Departamento de Ecuaciones Diferenciales y Análisis Numérico. CÁLCULO NUMÉRICO I (Tema 3 - Relación 2)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Departamento de Ecuaciones Diferenciales y Análisis Numérico. CÁLCULO NUMÉRICO I (Tema 3 - Relación 2)"

Transcripción

1 CÁLCULO NUMÉRICO I (Tema - Relación 2) 5 Resolver mediante el método de Gauss los siguientes sistemas de ecuaciones. 2x 2 + x = 0 2x + 2x 2 + x + 2x = 2 x x 2 + x = 7 6x + x 2 6x 5x = 6. x + x 2 x = x + x 2 + x = 2 x + x 2 x = 8 6 Dado el sistema Resolverlo mediante: (a) Método de Gauss. (b) Método de Gauss con pivoteo parcial. (c) Método de Gauss con pivoteo total. 7 Se considera el sistema de ecuaciones (a) Resolverlo mediante el método de Gauss. (b) Resolverlo por el método de Gauss-Jordan. 2x + x 2 x = 5 x + x 2 x = 9 x + x 2 + 2x = 9 2x 2x 2 + 5x = 2x + x 2 + x = 20 x x 2 + x = 0. 8 Mediante el método de Gauss-Jordan, encontrar, si es posible, las inversas de las matrices, B = Aplicando el método de Gauss, calcular el valor del determinante Encontrar la factorización de Crout de la matriz Aplicando el método de Crout, resolver el siguiente sistema de ecuaciones 2x + x 2 x = x x 2 + x = x 2 x = 2 8

2 Tema 9 52 Se considera el sistema lineal (SL) Ax = b, con y b = (a) Utilizando el teorema de la factorización LU, comprobar que es posible realizar la factorización LU de la matriz A. Resolver el sistema lineal (SL) por el método LU de Doolittle. (b) Usando los cálculos del apartado anterior obtener la factorización de Crout de la matriz A.. 5 Se consideran 2 2 α 5 2 y b = 6 6. (a) Para qué valores de α es posible aplicar el teorema de la factorización LU? (b) Para α = 2, resolver el sistema lineal Ax = B por el método LU de Doolittle. (c) Usando los cálculos del apartado anterior obtener la factorización de Crout de la matriz A. 5 Descomponer en el producto de dos matrices triangulares, una inferior y otra superior (LU), aplicando el método de Doolittle, la matriz Aplicar el método de Doolittle para resolver el siguiente sistema de ecuaciones: x + 2x 2 x = 0 2x x 2 = x 2 + 2x x = 0 x + 2x = 56 Sea A la matriz (a) Comprobar (haciendo directamente los cálculos) que la matriz A no admite una factorización LU. (b) Comprobar que permutando filas en A se puede obtener una matriz que sí admite una factorización LU. ( ) Demostrar que toda matriz de la forma tiene una factorización LU de Crout. Existe también a b una factorización LU de Doolittle? 58 Efectuar la factorización LU de la matriz Determinar la factorización LU, con L una matriz triangular inferior con 2 en su diagonal principal, de la matriz

3 0 Ejercicios de CÁLCULO NUMÉRICO I 60 Estudiar los valores de α y β para que las siguientes matrices ( ) α, B = α, C = β (a) sean de diagonal estrictamente dominante, (b) sean definidas positivas α 6 Consideremos la matriz A y el vector b, dados por 0 + α 2 2α α 2 6 y b = 8 2/α con α 0 un parámetro. (a) Resolver el sistema Au = b por el Método de Gauss, obteniendo la solución en función del parámetro α. (b) Para qué valores de α es posible la factorización LU de Doolittle de la matriz A? Y la factorización de Cholesky? (c) Para los valores de α obtenidos en el apartado (b) y utilizando el apartado (a), obtener la factorización LU de Doolittle de la matriz A. 62 Se consideran 2 0 5/2 2 5/2 2 y b = 2 8 7/2. (a) Aplicando el método de Gauss, calcular el determinante de A. (b) Probar que se puede escribir BB t, con B = (b ij ) triangular inferior. Suponiendo que b ii > 0 para todo i, resolver el sistema Ax = b mediante el método de Cholesky. (c) Usando los cálculos del apartado anterior obtener la factorización LU de Doolittle de la matriz A a partir de la factorización de Cholesky. 6 Sean la matriz A y el vector b, dados por a /a a /a a y b = /2 /2 con a 0. (a) Para qué valores de a es posible la factorización LU de la matriz A? Y la factorización de Cholesky? (b) Para qué valores de a la matriz A es de diagonal estrictamente dominante? (c) Obtener la factorización LU de Crout de la matriz A. Doolittle de A. A partir de ella obtener la factorización LU de (d) En el caso particular a =, resolver el sistema Au = b por el Método de Gauss con estrategia de pivote parcial. 6 Sean la matriz A y el vector b, dados por α 6 5 y b =. (a) Resolver el sistema Au = b por el Método de Gauss. (b) Usando los cálculos realizados en el apartado (a), para qué valores de α es posible la factorización LU de la matriz A? Y la factorización de Cholesky?

4 Tema (c) En el caso α = y realizando previamente, si es necesario, permutaciones de filas, obtener la factorización LU de Doolittle de la matriz A o de su permutada. 65 Consideremos la matriz de R a 0 0 a 0 0 a 0 0 a (a) Demostrar que la matriz A es definida positiva para a 2. (b) Si a 2, realizar los cálculos para determinar la factorización de Cholesky LL T, siendo L = α β 2 α β α β α 66 Consideramos la matriz A y el vector z, dados por a a 0 0 b b con a, b > 0 y z = 2 α con α R. (a) Dar una condición suficiente sobre los valores de a y b para que: (i) A sea simétrica, (ii) A sea definida positiva, (iii) A sea de diagonal estrictamente dominante. (b) Obtener la factorización de Cholesky de la matriz A en el caso a = y b = 5/2. (c) Resolver el sistema lineal Au = z para cada α R, siendo A la matriz del apartado anterior. 67 Obtener las factorizaciones de Doolittle, Crout y Cholesky de la siguiente matriz: Resolver aplicando el método de Cholesky, los siguientes sistemas: x x 2 + x = x + 5x 2 + x = x + x 2 + x = 0 x + 2x 2 x = 2 2x + 5x 2 + x + x = 6 x + x 2 + x + 5x = 6 x 2 + 5x + x = 2 69 Sean la matriz A y el vector b, dados por a 0 b 0 0 a 0 b b 0 a 0 0 b 0 a con a, b R y b = / 2 5/6 /. (a) Para qué valores de a y b es posible realizar la factorización LU de la matriz A? Y la de Cholesky? (b) Sean a = /9 y b = /. i. Obtener la factorización LU de Crout de la matriz A. A partir de ella, obtener la factorización de Cholesky de A. ii. Resolver el sistema lineal Au = b a partir de la factorización LU de Crout.

5 2 Ejercicios de CÁLCULO NUMÉRICO I 70 Sean A y b dados por 2 + α α α α, α R; b =. (a) Determinar para qué valores de α la matriz A admite factorización de Cholesky. (b) Para α = y utilizando el método de Cholesky, resolver el sistema Ax = b. 7 Consideremos las matrices , b = Se pide: (a) Calcular el determinante de A utilizando el método de Gauss. (b) Obtener la factorización de Doolittle de la matriz A, y a partir de ésta la factorización de Crout de A. (c) Demostrar que A admite factorización de Cholesky. (d) Hallar la factorización de Cholesky de A a partir de la de Doolittle calculada en el apartado (b). (e) Resolver el sistema Au = b, usando para ello una de las factorizaciones anteriores.

Resolución de sistemas de ecuaciones lineales

Resolución de sistemas de ecuaciones lineales Tema 2 Resolución de sistemas de ecuaciones lineales 21 Métodos directos de resolución de sistemas de ecuaciones lineales 211 Resolución de sistemas triangulares Definición 211 Una matriz A se dice triangular

Más detalles

ITERATIVOS Y DIRECTOS PARA SISTEMAS LINEALES. Ayudante: Rodrigo Torres Aguirre Ejercicios:

ITERATIVOS Y DIRECTOS PARA SISTEMAS LINEALES. Ayudante: Rodrigo Torres Aguirre Ejercicios: Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación MÉTODOS ITERATIVOS Y DIRECTOS PARA SISTEMAS LINEALES Profesor: Jaime Álvarez Maldonado Ayudante:

Más detalles

Parte 2. Métodos directos para la resolución de sistemas de ecuaciones lineales

Parte 2. Métodos directos para la resolución de sistemas de ecuaciones lineales Parte 2. Métodos directos para la resolución de sistemas de ecuaciones lineales Gustavo Montero Escuela Técnica Superior de Ingenieros Industriales University of Las Palmas de Gran Canaria Curso 2006-2007

Más detalles

2. Sistemas de ecuaciones lineales

2. Sistemas de ecuaciones lineales 2 Sistemas de ecuaciones lineales 2 Ejercicios resueltos Ejercicio 2 Estudiar el número de condición de Frobenius de la matriz a b A a + ε b Solución: El determinante de A es A ab + ba + ε b ε Si b 0 y

Más detalles

Matrices triangulares y descomposición LU

Matrices triangulares y descomposición LU Matrices triangulares y descomposición LU Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el examen será suficiente

Más detalles

Resolución de Sistema de Ecuaciones Lineales

Resolución de Sistema de Ecuaciones Lineales Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numérico Hermes Pantoja Carhuavilca 1 de 29 CONTENIDO

Más detalles

Elementos de Cálculo Numérico

Elementos de Cálculo Numérico Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Elementos de Cálculo Numérico Primer cuatrimestre 2006 Práctica N 2: Condicionamiento de una matriz. Descomposición

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales José Vicente Romero Bauset ETSIT-curso 2009/200 José Vicente Romero Bauset Tema 2.- Sistemas de Ecuaciones Lineales Sistema de ecuaciones lineales Un sistema de ecuaciones

Más detalles

Grado en Ciencias Ambientales. Matemáticas. Curso 10/11.

Grado en Ciencias Ambientales. Matemáticas. Curso 10/11. Grado en Ciencias Ambientales. Matemáticas. Curso 0/. Problemas Tema 2. Matrices y Determinantes. Matrices.. Determinar dos matrices cuadradas de orden 2, X e Y tales que: 2 2X 5Y = 2 ; X + 2Y = 4.2. Calcular

Más detalles

SEL - Métodos Directos

SEL - Métodos Directos Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Métodos Numéricos Contenido 1 Métodos Directos Generalidades sobre Métodos Directos Eliminación Gaussiana Pivoteo Factorización LU Generalidades

Más detalles

Profesor Francisco R. Villatoro 13 de Diciembre de 1999 SOLUCIONES. 1. Una matriz A de n n es diagonalmente dominante (estrictamente) por filas si

Profesor Francisco R. Villatoro 13 de Diciembre de 1999 SOLUCIONES. 1. Una matriz A de n n es diagonalmente dominante (estrictamente) por filas si Cuarta relación de problemas Técnicas Numéricas Profesor Francisco R. Villatoro 13 de Diciembre de 1999 SOLUCIONES 1. Una matriz A de n n es diagonalmente dominante estrictamente por filas si a ii > a

Más detalles

Cálculo Numérico - CO3211. Ejercicios. d ) Sabiendo que la inversa de la matriz A = es A c d

Cálculo Numérico - CO3211. Ejercicios. d ) Sabiendo que la inversa de la matriz A = es A c d Cálculo Numérico - CO32 Ejercicios Decida cuáles de las siguientes proposiciones son verdaderas y cuáles son falsas Si una proposición es verdadera, demuéstrela, y si es falsa dé un contraejemplo: a Sea

Más detalles

Relación de problemas. Álgebra lineal.

Relación de problemas. Álgebra lineal. Relación de problemas Álgebra lineal Tema 1 Sección 1 Matrices Determinantes Sistemas lineales Matrices Ejercicio 11 Consideremos las siguientes matrices: ( 1 2 A = 1 1 ) ( 1 1 B = 0 1 ) C = 1 0 0 0 1

Más detalles

DIAGONALIZACIÓN DE MATRICES CUADRADAS

DIAGONALIZACIÓN DE MATRICES CUADRADAS DIAGONALIZACIÓN DE MATRICES CUADRADAS.- Considerar los vectores u = (, -, ) y v = (, -, ) de : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué

Más detalles

SEL Métodos Directos

SEL Métodos Directos SEL Pantoja Carhuavilca Métodos Numérico Agenda métodos directos Encuentra una solución en un número finito de operaciones(en ausencia de errores de redondeo) transformando el sistema en un sistema equivalente

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

Resolverlo mediante el método de Gauss con aritmética exacta y sin pivoteo.

Resolverlo mediante el método de Gauss con aritmética exacta y sin pivoteo. Asignatura Cálculo Numérico Página de Sistemas Lineales lineales (Gauss con variantes y estudio iterativo) Examen Diciembre 000 Ejercicio. Dado el sistema lineal 4x+ y+ z = 9 x+ 4y z = 5, x+ y z = 9 (a)

Más detalles

Métodos Numéricos. Grado en Ingeniería en Informática Tema 4. Análisis Numérico Matricial I

Métodos Numéricos. Grado en Ingeniería en Informática Tema 4. Análisis Numérico Matricial I Métodos Numéricos. Grado en Ingeniería en Informática Tema 4. Análisis Numérico Matricial I Luis Alvarez León Univ. de Las Palmas de G.C. Luis Alvarez León () Métodos Numéricos Univ. de Las Palmas de G.C.

Más detalles

Curso Hoja 1. Análisis de errores

Curso Hoja 1. Análisis de errores Hoja 1. Análisis de errores 1 Teniendo en cuenta que MATLAB trabaja en doble precisión, calcular el número máquina inmediatamente anterior a 1 y comprobar que dista 2 53 de 1. 2 Calcular 1 2 52, 1 2 53,

Más detalles

Matrices bandadas Cálculo de la inversa y determinante Normas vectoriales y matriciales

Matrices bandadas Cálculo de la inversa y determinante Normas vectoriales y matriciales Clase No. 8: MAT 251 Matrices bandadas Cálculo de la inversa y determinante Normas vectoriales y matriciales Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan).

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan). Ejemplo 19: Demuestre que la matriz A es invertible y escríbala como un producto de matrices elementales. Solución: Para resolver el problema, se reduce A a I y se registran las operaciones elementales

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

Primero se triangulariza la matriz: Multiplicando la primera fila por (-1/3) y sumando a la segunda fila: ( ) ( )=( ) ( ) ( )

Primero se triangulariza la matriz: Multiplicando la primera fila por (-1/3) y sumando a la segunda fila: ( ) ( )=( ) ( ) ( ) MAT 115 B EJERCICIOS RESUELTOS Resolver el siguiente sistema de ecuaciones: a) Por el método de eliminación de Gauss La matriz aumentada del sistema es: 3 2 6 1 5 Primero se triangulariza la matriz: Multiplicando

Más detalles

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA ESCUELA ESTUDIOS DE TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA DEPARTAMENTO DE INGENIERÍA INFORMÁTICA MATEMÁTICA APLICADA I ÁLGERA LINEAL OLETINES DE PROLEMAS Curso 8-9 Sistemas de ecuaciones lineales.

Más detalles

Aplicar este algoritmo para resolver el sistema de ecuaciones: º «« º ««

Aplicar este algoritmo para resolver el sistema de ecuaciones: º «« º «« Introducción al Cálculo Numérico y Programación 1 MÓDULO 8: SISTEMA DE ECUACIONES LINEALES. A- MÉTODOS DIRECTOS 6LVWHPDVIiFLOHVGHUHVROYHU Ejercicio 1: Escribe una función MATLAB llamada =sp(a,b) que admita

Más detalles

2.10 Ejercicios propuestos

2.10 Ejercicios propuestos Ejercicios propuestos 99 1 0 0 0 x 1 0 1 0 0 x 2 0 0 1 0 x 3 x 2 0 0 0 1 x 4 + x 1 +4x 2 + x 3 x 2 0 0 0 1 x 5 x 2 1 0 0 0 x 1 0 1 0 0 x 2 0 0 1 0 x 3 x 2 0 0 0 1 x 4 + x 1 +4x 2 + x 3 x 2 0 0 0 0 x 5

Más detalles

Cap 3: Álgebra lineal

Cap 3: Álgebra lineal Universidad Nacional de Ingeniería Facultad de Ciencias Cálculo Numérico 1 IF321 Cap 3: Álgebra lineal Prof: J. Solano 2018-I INTRODUCCION Aqui trabjaremos con operaciones basicas con matrices, tales como

Más detalles

Métodos directos de resolución de sistemas lineales

Métodos directos de resolución de sistemas lineales 3 Versión: Métodos directos de resolución de sistemas lineales 2 de abril de 208 3 Introducción Una ecuación lineal (sistema de orden ) es de la forma: ax = b, donde a y b son números reales dados y x

Más detalles

Dr. Alonso Ramírez Manzanares CIMAT A.C. cimat.mx web: alram/met_num/

Dr. Alonso Ramírez Manzanares CIMAT A.C.   cimat.mx web:  alram/met_num/ Clase No 4: MAT 251 Factorización LU Dr Alonso Ramírez Manzanares CIMAT AC e-mail: alram@ cimatmx web: http://wwwcimatmx/ alram/met_num/ Dr Joaquín Peña Acevedo CIMAT AC e-mail: joaquin@ cimatmx Joaquín

Más detalles

TEMA 8. Sistemas de Ecuaciones Lineales: Método de Gauss. 1. Sistemas de ecuaciones lineales. Generalidades

TEMA 8. Sistemas de Ecuaciones Lineales: Método de Gauss. 1. Sistemas de ecuaciones lineales. Generalidades TEMA 8 F MATEMÁTICOS TEMA 8 Sistemas de Ecuaciones Lineales: Método de Gauss 1 Sistemas de ecuaciones lineales Generalidades Uno de los problemas centrales del álgebra lineal es la resolución de ecuaciones

Más detalles

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06 PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 200/06 1. Utilizar el método de eliminación de Gauss para resolver el sistema de ecuaciones lineales siguiente: 2 x 1 2 x

Más detalles

a) Plantear un sistema de ecuaciones para calcular los coeficientes de f y resolverlo usando la descomposición LU de la matriz del sistema.

a) Plantear un sistema de ecuaciones para calcular los coeficientes de f y resolverlo usando la descomposición LU de la matriz del sistema. E.T.S. de Álgebra Numérica 30 de junio de 2006 Se quiere encontrar una función de la forma f(x) = ax 3 + bx + c que pase por los puntos (1, 4), ( 2, 23) y (2, 21). a) Plantear un sistema de ecuaciones

Más detalles

TEMA V. Espacios vectoriales

TEMA V. Espacios vectoriales TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,

Más detalles

Ejercicios de la práctica 3

Ejercicios de la práctica 3 Ejercicios de la práctica 3 Ejercicio 1. Consideremos la siguiente matriz 4 2 4 0 A = 2 10 22 4 5 2 5 2. 24 6 16 8 Si R es la forma escalonada por filas de A, calcular, usando MATLAB, las matrices Q y

Más detalles

Práctica 1: Sistemas de Ecuaciones Lineales - Matrices

Práctica 1: Sistemas de Ecuaciones Lineales - Matrices ALGEBRA LINEAL Primer Cuatrimestre 2017 Práctica 1: Sistemas de Ecuaciones Lineales - Matrices En todas las prácticas, K es un cuerpo; en general K = Q (los números racionales, R (los números reales o

Más detalles

Cálculo Numérico. Curso Ejercicios: Preliminares I

Cálculo Numérico. Curso Ejercicios: Preliminares I Cálculo Numérico. Curso 07-08. Ejercicios: Preliminares I 1. (a) Compruebe que la inversa de una matriz, L, triangular inferior de orden n puede calcularse como sigue: Para j = 1,,..., n e i = j, j + 1,...,

Más detalles

UNIVERSIDAD AUTÓNOMA DE ENTRE RÍOS

UNIVERSIDAD AUTÓNOMA DE ENTRE RÍOS UNIVERSIDAD AUTÓNOMA DE ENTRE RÍOS FACULTAD DE CIENCIA Y TECNOLOGÍA CÁLCULO NUMÉRICO T.P.Nº3 EJERCICIO N 1 En los ejercicios 1 a 12 resolver el sistema dado. 1) a) Por el método de Gauss sin pivoteo con

Más detalles

ESPACIOS VECTORIALES Y APLICACIONES LINEALES

ESPACIOS VECTORIALES Y APLICACIONES LINEALES Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES 16 de Mayo de 2013 SISTEMAS DE ECUACIONES Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela Cálculo Numérico José Luis Quintero 1 Puntos a tratar 1. Sistemas fáciles

Más detalles

RESOLUCIÓN DE SISTEMAS LINEALES

RESOLUCIÓN DE SISTEMAS LINEALES Contenido 1 Métodos de Solución Contenido Métodos de Solución 1 Métodos de Solución Desarrollamos el algoritmo de sustitución regresiva, con el que podremos resolver un sistema de ecuaciones lineales cuya

Más detalles

Dr. Alonso Ramírez Manzanares CIMAT A.C. cimat.mx web: alram/met_num/

Dr. Alonso Ramírez Manzanares CIMAT A.C.   cimat.mx web:   alram/met_num/ Clase No. 4 (Parte 2): MAT 251 Factorización LU Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT A.C. e-mail: joaquin@

Más detalles

MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES Departamento de Matemática Aplicada II EEI ÁLGEBRA Y ESTADÍSTICA Boletín n o 1 (2010-2011 MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Sean A, B, C, D y E matrices de tamaño 4 5, 4 5, 5 2,

Más detalles

3. Sistemas inconsistentes y sistemas indeterminados

3. Sistemas inconsistentes y sistemas indeterminados . Sistemas inconsistentes sistemas indeterminados. Ejercicios resueltos Ejercicio. Dado el sistema: 4x + 5 x + 5 a Realizar la factorización QR de la matriz, resolverlo basándose en ella a. Mediante el

Más detalles

Matemática 2 MAT022. Clase 4 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María. Sistemas de Ecuaciones. logo.

Matemática 2 MAT022. Clase 4 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María. Sistemas de Ecuaciones. logo. Matemática 2 MAT022 Clase 4 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María Tabla de Contenidos Sistemas de Ecuaciones 1 Sistemas de Ecuaciones Consideremos el sistema

Más detalles

Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices:

Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices: Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices: 5 2 1 1 0 3 1 0 3 3 1 6. 3 1 6 5 2 1 2.- Dada la matriz A = 10 7 8 7 5 6, 8 6 10 hallar

Más detalles

Sistemas de Ecuaciones. Lineales III

Sistemas de Ecuaciones. Lineales III Sistemas de Ecuaciones Lineales III Pivoteo: Estrategia de pivoteo parcial Adaptación a matrices con estructuras particulares: Matrices banda y tridiagonales Método de holesky 52123-1 - DIM Universidad

Más detalles

1.5.3 Sistemas, Matrices y Determinantes

1.5.3 Sistemas, Matrices y Determinantes 1.5.3 Sistemas, Matrices y Determinantes 24. Sean las matrices 3 0 4 1 A= 1 2 B = 0 2 1 1 C = 1 4 2 3 1 5 1 5 2 D = 1 0 1 E = 3 2 4 6 1 3 1 1 2 4 1 3 a Calcular cuando se pueda: 3C D, ABC, ABC, ED, DE,

Más detalles

Curso cero Matemáticas en informática : Sistemas de ecuaciones lineales

Curso cero Matemáticas en informática : Sistemas de ecuaciones lineales lineales -Jordan Curso cero Matemáticas en informática : de ecuaciones lineales Septiembre 2005 lineales -Jordan lineales -Jordan Se llama ecuación lineal con n incógnitas a a x + a 2 x 2 + a 3 x 3 + +

Más detalles

Índice. Programación de las unidades. Unidad 1 Matrices 6. Unidad 2 Determinantes 8. Unidad 3 Sistemas de ecuaciones lineales 10

Índice. Programación de las unidades. Unidad 1 Matrices 6. Unidad 2 Determinantes 8. Unidad 3 Sistemas de ecuaciones lineales 10 Índice Programación de las unidades Unidad 1 Matrices 6 Unidad 2 Determinantes 8 Unidad 3 Sistemas de ecuaciones lineales 10 Unidad 4 Geometría en el espacio 12 Unidad 5 Producto escalar 14 Unidad 6 Productos

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Matrices sobre IR ó C. Definición Dado un conjunto K (IR ó C) y dos conjuntos finitos de índices I = {,, m} J

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 5

Análisis Numérico para Ingeniería. Clase Nro. 5 Análisis Numérico para Ingeniería Clase Nro. 5 Sistemas de Ecuaciones Lineales Temas a tratar: Tipos de Matrices Método de Triangulación de Gauss Método de Diagonalización de Gauss-Jordan Tácticas de Pivoteo

Más detalles

Métodos directos de resolución de sistemas lineales

Métodos directos de resolución de sistemas lineales Tema 4 Métodos directos de resolución de sistemas lineales 1 Introducción En este tema se estudian algunos métodos de resolución de sistemas de ecuaciones lineales con el mismo número de ecuaciones que

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Matrices ACTIVIDADES INICIALES.I. Señala el número de filas y columnas que componen las tablas de cada uno de los siguientes ejemplos. a) Un tablero de ajedrez b) Una quiniela de fútbol c) El cuadro de

Más detalles

Matrices y sistemas lineales

Matrices y sistemas lineales Matrices y sistemas lineales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Matrices elementales En esta sección vamos a crear funciones en MATLAB que nos permitan construir matrices elementales.

Más detalles

Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I

Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I Universidad Nacional de Ingeniería Facultad de Ciencias Física Computacional CC063 Algebra Lineal Prof: J. Solano 2012-I Introduccion Aqui trabjaremos con operaciones basicas con matrices, tales como solucion

Más detalles

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa Ecuaciones matriciales AX = B y XA = B Cálculo de la matriz inversa Objetivos Aprender a resolver ecuaciones matriciales de la forma AX = B y XA = B Aprender a calcular la matriz inversa con la eliminación

Más detalles

Gustavo Rodríguez Gómez. Agosto Dicembre 2011

Gustavo Rodríguez Gómez. Agosto Dicembre 2011 Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre 2011 1 / 46 Capítulo II 2 / 46 1 Introducción Métodos Directos Sistemas Triangulares Sustitución Hacia Atrás Invertibilidad de una Matriz

Más detalles

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012 Cálculo numérico Métodos de factorización para resolver sistemas de ecuaciones lineales 22 de agosto, 2012 1 Factorización LU Considera el siguiente ejemplo de factorización LU de una matriz en un sistema

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE E.T.S. DE INGENIERÍA INFORMÁTICA BOLETÍN DE PROBLEMAS DE ÁLGEBRA LINEAL para las titulaciones de INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN 1. Matrices y determinantes Ejercicio 1.1 Demostrar

Más detalles

1. Efectuar las siguientes operaciones, expresando el resultado en forma binómica: (1 i)(2 i)(i 3) ; 344 ( i) 231 i(1 + i) 5

1. Efectuar las siguientes operaciones, expresando el resultado en forma binómica: (1 i)(2 i)(i 3) ; 344 ( i) 231 i(1 + i) 5 1.5.1 Complejos 1. Efectuar las siguientes operaciones, expresando el resultado en forma binómica: i 1 ; 2 + i ; 2i 2 i 1 + i +i; 5 (1 i)(2 i)(i 3) ; i344 +( i) 231 ; (1 + i) 5 + 1 (1 i) 5 1 ; 2. Usar,

Más detalles

Instituto Tecnológico Autónomo de México. 1. At =..

Instituto Tecnológico Autónomo de México. 1. At =.. Instituto Tecnológico Autónomo de México TRANSPUESTA DE UNA MATRIZ DEFINICION : Transpuesta Sea A = (a ij ) una matriz de mxn Entonces la transpuesta de A, que se escribe A t, es la matriz de nxm obtenida

Más detalles

Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cuatrimestre 2017

Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cuatrimestre 2017 Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cuatrimestre 207 Práctica N : Número de condición.

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

CURSO DE METODOS NUMERICOS Año Académico Curso Tercero de Matemáticas EXAMEN FINAL FEBRERO

CURSO DE METODOS NUMERICOS Año Académico Curso Tercero de Matemáticas EXAMEN FINAL FEBRERO Año Académico 2000-2001 Curso Tercero de Matemáticas EXAMEN FINAL FEBRERO 1. Dá el enunciado y demuestra el teorema de convergencia del método del punto fijo. (2 puntos) 2. Resuelve el siguiente sistema

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Chapter 2 Sistemas de ecuaciones lineales 2.1 Resolución de sistemas de ecuaciones lineales El problema que se pretende resolver en este capítulo es el de un sistema de m ecuaciones lineales con n incógnitas

Más detalles

Matrices 3. Matrices. Verónica Briceño V. agosto 2012

Matrices 3. Matrices. Verónica Briceño V. agosto 2012 3 agosto 2012 En esta Presentación... En esta Presentación veremos: Matriz Inversa En esta Presentación... En esta Presentación veremos: Matriz Inversa Determinante En esta Presentación... En esta Presentación

Más detalles

Métodos directos de resolución de sistemas lineales

Métodos directos de resolución de sistemas lineales Tema 3 Métodos directos de resolución de sistemas lineales 1 Introducción En este tema se estudian algunos métodos de resolución de sistemas de ecuaciones lineales con el mismo número de ecuaciones que

Más detalles

Álgebra Lineal - Grado de Estadística. Examen final 27 de junio de 2014 APELLIDOS, NOMBRE:

Álgebra Lineal - Grado de Estadística. Examen final 27 de junio de 2014 APELLIDOS, NOMBRE: Álgebra Lineal - Grado de Estadística Examen final 7 de junio de 4 APELLIDOS, NOMBRE: DNI: irma Primer parcial Ejercicio Consideremos matrices A m m, B, C n n, Pruebe que bajo la hipótesis de que las inversas

Más detalles

TEMA 4: Sistemas de ecuaciones lineales II

TEMA 4: Sistemas de ecuaciones lineales II TEM 4: Sistemas de ecuaciones lineales II ) Teorema de Rouché-Frobenius. ) Sistemas de Cramer: regla de Cramer. 3) Sistemas homogeneos. 4) Eliminación de parámetros. 5) Métodos de factorización. 5) Métodos

Más detalles

Tema 3 Resolución de Sistemas deecuaciones Lineales

Tema 3 Resolución de Sistemas deecuaciones Lineales Tema 3 Resolución de Sistemas de Ecuaciones Lineales E.T.S.I. Informática Indice 1 Introducción 2 Resolución de Sistemas Triangulares Triangulación por el Método de Gauss Variante de Gauss-Jordan Comentarios

Más detalles

ÁLGEBRA LINEAL I Práctica 5

ÁLGEBRA LINEAL I Práctica 5 ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2

Más detalles

Ejercicios: Matrices - Sub espacios vectoriales - Transformaciones lineales

Ejercicios: Matrices - Sub espacios vectoriales - Transformaciones lineales Appendix B Ejercicios: Matrices - Sub espacios vectoriales - Transformaciones lineales Credit: This notes are 100% from chapter 3 of the book entitled Linear Algebra. A Modern Introduction of David Poole

Más detalles

Elementos de Cálculo Numérico (M) - Cálculo Numérico

Elementos de Cálculo Numérico (M) - Cálculo Numérico Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Elementos de Cálculo Numérico (M) - Cálculo Numérico Primer Cuatrimestre 204 Práctica N 2: Normas y Condicionamiento.

Más detalles

Espacios vectoriales.

Espacios vectoriales. Unidad docente de Matemáticas Matemáticas (CC. Químicas) Espacios vectoriales. Si detectas cualquier error o errata por favor, comunicaselo al profesor de la asignatura. El subíndice can significa canónica/o..

Más detalles

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5 Matemáticas II Prácticas: Matrices y Determinantes. Sean las matrices cuadradas siguientes: 4 5 6 B = 9 8 7 6 5 4 C = 5 7 9 0 7 8 9 Se pide calcular: a A B + C. b A AB + AC. c A B AB + ACB.. Sean las matrices:

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 007-008 1.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) = Ax, así como los subespacios vectoriales

Más detalles

MAT web:

MAT web: Clase No. 7: MAT 251 Matrices definidas positivas Matrices simétricas Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

Lección 10. Eliminación Gaussiana

Lección 10. Eliminación Gaussiana Lección 10. Eliminación Gaussiana MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida. En esta lección analizaremos

Más detalles

Lección 11. Eliminación Gaussiana con Pivoteo y Matrices de Banda

Lección 11. Eliminación Gaussiana con Pivoteo y Matrices de Banda Lección 11. Eliminación Gaussiana con Pivoteo y Matrices de Banda MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre de 2014 1 Centro de Investigación en Matemáticas,

Más detalles

MATRICES. 1.- Calcular: g) 0 a b a 0 c b c 0. x x x. x + a b c a x + b c a b x + c. a b b b a b b b a

MATRICES. 1.- Calcular: g) 0 a b a 0 c b c 0. x x x. x + a b c a x + b c a b x + c. a b b b a b b b a MATRICES 1.- Calcular: a) 3 2 5 2 1 4 3 1 6 b) 2 1 3 4 2 5 6 0 2 c) 3 1 5 0 5 4 6 3 1 3 2 1 6 7 5 4 d) 7 6 8 5 6 7 10 6 7 8 8 9 8 7 9 6 e) 1 3 2 1 3 5 3 2 3 6 2 2 6 4 5 3 f) 1 1 1 1 1 1 1 g) 1 1 1 1 1

Más detalles

Clase. 1. Resolución de sistemas de ecuaciones lineales: preliminares

Clase. 1. Resolución de sistemas de ecuaciones lineales: preliminares Clase 1. Resolución de sistemas de ecuaciones lineales: preliminares 2. Método directo y exacto: Gauss 3. Método directo y exacto (II): descomposición LU 4. Métodos indirectos: Jacobi, Gauss-Seidel 2 Sistemas

Más detalles

Álgebra. Ingeniería Industrial. Curso 2006/2007 Examen de Septiembre

Álgebra. Ingeniería Industrial. Curso 2006/2007 Examen de Septiembre Álgebra. Ingeniería Industrial. Curso / Examen de Septiembre OBSERVACIONES: Cada hoja entregada debe contener el nombre, apellidos y número de identificación escrito de forma clara. No mezclar ejercicios

Más detalles

ÁLGEBRA LINEAL I Práctica 4

ÁLGEBRA LINEAL I Práctica 4 ÁLGEBRA LINEAL I Práctica 4 Equivalencia de matrices. Sistemas de ecuaciones (Curso 2016 2017) 1. Hallar la forma reducida equivalente por filas de la matriz: 1 2 1 0 3 2 1 2 2 1 2 5 5 6 3 2 1 3 1 3 2.

Más detalles

Problemas de Álgebra 2 o de Bachillerato

Problemas de Álgebra 2 o de Bachillerato Problemas de Álgebra 2 o de Bachillerato Problema 1 Calcular los productos de matrices A A, A B, B A y B B, siempre que sea posible, donde: 2 1 3 1 2 1. A = y B = 1 0 2 1 1 1 2 2. A = 1 1 0 2 y B = 3.

Más detalles

Factorización de rango completo y aplicaciones

Factorización de rango completo y aplicaciones XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, 21-25 septiembre 2009 (pp. 1 8) Factorización de rango completo y aplicaciones R. Cantó 1, B. Ricarte

Más detalles

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases...

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases... Álgebra Lineal Grupo A Curso 2011/12 Espacios vectoriales. Bases 61) Dados los vectores v 1,v 2,...,v n linealmente independientes, probar que también lo son los vectores u 1 = v 1 u 2 = v 1 + v 2... u

Más detalles

Factorización de matrices

Factorización de matrices CAPÍTULO Factorización de matrices En este capítulo se estudian algunas de las técnicas más utilizadas para factorizar matrices, es decir, técnicas que permiten escribir una matriz como producto de dos

Más detalles

b) y 1 = 10x x 2 y 2 = 25x x 2 d) y 1 = 4x 1 3x 2 y 2 = 2x 1 5x 2

b) y 1 = 10x x 2 y 2 = 25x x 2 d) y 1 = 4x 1 3x 2 y 2 = 2x 1 5x 2 Álgebra lineal Curso 2008-2009 Tema 2 Hoja 1 Tema 2 ÁLGEBRA SUPERIOR 1 Expresar los siguientes sistemas lineales en notación matricial a y 1 = 2x 1 + 3x 2 y 2 = 4x 1 + 2x 2 b y 1 = 10x 1 + 12x 2 y 2 =

Más detalles

Solución de sistemas de ecuaciones lineales: Descomposición LU

Solución de sistemas de ecuaciones lineales: Descomposición LU Solución de sistemas de ecuaciones lineales: Descomposición LU Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla Morán Facultad de Ingeniería, UNAM * 2006

Más detalles

SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma:

SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma: TEMA Sistemas de ecuaciones SISTEMAS DE ECUACIONES. DEFINICIÓN SISTEMAS DE ECUACIONES Un sistema de m ecuaciones lineales con n incógnitas,,,, n es un conjunto de m igualdades de la forma: a a an n b a

Más detalles

A.M. Urbano, R. Cantó, B. Ricarte Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València, E Valencia

A.M. Urbano, R. Cantó, B. Ricarte Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València, E Valencia Factorización de Cholesky de matrices singulares A.M. Urbano, R. Cantó, B. Ricarte Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València, E-460 Valencia amurbano@mat.upv.es,rcanto@mat.upv.es,bearibe@mat.upv.es,

Más detalles

Ejercicios de MATRICES y SISTEMAS DE ECUACIONES LINEALES.

Ejercicios de MATRICES y SISTEMAS DE ECUACIONES LINEALES. Ejercicios de MATRICES y SISTEMAS DE ECUACIONES LINEALES. 1. a) Hallar números Α y Β tales que b) Idem para que Α Β 2 Α Β Α Β 2 Β 1 Α Β 0 1 1 Β 3 5 Α 0 10 19 8 2 2. a) Sean A 2 1 3 2, B 1 1 4 2, C 2 3

Más detalles

2. Sistemas de ecuaciones lineales.

2. Sistemas de ecuaciones lineales. 2. Sistemas de ecuaciones lineales. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Otoño 2002 Contents 1 Introducción 2 2 Operaciones elementales

Más detalles

PLAN DE ESTUDIOS 1996

PLAN DE ESTUDIOS 1996 Ríos Rosas, 21 28003 MADRID. UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE MINAS ------- DEPARTAMENTO DE MATEMÁTICA APLICADA Y MÉTODOS INFORMATICOS PROGRAMA DE LA ASIGNATURA

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 5

Análisis Numérico para Ingeniería. Clase Nro. 5 Análisis Numérico para Ingeniería Clase Nro. 5 Sistemas de Ecuaciones Lineales Temas a tratar: Tipos de Matrices Método de Triangulación de Gauss Método de Diagonalización de Gauss-Jordan Tácticas de Pivoteo

Más detalles