TRIÁNGULOS RETÁNGULOS Dante Gueeo-handuví Piua, 2015 FULTD DE INGENIERÍ Áea Depatamental de Ingenieía Industial y de Sistemas PÍTULO 15: TRIÁNGULOS RETÁNGULOS Esta oba está bajo una licencia
FLUJO POTENCIAL BIDIMENSIONAL (continuación)
Pof. ALDO TAMBURRINO TAVANTZIS Pof. ALDO TAMBURRINO TAVANTZIS FLUJO POTENCIAL BIDIMENSIONAL (continuación) RESUMEN DE LA CLASE ANTERIOR Si un flujo es iotacional, V 0, entonces eiste una función escala
1. Realiza las siguientes operaciones con segmentos. 1º a+2b-c. 2º a+c-b. 3º 3a+c-b NOMBRE: Nº 1ºESO 1.3. OPERACIONES CON SEGMENTOS
1.3. OPERCIONES CON SEGMENTOS 1. Realiza las siguientes opeaciones con segmentos a b c 1º a+2b-c 1º 2º a+c-b 2º 3º 3a+c-b 3º TEM 1 - Opeaciones con segmentos página 3 1.3.2. TEOREM DE TLES 1. Divide el
TEMAS DE MATEMATICAS (Oposiciones de Secundaria)
TEMAS DE MATEMATICAS (Oposiciones de Secundaia) TEMA 47 GENERACIÓN DE CURVAS COMO ENVOLVENTES.. Intoducción.. Envolvente... Definición de Envolvente... Existencia de Envolvente en el Plano..3. Deteminación
Tema 2. Sistemas conservativos
Tema. Sistemas consevativos Tecea pate: Fueza gavitatoia A Campo gavitatoio Una masa M cea en su vecindad un campo de fuezas, el campo gavitatoio E, dado po E u siendo u el vecto unitaio adial que sale
Ley de Gauss. Frecuentemente estamos interesados en conocer el flujo del campo eléctrico a través de una superficie cerrada, que viene dado por.
Ley de Gauss La ley de Gauss elacina el fluj del camp eléctic a tavés de una supeficie ceada cn la caga neta incluida dent de la supeficie. sta ley pemite calcula fácilmente ls camps eléctics que esultan
IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014
IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b
Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO
Física Geneal III Potencial Eléctico Optaciano ásuez Gacía CPITULO I POTENCIL ELÉCTICO 136 Física Geneal III Potencial Eléctico Optaciano ásuez Gacía 4.1 INTODUCCIÓN. Es sabido ue todos los objetos poseen
UNIDAD 4: CIRCUNFERENCIA CIRCULO:
UNIDD 4: CIRCUNFERENCI CIRCULO: CONTENIDO: I. CONCEPTO DE CIRCUNFERENCI: Es una cuva ceada y plana cuyos puntos equidistan de un punto llamado cento. Una cicunfeencia se denota con la expesión: O C, y
Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico.
Campo eléctico. Intoducción a la Física Ambiental. Tema 7. Tema7. IFA (Pof. RAMOS) 1 Tema 7.- Campo eléctico. El campo eléctico: unidades. Líneas del campo eléctico. Potencial eléctico: unidades. Fueza
INDICE. Fuerza sobre una carga situada en un campo eléctrico. Concepto de intensidad de campo.
Campo eléctico 0 de 12 INDICE Repaso Ley de Coulomb Unidades. Fueza sobe una caga situada en un campo eléctico. Concepto de intensidad de campo. Pincipio de supeposición. Enegía potencial electostática
9 Cuerpos geométricos
865 _ 045-056.qxd 7/4/07 1:0 Página 45 Cuepos geométicos INTRODUCCIÓN Los cuepos geométicos están pesentes en múltiples contextos de la vida eal, de aí la impotancia de estudialos. Es inteesante constui
El campo eléctrico(i):ley de Coulomb
El campo eléctico(i):ley de Coulomb La ley que ige el compotamiento de las cagas elécticas, es la ley de Coulomb, es como la ley de gavitación, una fueza a distancia ya que no se necesita ligadua física
MAGNETOSTATICA. Fuerza magnética sobre una carga en movimiento.
MAGNETOSTATICA (1.) Los fenómenos magnéticos, fueon pobablemente conocidos con antelación a los elécticos. Desde muy antiguo se conocieon mateiales como la magnetita, capaces de atae pequeños tozos de
Teoría Electromagnética
José Moón Fundamentos de Teoía Electomagnética I. Campos Estáticos 3 Índice Geneal CAPÍTULO Intoducción al Análisis Vectoial. Intoducción. Escalaes Vectoes.3 Multiplicación Vectoial 5.4 Vectoes Base Componentes
Física General III Ley de Gauss Optaciano Vásquez García CAPITULO III LEY DE GAUSS
Física Geneal III Ley de Gauss Optaciano Vásquez Gacía CAPITULO III LY D GAUSS 9 Física Geneal III Ley de Gauss Optaciano Vásquez Gacía 3.1 INTRODUCCIÓN n el capitulo anteio apendimos el significado del
ECUACIONES DE LA RECTA
Tema 6 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos
Bloque 3. Geometría y Trigonometría Tema 3 La recta en el plano Ejercicios resueltos
Bloque 3. Geometía y Tigonometía Tema 3 La ecta en el plano Ejecicio euelto 3.3-1 Halla la ecuación vectoial, en paamética, continua y geneal de la ecta que paa po el punto indicado y tiene po vecto dieccional
TEMA 0: Herramientas matemáticas
1 TEMA 0: Herramientas matemáticas Tema 0: Herramientas matemáticas 1. Campos escalares y vectoriales 2. Gradiente 3. Divergencia 4. Rotacional 5. Teoremas de Gauss y de Stokes 5. Representación gráfica
. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.
1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes
CUERPOS REDONDOS. LA ESFERA TERRESTRE
IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes
Campo gravitatorio: cuestiones PAU
Campo gavitatoio: cuestiones PU 3. Descibe bevemente las teoías que se han sucedido a lo lago de la histoia paa explica la estuctua del sistema sola. La obsevación del cielo y sus astos ha sido, desde
Ejercicios resueltos
Ejecicios esueltos Boletín 2 Campo gavitatoio y movimiento de satélites Ejecicio 1 En el punto A(2,0) se sitúa una masa de 2 kg y en el punto B(5,0) se coloca ota masa de 4 kg. Calcula la fueza esultante
Puntos, rectas y planos en el espacio. Problemas métricos en el espacio
1. Estudia la posición elativa de las ectas y s: x = 2t 1 x + 3y + 4z 6 = 0 : ; s : y = t + 1 2x + y 3z + 2 = 0 z = 3t + 2 Calcula la distancia ente ambas ectas (Junio 1997) Obtengamos un vecto diecto
Representación geométrica de las coordenadas generalizadas en la mecánica hamiltoniana
Repesentación geomética de las coodenadas genealiadas en la mecánica hamiltoniana Maía M. Aala, John E. Baagan Depatamento de Física, Univesidad Pedagógica Nacional, Calle 72 No.11-86. Bogotá, Colombia.
CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB
7 CAMPO ELÉCTRICO 7.. FENÓMENOS DE ELECTRIZACIÓN. Un péndulo electostático es un dispositivo fomado po una esfea ligea, de mateial aislante, suspendida de un hilo de masa despeciable. Utilizando ese dispositivo,
1.6. DINÁMICA DEL PUNTO MATERIAL
Fundamentos y Teoías Físicas ETS quitectua.6. DINÁMIC DEL PUNTO MTERIL Hemos visto anteiomente que la Cinemática estudia los movimientos, peo sin atende a las causas que los poducen. Pues bien, la Dinámica
CAMPO GRAVITATORIO TERRESTRE
CAPO GAVITATOIO TEESTE Suponiendo la Tiea una esfea de densidad constante, se pide: a) El capo avitatoio ceado a, y /, siendo la distancia al cento de la Tiea. b) Deosta que si se hiciea un túnel sin ficción
MAGNITUDES VECTORIALES:
Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de
MECÁNICA DE FLUIDOS. pfernandezdiez.es. Pedro Fernández Díez
MEÁNIA DE FLUIDOS Pedo Fenández Díez I.- INTRODUIÓN A LOS FLUIDOS I..- PROPIEDADES DE LOS FLUIDOS Los fluidos son agegaciones de moléculas, muy sepaadas en los gases y póximas en los líquidos, siendo la
3.3.- Cálculo del campo eléctrico mediante la Ley de Gauss
Lección 1. Campo Electostático en el vacío: Conceptos y esultados fundamentales 17..- Cálculo del campo eléctico mediante la Ley de Gauss La Ley de Gauss pemite calcula de foma sencilla el campo eléctico
MECANICA DE LOS FLUIDOS
MECANICA DE LOS FLUIDOS 7 FUNDAMENTOS DEL FLUJO DE FLUIDOS Ing. Alejandro Mayori Flujo de Fluidos o Hidrodinámica es el estudio de los Fluidos en Movimiento Principios Fundamentales: 1. Conservación de
Capítulo 3. Conceptos fundamentales para el análisis del flujo de fluidos
Capítulo 3 Conceptos fundamentales para el análisis del flujo de fluidos 3.1 El campo de velocidades La propiedad más importante de un flujo es el campo de velocidad V(x, y, z, t). De hecho, determinar
Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA
Electostática táti Clase 3 Ecuación de Laplace y Ecuación de Poisson Teoema de Unicidad. Métodos de las Imágenes Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA 2 E V m
Ángulos en la circunferencia
MT-22 Clase Ángulos en la cicunfeencia pendizajes espeados Identifica los elementos de un cículo y una cicunfeencia. Calcula áeas y peímetos del secto y segmento cicula. Reconoce tipos de ángulos en la
Electricidad y Magnetismo. E.T.S.I.T. Universidad de Las Palmas de Gran Canaria
Electicidad y Magnetismo E.T.S.I.T. Univesidad de Las Palmas de Gan Canaia Electostática.- INTODUCCIÓN La electostática es el estudio de los efectos de las cagas elécticas en eposo y de los campos elécticos
Momento angular o cinético
Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x
2.4 La circunferencia y el círculo
UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula
PARTE 1: Campo eléctrico. Magnitudes que lo caracterizan: intensidad de campo y potencial eléctrico.
TEM 4: INTERCCIÓN ELECTROMGNÉTIC PRTE 1: Campo eléctico. Magnitudes que lo caacteizan: intensidad de campo y potencial eléctico. Fueza ente cagas en eposo; ley de Coulomb. Caacteísticas de la inteacción
22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1
.6 Ls 3 esfes peueñs ue se muestn en l figu tienen cgs 4 n, -7.8 n y 3.4 n. Hlle el flujo eléctico neto tvés de cd un de ls supeficies ceds S, S, S3, S4 y S5. S S S3 S5 3 S4 4 m S 9 3 Φ.45 m 8.85 9 7.8
INTRODUCCION AL ANALISIS VECTORIAL
JOSÉ MILCIDEZ DÍZ, REL CSTILLO, ERNNDO VEG PONTIICI UNIVERSIDD JVERIN, DEPRTMENTO DE ÍSIC INTRODUCCION L NLISIS VECTORIL Intoducción Pate Pate 3 Pate 4 (Pate ) Donde encuente el símbolo..! conduce a una
L M X J V S D 1 2 3 4 5. MIGUEL BALLESTA Avda.Guillermo Reyna,14. JAIME JIMENEZ Avda.Guillermo Reyna,24. JOSE SOTO CAPARROS C/ Dr.
Enero 2014 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Febrero 2014 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Marzo 2014 1 2 3 4
2.7 Cilindros, conos, esferas y pirámides
UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos
Solución a los ejercicios de vectores:
Tema 0: Solución ejecicios de intoducción vectoes Solución a los ejecicios de vectoes: Nota : Estas soluciones pueden tene eoes eatas (es un ollo escibios las soluciones bonitas con el odenado), así que
La transmisión de calor por conducción puede realizarse en cualquiera de los tres estados de la materia: sólido líquido y gaseoso.
II. RANSFERENCIA DE CALOR POR CONDUCCIÓN II.1. MECANISMO La tansmisión de calo po conducción puede ealizase en cualquiea de los tes estados de la mateia: sólido líquido y gaseoso. Paa explica el mecanismo
8. Movimiento Circular Uniforme
8. Movimiento Cicula Unifome En la vida cotidiana e peentan ituacione donde un objeto gia alededo de oto cuepo con una tayectoia cicula. Un ejemplo de ello on lo planeta que gian alededo del ol en obita
Examen de Selectividad de Física. Septiembre 2008. Soluciones.
Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000
