El Álgebra Lineal detrás de Google
|
|
|
- Laura Pinto Ferreyra
- hace 10 años
- Vistas:
Transcripción
1 I Congreso Nacional de Estudiantes de Matemática Corrientes, Julio 2012
2 Facultad de Matemáticas Universidad de Barcelona Licenciatura en Matemática Master en Matemática Avanzada Doctorado en Matemática Otros masters y doctorados Ingenieria Informática
3 Programa de Álgebra Lineal (Ingeniería Informática) Polinomios Números complejos Sistemas lineales de ecuaciones Matrices Espacios vectoriales Subespacios, transformaciones lineales, etc, etc, etc. Valores y vectores propios Diagonalización
4 Para qué nos hacen estudiar todo esto???
5 Álgebra Lineal en la Informática Programación gráfica Teoría de grafos (redes sociales,...) Elaboración eficiente de filtros Inteligencia artificial Visión por ordenador...
6 Todo esto lo verán después!
7 El álgebra lineal detrás de Google es una variación de la palabra googol, que es el número Es un buscador de internet Fue diseñado en 1998 por dos alumnos de doctorado en informática en Stanford: Sergei Brin y Lawrence Page Atiende alrededor de de consultas diarias, tiene más de empleados en todo el mundo
8 Una gran familia El campus de Google (Googleplex) se encuentra en Menlo Park, Sillicon Valley, California Ocupa casi metros cuadrados Reclutamento constante de jóvenes talentos en todo el mundo
9 Google s got Talent
10 Cómo se diseña un buscador de internet? Es un problema de ingeniería matemática: 1 un buen conocimiento del contexto 2 un modelo matemático que lo explique 3 una cuidadosa y eficiente implementación
11 Trabajo básico de un buscador de internet Censar las páginas de internet de acceso público Indexar los datos censados de acuerdo a su importancia con respecto a las palabras claves Ordenar estos datos de acuerdo a su importancia con respecto a las palabras claves
12 También se requiere resistencia a la manipulación!
13 El algoritmo PageRank Califica páginas indexadas de acuerdo a su importancia dentro de la red Marca registrada de Google Lleva su nombre debido a su inventor Larry Page
14 El modelo PageRank El universo de páginas de internet públicas es un gran grafo dirigido donde cada página web es un nodo hay una arista orientada entre páginas que citan a otras páginas
15 La importancia de una página web Es alta si la citan muchas páginas La citan páginas importantes
16 Postulado PageRank La importancia x j de la página P j es proporcional a la suma de las importancias de las páginas que enlazan con P j
17 El álgebra lineal entra en acción M es la matriz de adyacencia del grafo de las páginas de internet El postulado Pagerank implica M t x = λ x
18 Vectores y valores propios! M t x = λ x λ es la constante de proporcionalidad un valor propio de M t x = (x 1, x 2,..., x N ) es el vector de importancias de las páginas censadas un vector propio de M t (asociado a λ)
19 Todo muy bonito, pero... Por qué debería tener valores propios reales M t? Cual de ellos elijo? Por qué habría de haber vectores propios todos positivos? Algún tipo de unicidad???
20 Teorema 1 (Perron, 1907) Si M tiene todas sus coeficientes positivos, entonces existe un valor propio simple λ > 0 tal que M t x = λ x, con x > 0; este valor propio es mayor, en módulo, que todos los demás valores propios de la matriz; cualquier otro vector propio positivo de M t es un múltiplo escalar de x
21 Pero... Nuestra matriz M está MUY lejos de ser positiva Qué hacemos?
22 Teorema 2 (Frobenius, ) Supongamos que M tiene entradas no negativas y además es irreducible. Entonces existe un valor propio simple λ > 0 tal que M t x = λ x, con x > 0; este valor propio es mayor o igual, en módulo, que todos los demás valores propios de la matriz; cualquier otro vector propio positivo de M t es un múltiplo escalar de x
23 Matrices irreducibles Una matriz cuadrada se dice irreducible si no existe ninguna permutación de sus filas y columnas que la transforme en ( ) M11 A 12, 0 M 22 con M 11 y M 22 matrices cuadradas
24 Matrices irreducibles = grafos fuertemente conexos Si se trata de la matriz de incidencia de un grafo dirigido, ser irreducible significa que puedo ir desde cualquier nodo a otro por un camino (dirigido)
25 Es el grafo de internet fuertemente conexo? Ni siquiera es conexo!
26 Solución a la Google Matemática aplicada! Perturbamos la matriz M donde U = c M + (1 c)u M c es un parámetro entre 0 y 1 (c google 0, 85) 1 1 N N... 1 N. 1 N... 1 N... 1 N
27 Del existencialismo al Cálculo No se necesitan Polinomios característicos Cálculos de raíces Descomposición en subespacios invariantes Álgebra Lineal Numérica!
28 Método de las potencias (usado por Google) Si hay un único valor propio λ de módulo máximo entonces, consideremos la siguiente sucesión x 0 = cualquier vector de R N x n+1 = Entonces Mt x n M t x n con probabilidad 1 lim n x n = x M lim t x n n x n = λ
29 La misma idea para otros problemas Clasificación para las eliminatorias de la NBA Modelos de evolución probabilística Dinámica de poblaciones Modelos económicos
30 Googleπlogo El objetivo de Brin y Page era que al menos una de las diez primeras páginas que se muestren contenga información útil para el que consulta Tuvieron exito? En 2004 el valor de Google en el mercado era de alrededor de U$D El algoritmo PageRank fue patentado por la Universidad de Stanford, y Google tiene derechos exclusivos sobre esa patente. Stanford recibió acciones por esa patente que fueron vendidos en 2005 por U$D Desde febrero de 2011 Google utiliza combinadamente los algoritmos PageRank y Google Panda
31 Qué hemos aprendido hoy? Grafos y sus propiedades Teoría de Grafos Matrices con entradas positivas Matrices estocásticas Cálculo computacional de vectores y valores propios Álgebra Lineal Numérica Teoremas de Perron y Frobenius Análisis funcional PageRank y Panda Algoritmos de búsqueda
32 Para saber más El secreto de Google y el Álgebra Lineal, P. Fernández, Bol. Soc. Esp. Mat. Apl. 30 (2004), The $25, 000, 000, 000 Eigenvector: The Linear Algebra behind Google, Kurt Bryan & Tanya Leise, Siam Review 48 (3), , 2006 Les Matemàtiques de Google: l algorisme PageRank, Joan Gimbert, Butlletí de la Societat Catalana de Matemàtiques, Vol 26, 1, 211, 29 55
33 Muchas gracias
El Álgebra Lineal detrás de los buscadores de internet
El Álgebra Lineal detrás de los buscadores de internet 2 / 09 / 202 Bloques temáticos de Álgebra (EI) Sistemas lineales de ecuaciones Matrices & determinantes Espacios vectoriales Subespacios, transformaciones
Clasificación de métricas.
Clasificación de métricas. 1. El problema de clasificación. Como bien sabemos, el par formado por una métrica T 2 (esto es, un tensor 2-covariante simétrico) sobre un espacio vectorial E, (E, T 2 ), constituye
Tema 2. Espacios Vectoriales. 2.1. Introducción
Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por
Anexo 1: Demostraciones
75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:
4 APLICACIONES LINEALES. DIAGONALIZACIÓN
4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos
BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.
BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades
Diagonalización de matrices
diagonalizacion.nb Diagonalización de matrices Práctica de Álgebra Lineal, E.U.A.T., Grupos ºA y ºB, 2005 Algo de teoría Qué es diagonalizar una matriz? Para estudiar una matriz suele ser conveniente expresarla
ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS
ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS EtsiIngenio Inteligencia Artificial 1 Raposo López Alejandro Sánchez Palacios Manuel Resumen dibujo de grafos mediante algoritmos genéticos
Recuperación de Información en Internet Tema 3: Principios de Recuperación de Información
Recuperación de Información en Internet Tema 3: Principios de Recuperación de Información Mestrado Universitario Língua e usos profesionais Miguel A. Alonso Jesús Vilares Departamento de Computación Facultad
MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS
Tema 1.- MATRICES MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS Fundamentos Matemáticos de la Ingeniería 1 Un poco de historia Lord Cayley es uno de los fundadores de la teoría
21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES
Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere
PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.
PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.
Subespacios vectoriales en R n
Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo
Cambio de representaciones para variedades lineales.
Cambio de representaciones para variedades lineales 18 de marzo de 2015 ALN IS 5 Una variedad lineal en R n admite dos tipos de representaciones: por un sistema de ecuaciones implícitas por una familia
Curso de Procesamiento Digital de Imágenes
Curso de Procesamiento Digital de Imágenes Impartido por: Elena Martínez Departamento de Ciencias de la Computación IIMAS, UNAM, cubículo 408 http://turing.iimas.unam.mx/~elena/teaching/pdi-lic.html [email protected]
Tema 3. Espacios vectoriales
Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición
Análisis de Redes Complejas: Un paseo
Análisis de Redes Complejas: Un paseo matemático entre Google y las redes sociales [email protected] Dpto. de Matemática Aplicada ESCET Universidad Rey Juan Carlos Madrid Murcia, 25 de noviembre de
CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre
CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una
Cadenas de Markov y Perron-Frobenius
Cadenas de Markov y Perron-Frobenius Pablo Lessa 10 de octubre de 2014 1. Cadenas de Markov En 1996 Larry Page y Sergey Brin, en ese momento en Stanford, inventaron una manera de asignar un ranking de
Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales
Matemáticas I: Hoa 3 Espacios vectoriales y subespacios vectoriales Eercicio 1. Demostrar que los vectores v 1, v 2, v 3, v 4 expresados en la base canónica forman una base. Dar las coordenadas del vector
Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León
Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJECICIO Nº Páginas OPTATIVIDAD: EL ALUMNO DEBEÁ ESCOGE UNA DE LAS DOS OPCIONES
1 Espacios y subespacios vectoriales.
UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto
Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1
. ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio
Espacios generados, dependencia lineal y bases
Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................
Matrices equivalentes. El método de Gauss
Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar
Espacios vectoriales y aplicaciones lineales.
Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en
RELACIONES DE RECURRENCIA
Unidad 3 RELACIONES DE RECURRENCIA 60 Capítulo 5 RECURSIÓN Objetivo general Conocer en forma introductoria los conceptos propios de la recurrencia en relación con matemática discreta. Objetivos específicos
Estructuras algebraicas
Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota
Funciones más usuales 1
Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una
Tema 3: Aplicaciones de la diagonalización
TEORÍA DE ÁLGEBRA II: Tema 3. DIPLOMATURA DE ESTADÍSTICA 1 Tema 3: Aplicaciones de la diagonalización 1 Ecuaciones en diferencias Estudiando la cría de conejos, Fibonacci llegó a las siguientes conclusiones:
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
MODELOS DE RECUPERACION
RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN INGENIERÍA INFORMÁTICA RECUPERACIÓN Y ACCESO A LA INFORMACIÓN MODELOS DE RECUPERACION AUTOR: Rubén García Broncano NIA 100065530 grupo 81 1 INDICE 1- INTRODUCCIÓN
Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8
Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre
1. Producto escalar, métrica y norma asociada
1. asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores o puntos de R n, indistintamente, como x = (x 1,..., x n ) = n x i e i i=1 donde e i son los vectores de la
Listas de vectores y conjuntos de vectores
Listas de vectores y conjuntos de vectores La explicación de los temas Dependencia lineal y Bases en el curso de Álgebra Lineal se puede basar en uno de los siguientes dos conceptos (o en ambos): ) listas
Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0).
Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0). a) Demostrad que (1,3,4), (1,1,1) i (0,1,1) son una base de R³. b) Decid
Espacios Vectoriales
Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................
OPERACIONES ELEMENTALES CON VECTORES
VECTORES EN 3D (O EN R 3) Presentación: este apunte te servirá para repasar y asimilar que son los vectores en un espacio tridimensional, sólo hablamos de los vectores como se utilizan en Álgebra, para
TEMA 6. EIGENVALORES Y EIGENVECTORES
TEMA 6. EIGENVALORES Y EIGENVECTORES M. C. Roberto Rosales Flores INSTITUTO TECNOLÓGICO SUPERIOR DE TLAXCO Ingeniería en Logística M. C. Roberto Rosales Flores (ITST TEMA 6. EIGENVALORES Y EIGENVECTORES
P R E S E N T A LARRY PAGE & SERGEY BRIN. www.reconfiguracionfinanciera.com
P R E S E N T A LARRY PAGE & SERGEY BRIN LARRY PAGE Y SERGEY BRIN Lawrence Edward "Larry" Page y Serguéi Sergey Mijáilovich Brin son fundadores de Google. Page es hijo de dos docentes universitarios. La
Práctica de Aplicaciones Lineales
practica5.nb 1 Práctica de Aplicaciones Lineales Aplicaciones lineales y matrices Las matrices también desempeñan un papel muy destacado en el estudio de las aplicaciones lineales entre espacios vectoriales
E 1 E 2 E 2 E 3 E 4 E 5 2E 4
Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),
Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:
Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición
1. Resolver el sistema de dos ecuaciones con dos incógnitas AX = B, donde 1 0,999 1,999 A = 1,999 . 0,999 1 1 0,999 A = . 0,999 1. AX = αo 1 + βo 2.
Instituto de Matemática y Estadística Prof Ing Rafael Laguardia Facultad de Ingeniería Universidad de la República C1 y GAL1 anuales 2009 Trabajo: número de condición y SVD El objetivo de este trabajo
Ahora podemos comparar fácilmente las cantidades de cada tamaño que se vende. Estos valores de la matriz se denominan elementos.
Materia: Matemática de 5to Tema: Definición y Operaciones con Matrices 1) Definición Marco Teórico Una matriz consta de datos que se organizan en filas y columnas para formar un rectángulo. Por ejemplo,
FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES
FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES Eleonora Catsigeras 6 de mayo de 997 Notas para el curso de Análisis Matemático II Resumen Se enuncia sin demostración
Criterio de Sylvester
Criterio de Sylvester Objetivos. Aprender a aplicar el criterio de Sylvester para analizar cuándo una forma cuadrática es positiva definida, usando los menores principales de su matriz asociada. También
Álgebra Lineal Ma1010
Álgebra Lineal Ma1010 Mínimos Cuadrados Departamento de Matemáticas ITESM Mínimos Cuadrados Álgebra Lineal - p. 1/34 En esta sección veremos cómo se trabaja un sistema inconsistente. Esta situación es
UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)
PAEG Junio 0 Propuesta A Matemáticas aplicadas a las CCSS II º Bachillerato UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales
Programación Genética
Programación Genética Programación Genética consiste en la evolución automática de programas usando ideas basadas en la selección natural (Darwin). No sólo se ha utilizado para generar programas, sino
EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores
EJERCICIOS DE MATEMÁTICAS I HOJA 4 Ejercicio 1. Se consideran los vectores u 1 = (1, 1, 0, 1), u 2 = (0, 2, 1, 0), u 3 = ( 1, 1, 1, 1), u 4 = (2, 2, 1, 0) de R 4. Expresa, si es posible, los vectores u
INFORME AUDITORIA DE SU SITIO WEB GOOGLE PAGE RANK ÍNDICE INTERNET
INFORME AUDITORIA DE SU SITIO WEB HOTEL EJEMPLO HTTP://WWW.HOTELEJEMPLO.COM El propósito de este documento es demostrar con datos reales la situación de la página web respecto a los buscadores, y en concreto
Transformaciones Lineales. Definiciones básicas de Transformaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. [email protected].
Transformaciones Lineales Definiciones básicas de Transformaciones Lineales wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 007-009 Contenido 1 Transformaciones Lineales 11 Núcleo e imagen
APLICACIONES LINEALES. DIAGONALIZACIÓN
I.- Sea f una transformación lineal de un espacio vectorial V de dimensión n. Sea B una base de V. Sea A la matriz asociada a f respecto de la base B. Señala, sin demostrar, cuáles de las siguientes afirmaciones
Introducción al Cálculo Simbólico a través de Maple
1 inn-edu.com [email protected] Introducción al Cálculo Simbólico a través de Maple A manera de introducción, podemos decir que los lenguajes computacionales de cálculo simbólico son aquellos
Funciones polinomiales de grados 3 y 4
Funciones polinomiales de grados 3 y 4 Ahora vamos a estudiar los casos de funciones polinomiales de grados tres y cuatro. Vamos a empezar con sus gráficas y después vamos a estudiar algunos resultados
CAPÍTULO II. 4 El grupo afín
CAPÍTULO II 4 El grupo afín En geometría clásica, antes de la aparición de los espacios vectoriales, se hablaba de puntos en lugar de vectores. Para nosotros serán términos sinónimos salvo que, cuando
UNIDAD 1. LOS NÚMEROS ENTEROS.
UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar
Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b
La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente
Sea un espacio vectorial sobre y sea un producto interno en ; entonces, : , y los vectores
FASÍCULO: ESPACIOS CON PRODUCTO INTERNO Teorema. Sea un espacio vectorial sobre y sea un producto interno en ; entonces, : i) ii) iii) iv) Ejemplo: Sean el espacio vectorial con el producto interno definido
MATEMÁTICAS I TEMA 1: Espacios Vectoriales. 1 Definición de espacio vectorial. Subespacios
Sonia L. Rueda ETS Arquitectura. UPM Curso 2007-2008. 1 MATEMÁTICAS I TEMA 1: Espacios Vectoriales 1 Definición de espacio vectorial. Subespacios Dados dos conjuntos V y K se llama ley de composición externa
Ecuaciones diferenciales de orden superior
CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.4.2 ED lineales homogéneas con coeficientes constantes de orden n 3 En la sección anterior hemos obtenido las soluciones de la ED lineal homogénea
"Diseño, construcción e implementación de modelos matemáticos para el control automatizado de inventarios
"Diseño, construcción e implementación de modelos matemáticos para el control automatizado de inventarios Miguel Alfonso Flores Sánchez 1, Fernando Sandoya Sanchez 2 Resumen En el presente artículo se
Lección 2. Puntos, vectores y variedades lineales.
Página 1 de 11 Lección 2. Puntos, vectores y variedades lineales. Objectivos. En esta lección se repasan las nociones de punto y vector, y se identifican, via coordenadas, con los pares (ternas,...) de
Aplicaciones Lineales
Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales
Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)
Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES
VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes.
VECTORES EN EL ESPACIO. Determina el valor de t para que los vectores de coordenadas (,, t), 0, t, t) y(, 2, t) sean linealmente dependientes. Si son linealmente dependientes, uno de ellos, se podrá expresar
Valores y vectores propios de una matriz. Juan-Miguel Gracia
Juan-Miguel Gracia Índice 1 Valores propios 2 Polinomio característico 3 Independencia lineal 4 Valores propios simples 5 Diagonalización de matrices 2 / 28 B. Valores y vectores propios Definiciones.-
VII. Estructuras Algebraicas
VII. Estructuras Algebraicas Objetivo Se analizarán las operaciones binarias y sus propiedades dentro de una estructura algebraica. Definición de operación binaria Operaciones como la suma, resta, multiplicación
3.- DETERMINANTES. a 11 a 22 a 12 a 21
3.- DETERMINANTES. 3.1. -DEFINICIÓN Dada una matriz cuadrada de orden n, se llama determinante de esta matriz (y se representa por A o deta al polinomio cuyos términos son todos los productos posibles
Clase 15 Espacios vectoriales Álgebra Lineal
Espacios vectoriales Clase 5 Espacios vectoriales Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia En esta sección estudiaremos uno de los conceptos
4 Aplicaciones Lineales
Prof Susana López 41 4 Aplicaciones Lineales 41 Definición de aplicación lineal Definición 23 Sean V y W dos espacios vectoriales; una aplicación lineal f de V a W es una aplicación f : V W tal que: 1
CRM es una estrategia de negocios centrada en el cliente no es un software
El CRM en tu empresa El CRM (Customer relationship management), es una estrategia que puede dar muchos frutos en las organizaciones. Para que esta estrategia funcione, debe estar apoyada por un sistema
Segundo de Bachillerato Geometría en el espacio
Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto
Valores propios y vectores propios
Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas
Aplicaciones lineales
aplicaciones_lineales.nb Aplicaciones lineales Práctica de Álgebra Lineal, E.U.A.T, Grupos ºA y ºB, 005 Aplicaciones lineales y matrices Hay una relación muy estrecha entre aplicaciones lineales y matrices:
6 M. C. J. A G U S T I N F L O R E S A V I L A
2..- DEFINICION DE LIMITES. OBJETIVO.- Que el alumno conozca el concepto de Límite, comprenda la importancia que tiene este concepto en el Cálculo y adquiera habilidad en el cálculo de los Límites más
Espacios vectoriales. Bases. Coordenadas
Capítulo 5 Espacios vectoriales. Bases. Coordenadas OPERACIONES ENR n Recordemos que el producto cartesiano de dos conjuntos A y B consiste en los pares ordenados (a,b) tales que a A y b B. Cuando consideramos
SUMILLAS DE ASIGNATURAS DE ESPECIALIDAD INFORMÁTICA I
SUMILLAS DE ASIGNATURAS DE ESPECIALIDAD INFORMÁTICA (Reestructurado a partir del 2006) PRIMER CICLO INFORMÁTICA I Esta asignatura tiene por objeto en conocer los elementos básicos de la informática. Unidades
Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)
Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto
Aplicaciones Lineales y Multilineales Continuas
Capítulo 4 Aplicaciones Lineales y Multilineales Continuas La conexión entre las estructuras vectorial y topológica de los espacios normados, se pone claramente de manifiesto en el estudio de las aplicaciones
Tema 3: Producto escalar
Tema 3: Producto escalar 1 Definición de producto escalar Un producto escalar en un R-espacio vectorial V es una operación en la que se operan vectores y el resultado es un número real, y que verifica
300018 - AL - Álgebra Lineal y Aplicaciones
Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2015 300 - EETAC - Escuela de Ingeniería de Telecomunicación y Aeroespacial de Castelldefels 743 - MA IV - Departamento de Matemática
PROPIOS. DIAGONALIZACIÓN DE MATRICES CUADRADAS
Tema 7.- VALORES Y VECTORES PROPIOS. DIAGONALIZACIÓN DE MATRICES CUADRADAS VALORES Y VECTORES PROPIOS MATRICES CUADRADAS DIAGONALIZABLES DIAGONALIZACIÓN N ORTOGONAL DE MATRICES CUADRADAS SIMÉTRICAS 1 Un
1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.
1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial
1. ESPACIOS VECTORIALES
1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,
1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS
1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una
Resolvemos problemas de dos etapas usando estrategias
SEXTO GRADO - UNIDAD 1 - SESIÓN 05 Resolvemos problemas de dos etapas usando estrategias En esta sesión, los niños y las niñas aprenderán a resolver situaciones problemáticas que implican la realización
Tema 3. Aplicaciones lineales. 3.1. Introducción
Tema 3 Aplicaciones lineales 3.1. Introducción Una vez que sabemos lo que es un espacio vectorial y un subespacio, vamos a estudiar en este tema un tipo especial de funciones (a las que llamaremos aplicaciones
Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.
Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal
SÍNTESIS Y PERSPECTIVAS
SÍNTESIS Y PERSPECTIVAS Los invitamos a observar, a identificar problemas, pero al mismo tiempo a buscar oportunidades de mejoras en sus empresas. REVISIÓN DE CONCEPTOS. Esta es la última clase del curso.
Prácticas de Algebra con Mathematica II (Ingeniería Industrial). Jose Salvador Cánovas Peña. Departamento de Matemática Aplicada y Estadística.
Prácticas de Algebra con Mathematica II (Ingeniería Industrial). Jose Salvador Cánovas Peña. Departamento de Matemática Aplicada y Estadística. Índice General 1 PRACTICAS CON MATHEMATICA 2 1.1 Introducción...
Formas bilineales y cuadráticas.
Tema 4 Formas bilineales y cuadráticas. 4.1. Introducción. Conocidas las nociones de espacio vectorial, aplicación lineal, matriz de una aplicación lineal y diagonalización, estudiaremos en este tema dos
Vectores: Producto escalar y vectorial
Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con
Introducción a la Teoría de Grafos
Introducción a la Teoría de Grafos Flavia Bonomo [email protected] do. Cuatrimestre 009 Árboles Un árbol es un grafo conexo y acíclico (sin ciclos). Un bosque es un grafo acíclico, o sea, una unión disjunta
1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.
Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular
SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION
SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION CHIQUINQUIRA (BOYACA) 2015 1 CONTENIDO Pág. QUE ES UN SISTEMA BINARIO. 3 CORTA HISTORIA DE LOS
Análisis de medidas conjuntas (conjoint analysis)
Análisis de medidas conuntas (conoint analysis). Introducción Como ya hemos dicho anteriormente, esta técnica de análisis nos sirve para analizar la importancia que dan los consumidores a cada uno de los
