TUTORIAL SERIES DE FOURIER

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TUTORIAL SERIES DE FOURIER"

Transcripción

1 TUTORIAL SERIES DE FOURIER Ya se han presentado Tutoriales sobre el espectro (transformada de Fourier) y la convergencia de series, pero de manera independiente al menos argumentalmente. En este tutorial pretendo introducir la convergencia de las series de Fourier, teoría de importante aplicación para valorar la viabilidad matemática de cada uno de los elementos que aparecen en un espectro de frecuencias. Dada la amplitud de la materia en este tutorial solo se expondrán los conceptos relativos a la definición de Serie de Fourier, entrándose con posterioridad en otros relativos a su convergencia y viabilidad matemática. DEFINICIÓN Una serie de Fourier es una sucesión de Senos y Cosenos como ya se dijo en el tutorial sobre el espectro de vibración. Matemáticamente si tenemos una aplicación: :, entonces la serie 2 + cos + sin Si converge a á! "#$! $% ó. BAGAJE CONCEPTUAL Funciones Continuas a Trozos en un intervalo es aquella que presenta en ese intervalo un número finito de discontinuidades de Primera Especie. Una función periódica de período T tiene también por período ZT siendo Z un número entero. Período fundamental es el menor de los valores períodos de una función. Función par en un intervalo es aquella que no cambia de valor invirtiendo el signo de la variable. Función impar en un intervalo es aquella que invierte su signo al cambiar el signo de la variable. 1 Producto Escalar de 2 funciones, ) > =, ())() //////! Tutoriales Página 1

2 FUNCIONES TRIGONOMÉTRICAS Se trata de funciones que se analizarán en el intervalo,, representándose como la unión de las 3 funciones: CARACTERÍSTICAS cos4 5 2sin4 %# 7 Tienen por período fundamental cos4 es una función par en,. 2sin 4 es una función impar en, Son funciones ortonormales 2 a 2 puesto que sus productos escalares son : o 1, cos > =, cos 1 o 1, sin > =, sin 1! =! = o cos, sin : > =, cos sin:! = :, : 7 1 o cos, cos: > =, cos cos:! = :, : 7 1 o sin, sin: > =, sin sin:! = :, : 7 1 SERIE DE FOURIER La serie definida con anterioridad: 2 + cos + sin es la serie de Fourier de la función f, y basándose en las propiedades de ortonormalidad anteriores con los siguientes coeficientes: =, () cos! 1 =, 1 ()! = CASOS PARTICULARES, () sin! 1 Si :, es par su serie de Fourier es: ~ 2 + cos > ()cos! Tutoriales Página 2

3 Si :, es impar su serie de Fourier es: ~ sin! > () cos! EJEMPLOS Valor Absoluto de x Calcular los coeficientes de la serie de Fourier de la función () = con, = = 1B C A A A :A, sin! 1 Por lo que la función puede aproximarse por: Coseno al Cubo de x ~ 2 4 (2 1) E cos(2 1) Calcular los coeficientes de la serie de Fourier de la función () = %# F con, A 1 H 3 F = G B = B EXTENSIONES PARA FUNCIONES DEFINIDAS EN OTROS INTERVALOS Las definiciones dadas hasta ahorase limitan al intervalo,. Dada la utilidad de esta serie de funciones se detallan las extensiones para funciones definidas en otros intervalos: EXTENSIÓN PAR DE FUNCIONES DEFINIDAS EN J, K Dada la función : L, M se denomina N ó A!, con período 2 a: O () = P () () O () = O ( + 2) > () cos! Tutoriales Página 3

4 EXTENSIÓN IMPAR DE FUNCIONES DEFINIDAS EN J, K Dada la función : L, M se denomina N ó :A!, con período 2 a: GENERALIZACIÓN A S, T V R () = P () () R ( 1 ) + R ( 1 ) 2 = = > () sin! Si la variable N recorre el intervalo, entonces la variable definida por: = 2 N + + recorrerá el intervalo W, Y, definiéndose así las funciones trigonométricas: Zcos (2N ( + ))[ 5 Zsin( (2N ( + ))[ Las funciones anteriores serán ortonormales en el intervalo, La serie de Fourier quedará definida para la función :, de la siguiente manera: (N) ~ 2 + cos 2N ( + ) + sin 2N ( + ) El concepto de paridad se complica pues ya no es el punto medio (ahora es \]^ E ): o A, (N) = ( + N) o :A, (N) = ( + N) De igual manera que se hablaba sobre extensiones para el intervalo, se puede hablar para [a,b] o Extensión par al intervalo [2a-b, b] sería una función que tuviese por argumento y series y coeficientes de Fourier los siguientes: N O (N)~ 2 + cos (N )!N ^ > O(N) \ cos (N )!N Tutoriales Página 4

5 o Extensión impar al intervalo [2a-b, b] sería una función que tuviese por argumento y series y coeficientes de Fourier los siguientes: N R (N)~ sin (N )!N ^ > O(N) sin (N )!N \ EJEMPLOS Función (N) = N con N E, Se obtiene el argumento 2N ( + ) = 4N 3 para pasar al dominio [-, ^1\ Familia de funciones trigonométricas cos(4N 3)4 5 2sin(4N 3)4 Teniendo en cuenta las fórmulas de coseno y seno de una suma N ~ 2 + cos(4n) + sin(4n) = 1 4 = 1 4 > N cos4n!n E > N sin4n!n E Tutoriales Página 5

La transformada de Fourier

La transformada de Fourier Capítulo 7 La transformada de Fourier 7.1. Definiciones Definición 7.1 Sea :( ) C; definimos la transformada de Fourier de () en R, a F [ ()] () F []() () donde esa integral tenga sentido, es decir, exista

Más detalles

La función, definida para toda, es periódica si existe un número positivo tal que

La función, definida para toda, es periódica si existe un número positivo tal que Métodos con series de Fourier Definición: Función periódica La función, definida para toda, es periódica si existe un número positivo tal que para toda. El número en un periodo de la función. Si existe

Más detalles

Demostración de la Transformada de Laplace. La serie de Fourier

Demostración de la Transformada de Laplace. La serie de Fourier Demostración de la Transformada de Laplace En el presente documento demostraremos matemáticamente si las siguientes igualdades se cumplen, para esto empezaremos haciendo un análisis de la serie de Fourier,

Más detalles

( + )= ( ) ( ) tiene periodo si es cualquier periodo de ( ). + =cos( +2 )=cos + = ( +2 )=. cosnt+ sinnt) ( )~ Métodos con series de Fourier

( + )= ( ) ( ) tiene periodo si es cualquier periodo de ( ). + =cos( +2 )=cos + = ( +2 )=. cosnt+ sinnt) ( )~ Métodos con series de Fourier Métodos con series de Fourier Definición: Función periódica La función (), definida para toda, es periódica si existe un número positivo tal que (+)=() para toda. El número en un periodo de la función.

Más detalles

Lección: Ortogonalidad y Series de Fourier

Lección: Ortogonalidad y Series de Fourier Lección: Ortogonalidad y Series de Fourier Dr. Miguel Angel Uh Zapata, Centro de Investigación en Matemáticas, Unidad Mérida Facultad de Matemáticas, UADY Octubre 2015 Miguel Uh Lección: Ortogonalidad

Más detalles

Integral de Fourier y espectros continuos

Integral de Fourier y espectros continuos 9 2 2 2 Esta expresión se denomina forma de Angulo fase (o forma armónica) de la serie de Fourier. Integral de Fourier y espectros continuos Las series de Fourier son una herramienta útil para representar

Más detalles

Ecuaciones Diferenciales II. Series de Fourier

Ecuaciones Diferenciales II. Series de Fourier Ecuaciones Diferenciales II Series de Fourier José C. Sabina de Lis Universidad de La Laguna La Laguna, 9 de noviembre de 23 . Problemas de Contorno y series de autofunciones. A) Series de Fourier en senos.

Más detalles

Índice. Tema 8: Series de Fourier. Funciones periódicas. Algunas funciones periódicas. Marisa Serrano, José Ángel Huidobro

Índice. Tema 8: Series de Fourier. Funciones periódicas. Algunas funciones periódicas. Marisa Serrano, José Ángel Huidobro Índice Marisa Serrano, José Ángel Huidobro 1 Universidad de Oviedo email: [email protected] email: [email protected] Funciones periódicas Algunas funciones periódicas f : R R es una función periódica

Más detalles

Series de Fourier Trigonométricas

Series de Fourier Trigonométricas Capítulo 4 Series de Fourier Trigonométricas En el capítulo anterior hemos visto que toda función f L ([, ];R) se puede desarrollar en serie trigonométrica de senos y cosenos del tipo a + X (a n cos nx

Más detalles

Práctica 8 Series de Fourier

Práctica 8 Series de Fourier MATEMATICA 4 - Análisis Matemático III Primer Cuatrimestre de 8 Práctica 8 Series de Fourier. (**) a) Verificar que f n (x) = { n si x n si x > n converge uniformemente a cero en R pero que (f n ) no converge

Más detalles

1. Señales continuas o sinusoidales. 2. Cualquier señal (incluyendo continuas o sinusoidales).

1. Señales continuas o sinusoidales. 2. Cualquier señal (incluyendo continuas o sinusoidales). La transformación de Laplace permite tratar cualquier señal en el dominio del tiempo mediante la formulación de dicha señal en el dominio complejo. Alternativamente, la transformación de Fourier expresa

Más detalles

TEMPORALIZACIÓN MATEMÁTICAS I CURSO 2011/2012

TEMPORALIZACIÓN MATEMÁTICAS I CURSO 2011/2012 TEMPORALIZACIÓN MATEMÁTICAS I CURSO 2011/2012 BLOQUE I: ARITMÉTICA Y ÁLGEBRA Tema 1: Números Reales. Sesión 1: Presentación de la asignatura. N, Z, Q, R y C. Números reales. La recta real. Intervalos y

Más detalles

Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez.

Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez. Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez. Comprobar que la familia de funciones del seno y la del coseno de la forma: Estando definidas entre 0 y L y donde son familias ortogonales por sí

Más detalles

7.FUNCIÓN REAL DE VARIABLE REAL

7.FUNCIÓN REAL DE VARIABLE REAL 7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el

Más detalles

Series de Fourier absolutamente convergentes

Series de Fourier absolutamente convergentes Series de Fourier absolutamente convergentes Objetivos. Estudiar las propiedades principales de series de Fourier absolutamente convergentes. Ya hemos mostrado que los caracteres del grupo Z se pueden

Más detalles

Aproximación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aproximación 1 / 19

Aproximación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aproximación 1 / 19 Aproximación Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Aproximación 1 / 19 Motivación Intro Aproximar una función f consiste en reemplazarla con una

Más detalles

EV ALU ACIÓN EXTRAO RDIN ARI A DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS I.

EV ALU ACIÓN EXTRAO RDIN ARI A DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS I. EV ALU ACIÓN EXTRAO RDIN ARI A DE SEPTIEMBRE CURSO 2014-2015. Contenidos para la Prueba de Septiembre MATEMÁTICAS I. UNIDAD 1: NÚMEROS REALES Números racionales, irracionales y reales. Ordenación en el

Más detalles

Ecuaciones Diferenciales Tema 4. Series de Fourier

Ecuaciones Diferenciales Tema 4. Series de Fourier Ecuaciones Diferenciales Ester Simó Mezquita Matemática Aplicada IV 1 1. Funciones periódicas 2. Serie de Fourier de una función periódica 3. Convergencia. Teorema de Dirichlet. Fenómeno de Gibbs 4. Forma

Más detalles

Práctica 8. f n (x) = sea la mejor aproximación (en media cuadrática) de la función f(x) = 1 en (0, 2). (x 2 a b cos x c sen x) 2 dx.

Práctica 8. f n (x) = sea la mejor aproximación (en media cuadrática) de la función f(x) = 1 en (0, 2). (x 2 a b cos x c sen x) 2 dx. MATEMATICA 4 er Cuatrimestre de 25 Práctica 8. a) Verificar que f n (x) = { n si x n si x > n converge uniformemente a cero en R pero que (f n ) no converge a cero en media cuadrática. b) Verificar que

Más detalles

Funciones: Límites y continuidad.

Funciones: Límites y continuidad. Límites finitos de sucesiones. Funciones: límites y continuidad Matemáticas I Funciones: Límites y continuidad. + Decimos que una sucesión numérica ( ) n= tiene por límite r R y se escribe =r o de forma

Más detalles

A502 - Teoría de Sistemas y Señales

A502 - Teoría de Sistemas y Señales A50 - Teoría de Sistemas y Señales Transparencias Densidad Espectral de Energía de Señales Aperiódicas Autor: Dr. Juan Carlos Gómez Señales de Potencia Verifican TD: TC: Algunas Definiciones N 1 < P lim

Más detalles

Práctica 9 (19/04/2016)

Práctica 9 (19/04/2016) Series de Fourier Curso 5 6 Prácticas Matlab Cálculo II Objetivos Práctica 9 (9/0/06) Obtener series de Fourier de funciones periódicas. Visualizar gráficamente la aproimación de una función periódica

Más detalles

Matematicas I. Libro de texto. Temario. Números reales. Sucesiones. Logarítmos.

Matematicas I. Libro de texto. Temario. Números reales. Sucesiones. Logarítmos. 1 Matematicas I Libro de texto Para preparar el examen se puede utilizar cualquier libro de texto de Matemáticas de 1º de bachillerato de la modalidad de ciencias. Números reales Temario a) Repaso de los

Más detalles

FISICA MECANICA DOCUMENTO DE CONTENIDO MATEMATICAS PARA FISICOS

FISICA MECANICA DOCUMENTO DE CONTENIDO MATEMATICAS PARA FISICOS FISICA MECANICA DOCUMENTO DE CONTENIDO MATEMATICAS PARA FISICOS Objetivo general: Brindar algunas herramientas matemáticas que los estudiantes de física necesitan para su buen desempeño en el curso de

Más detalles

Prueba de Septiembre 2012/13

Prueba de Septiembre 2012/13 Contenidos 1º Bach. Matemáticas Aplicadas a las C. Sociales I Prueba de Septiembre 2012/13 Aritmética y Álgebra. - El número real. La recta real. - El número irracional. Ejemplos de especial interés, 2,.

Más detalles

Ingeniería de Control I Tema 2. Transformadas

Ingeniería de Control I Tema 2. Transformadas Ingeniería de Control I Tema 2 Transformadas 1 1. Transformadas. Transformación de dominios: 1. Objetivo de la transformación de dominios 2. Representación de señales 3. Series de Fourier 4. Transformada

Más detalles

FUNCIONES PAR E IMPAR. Tenemos funciones periódicas, funciones pares y funciones impares

FUNCIONES PAR E IMPAR. Tenemos funciones periódicas, funciones pares y funciones impares Cálculo Diferencial FUNCIONES PAR E IMPAR Tenemos funciones periódicas, funciones pares y funciones impares FUNCIONES PAR E IMPAR Tenemos funciones periódicas, funciones pares y funciones impares FUNCIONES

Más detalles

SILABO MATEMÁTICA III I. DATOS GENERALES

SILABO MATEMÁTICA III I. DATOS GENERALES SILABO MATEMÁTICA III I. DATOS GENERALES 1.. Unidad Académica : Ingeniería Electrónica y Telecomunicaciones 1.1. Nivel : Pregrado 1.2. Semestre Académico : 218-1B 1.3. Código : 292-2921 1.. Ciclo : III

Más detalles

Tema 3. Series de Fourier. Análisis de Espectros. Indice:

Tema 3. Series de Fourier. Análisis de Espectros. Indice: Indice: Espectros de Frecuencia Discreta Representación de una señal compuesta en el Tiempo y la Frecuencia Espectro de Amplitud y Fase Espectro Unilateral o de una Cara Espectro de Frecuencia de dos Caras.

Más detalles

Capítulo 2 Análisis espectral de señales

Capítulo 2 Análisis espectral de señales Capítulo 2 Análisis espectral de señales Objetivos 1. Se pretende que el alumno repase las herramientas necesarias para el análisis espectral de señales. 2. Que el alumno comprenda el concepto de espectro

Más detalles

7.- Teorema integral de Fourier. Transformada de Fourier

7.- Teorema integral de Fourier. Transformada de Fourier 7.- Teorema integral de Fourier. Transformada de Fourier a) Introducción. b) Transformada de Fourier. c) Teorema integral de Fourier. d) Propiedades de la Transformada de Fourier. e) Teorema de Convolución.

Más detalles

UD 1: NÚMEROS REALES Y COMPLEJOS

UD 1: NÚMEROS REALES Y COMPLEJOS UD 1: NÚMEROS REALES Y COMPLEJOS 1. Qué es un número? Para qué sirve? 2. Haz una breve historia de los conjuntos numéricos, por qué surgen cada uno. 3. Cómo clasificarías todos los números que conoces?

Más detalles

Un resultado de Leonhard Euler relativo a series infinitas

Un resultado de Leonhard Euler relativo a series infinitas Miscelánea Matemática 33 2) 57 67 SMM Un resultado de Leonhard Euler relativo a series infinitas Gonzalo Aguilar Quiroz Departamento de Física y Matemáticas Universidad de las Américas Puebla MÉXICO [email protected]

Más detalles

CONTINUIDAD DE FUNCIONES

CONTINUIDAD DE FUNCIONES CONTINUIDAD CONTINUIDAD DE FUNCIONES CONTINUIDAD DE UNA FUNCIÓN EN UN PUNTO Una función f es continua en a si y sólo si se cumplen las tres condiciones siguientes: 1) Existe f(a), es decir, a Dom f. 2)

Más detalles

José Humberto Serrano Devia Página 1

José Humberto Serrano Devia Página 1 Similitudes entre el espacio y las series de Fourier Funciones Ortogonales En esta sección se muestra la forma en que los conceptos vectoriales de producto interno, o producto escalar, y el de ortogonalidad

Más detalles

7.- Teorema integral de Fourier. Transformada de Fourier

7.- Teorema integral de Fourier. Transformada de Fourier 7.- Teorema integral de Fourier. Transformada de Fourier a) Introducción. b) Transformada de Fourier. c) Teorema integral de Fourier. d) Propiedades de la Transformada de Fourier. e) Teorema de Convolución.

Más detalles

FUNCIONES REALES. D(f(x)) = R {Raices del denominador} { Indice impar D(f(x)) = D(g(x)) Indice par D(f(x)) = R {P untos del radicando negativo}

FUNCIONES REALES. D(f(x)) = R {Raices del denominador} { Indice impar D(f(x)) = D(g(x)) Indice par D(f(x)) = R {P untos del radicando negativo} FUNCIONES REALES Una función real se define como una aplicación entre dos conjuntos de números reales. Esta aplicación asigna a cada elemento del primer conjunto un único elemento del segundo conjunto.

Más detalles

UNIDAD 7.- FUNCIONES ELEMENTALES (tema 10 del libro)

UNIDAD 7.- FUNCIONES ELEMENTALES (tema 10 del libro) UNIDAD 7.- FUNCIONES ELEMENTALES (tema 10 del libro) 1. FUNCIONES AFINES Y LINEALES Son funciones cuya gráfica es una recta (como ya vimos en geometría). De manera general son de la forma f ( ) = m + n

Más detalles

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se

Más detalles

Apuntes de Funciones

Apuntes de Funciones Apuntes de Funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar la transformación

Más detalles

ÍNDICE Capítulo 2 La transformada de Laplace 1 Capítulo 2 Series de Fourier 49 Capítulo 3 La integral de Fourier y las transformadas de Fourier 103

ÍNDICE Capítulo 2 La transformada de Laplace 1 Capítulo 2 Series de Fourier 49 Capítulo 3 La integral de Fourier y las transformadas de Fourier 103 ÍNDICE Capítulo 2 La transformada de Laplace... 1 1.1 Definición y propiedades básicas... 1 1.2 Solución de problemas con valores iniciales usando la transformada de Laplace... 10 1.3 Teoremas de corrimiento

Más detalles

Análisis de Fourier. Resumen de los apuntes de D. Antonio Cañada Villar. Sergio Cruz Blázquez. Curso 2015/2016

Análisis de Fourier. Resumen de los apuntes de D. Antonio Cañada Villar. Sergio Cruz Blázquez. Curso 2015/2016 Análisis de Fourier Resumen de los apuntes de D. Antonio Cañada Villar Curso 2015/2016 Sergio Cruz Blázquez Índice 1 El espacio L 2 (a, b) Definición y primeras notas El espacio L 1 (a, b) L 2 (a, b) como

Más detalles

Problemas de Series de Fourier

Problemas de Series de Fourier Problemas de Series de Fourier 1. Generalidades MMF II: Grupo I http://euler.us.es/~renato/clases.html Definición 1.1 Se dice que un espacio vectorial E es un espacio euclídeo si dados dos elementos cualesquiera

Más detalles

CAPITULO 9. TRANSFORMADA DE FOURIER Transformada de Fourier

CAPITULO 9. TRANSFORMADA DE FOURIER Transformada de Fourier CAPITULO 9. TRANSORMADA DE OURIER 9.. Transformada de ourier Sea una función definida en un intervalo finito y desarrollable en serie de ourier, por tanto, la podemos representar como una superposición

Más detalles

La Transformada de Laplace La Transformada Unilateral de Laplace

La Transformada de Laplace La Transformada Unilateral de Laplace Indice: La Transformada de Laplace La Transformada Bilateral de Laplace La Transformada Unilateral de Laplace Región de Convergencia (ROC) Cálculo de La Transformada de Laplace Propiedades de La Transformada

Más detalles

TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD.

TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD. TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD. 1. Concepto de función.. Dominio e imagen de una función. 3. Tipos de funciones. 4. Operaciones con funciones. 5. Concepto de límite. 6. Cálculo de límites. 7.

Más detalles

Introducción series de fourier Métodos matemáticos Primavera 2018

Introducción series de fourier Métodos matemáticos Primavera 2018 Introducción series de fourier Métodos matemáticos Primavera 018 Genaro Luna Carreto 15 de Abril 018. :05 pm. 0.1. Funciones periódicas Una función f(t) es llamada periódica si existe tal que t R : f(t)

Más detalles

Funciones polinomiales

Funciones polinomiales 1 Hacia finales del siglo XVIII, los matemáticos y científicos había llegado a la conclusión de que un gran número de fenómenos en la vida real podían representarse mediante modelos matemáticos, construidos

Más detalles

Sucesiones y series con Mathematica

Sucesiones y series con Mathematica ucesiones y series con Mathematica Á Resumen de comandos UCEIONE Y ERIE NUMÉRICA Limit#a i, i! ˆ] calcula el límite de la sucesión a i cuando i tiende a infinito imax um#a i, {i, imin,imax,paso}]= Å a

Más detalles

Matemáticas. Pruebas de Competencias Específicas. Diciembre, 2017 UNED

Matemáticas. Pruebas de Competencias Específicas. Diciembre, 2017 UNED Matemáticas Pruebas de Competencias Específicas José Luis Estévez Diciembre, 2017 UNED Table of contents 1. Introducción 2. La prueba 3. Ejemplo 4. Conclusión 1 Introducción Estadísticas 2016 17 Asignatura

Más detalles

DEPARTAMENTO DE MATEMÁTICAS CURSO

DEPARTAMENTO DE MATEMÁTICAS CURSO 1º ESO. Contenidos mínimos. 1. La recta numérica. Representación de números naturales en la recta 2. Suma y resta. Propiedades y relaciones 3. Multiplicación. Propiedades 4. División exacta. Relaciones

Más detalles

Funciones, Límites y Continuidad

Funciones, Límites y Continuidad Tema Funciones, Límites y Continuidad Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real, así como de los límites en dichas

Más detalles

Análisis de Fourier: efectos de un medio físico ideal en la transmisión de una señal digital

Análisis de Fourier: efectos de un medio físico ideal en la transmisión de una señal digital Análisis de Fourier: efectos de un medio físico ideal en la transmisión de una señal digital Pedro Manuel Díaz Varela Estudiante de Ingeniería en Computación Universidad Nacional del Sur Avda. Alem 153

Más detalles

Lista de ejercicios # 3. Sistemas de ecuaciones diferenciales

Lista de ejercicios # 3. Sistemas de ecuaciones diferenciales UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-005 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA I Ciclo del 207 Uso de operadores Lista de ejercicios # 3 Sistemas de ecuaciones diferenciales (3PII206

Más detalles

Análisis Matemático 1 para estudiantes de Ingeniería

Análisis Matemático 1 para estudiantes de Ingeniería Alejandro E. García Venturini - Mónica Scardigli Análisis Matemático 1 para estudiantes de Ingeniería EDICIONES COOPERATIVAS , INDICE 505 NOCIONES PREVIAS... 7 Los conjuntos numéricos... 9 Conjuntos de

Más detalles

FUNCIÓN BÁSICA DEL SENO Y DEL COSENO, GRÁFICAS Y CARACTERÍSTICAS

FUNCIÓN BÁSICA DEL SENO Y DEL COSENO, GRÁFICAS Y CARACTERÍSTICAS FUNCIÓN BÁSICA DEL SENO Y DEL COSENO, GRÁFICAS Y CARACTERÍSTICAS Sugerencias para quien imparte el curso: Es importante que la interacción con los alumnos dentro del salón de clases sea lo más activa posible,

Más detalles

UNIVERSIDAD ALAS PERUANAS FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INDUSTRIAL

UNIVERSIDAD ALAS PERUANAS FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INDUSTRIAL UNIVERSIDAD ALAS PERUANAS FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INDUSTRIAL MATEMATICA III SÍLABO I. DATOS GENERALES CARRERA PROFESIONAL : INGENIERÍA INDUSTRIAL

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL Pag. 1 FUNCIONES REALES DE VARIABLE REAL 1.- Aplicaciones y Funciones. Definiciones. 2.- Tipos de funciones. 3.-Operaciones con funciones. 4.-Composición de funciones. 5.- Función identidad y funciones

Más detalles

MATEMÁTICA - 6 A C y D - Prof. Sandra M. Corti

MATEMÁTICA - 6 A C y D - Prof. Sandra M. Corti TEMA: Derivada La derivada de una función es una medida de la rapidez con la que cambia el valor de dicha función matemática, según cambie el valor de su variable independiente Sea f(x) una función continua

Más detalles

Unidad IV. La sucesión de sumas parciales asociada a una sucesión está definida para cada como la suma de la sucesión desde hasta :

Unidad IV. La sucesión de sumas parciales asociada a una sucesión está definida para cada como la suma de la sucesión desde hasta : Unidad IV Series. 4.1 Definición de seria. Una serie es la generalización de la noción de suma a los términos de una sucesión infinita. Informalmente, es el resultado de sumar los términos: a 1 + a 2 +

Más detalles

Tema 1: Repaso de conocimientos previos. Funciones elementales y sus gráficas. Límites. Continuidad.

Tema 1: Repaso de conocimientos previos. Funciones elementales y sus gráficas. Límites. Continuidad. Tema 1: Repaso de conocimientos previos.... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Outline Relaciones trigonométricas 1 Relaciones trigonométricas 2 3 4 5 6 Outline Relaciones

Más detalles

CREDITOS CONCLUSION GLOSARIO INTRODUCCION SEÑALES SISTEMAS SEÑALES C SEÑALES D TIPOS DIFERENCIA

CREDITOS CONCLUSION GLOSARIO INTRODUCCION SEÑALES SISTEMAS SEÑALES C SEÑALES D TIPOS DIFERENCIA CREDITOS CONCLUSION GLOSARIO INTRODUCCION SEÑALES SISTEMAS SEÑALES C SEÑALES D TIPOS DIFERENCIA INTRODUCCION Una señal es cualquier fenómeno que puede ser representado de manera cuantitativa mediante una

Más detalles

Tema 7: Funciones de una variable. Límites y continuidad.

Tema 7: Funciones de una variable. Límites y continuidad. Tema 7: Funciones de una variable. Límites y continuidad. José M. Salazar Noviembre de 2016 Tema 7: Funciones de una variable. Límites y continuidad. Lección 8. Funciones de una variable. Límites y continuidad.

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

Series de potencias y de Fourier

Series de potencias y de Fourier Capítulo 2. Series de potencias y de Fourier En este capítulo estudiaremos dos casos particulares, pero muy importantes, de series de funciones: las series de potencias y las series de Fourier. Ambas series

Más detalles

El Producto escalar para las comunicaciones (parte 1) Luca Mar9no Apuntes no revisados Cuidado!

El Producto escalar para las comunicaciones (parte 1) Luca Mar9no Apuntes no revisados Cuidado! El Producto escalar para las comunicaciones (parte ) Luca Mar9no Apuntes no revisados Cuidado! Producto Escalar El producto escalar, también conocido como producto interno o producto punto, es una operación

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD TEMA. FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD . FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD... LÍMITE DE UNA FUNCIÓN EN UN PUNTO... LÍMITES INFINITOS... LÍMITES EN EL INFINITO..4.

Más detalles

2. Método de separación de variables

2. Método de separación de variables APUNTES DE AMPIACIÓN DE MATEMÁTICAS II PARA INGENIEROS DE TEECOMUNICACIONES Elaborados por Arturo de Pablo, Domingo Pestana y José Manuel Rodríguez 2. Método de separación de variables 2.1. Separación

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Estudios J.Concha ( fundado en 00) ESO, BACHILLERATO y UNIVERSIDAD Departamento Bachillerato MATEMATICAS º BACHILLERATO Profesores Javier Concha y Ramiro Froilán Tema 8 Límites de funciones, continuidad

Más detalles

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERIA ELECTRICA ASIGNATURA

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERIA ELECTRICA ASIGNATURA PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERIA ELECTRICA SEMESTRE ASIGNATURA 3er TRANSFORMADAS INTEGRALES CÓDIGO HORAS MAT-20254

Más detalles

Instituto Tecnológico de Saltillo

Instituto Tecnológico de Saltillo Instituto Tecnológico de Saltillo Departamento de Ciencias Básicas Curso propedéutico Cuadernillo Álgebra y Trigonometría MC Olivia García Calvillo Ing. Alicia Guadalupe del Bosque Martínez Agosto - Diciembre

Más detalles

PRÁCTICA SERIES DE FOURIER CURSO CÁLCULO II. Práctica 7 (14/04/2015)

PRÁCTICA SERIES DE FOURIER CURSO CÁLCULO II. Práctica 7 (14/04/2015) PRÁCTICA SERIES DE FOURIER CURSO -5 CÁLCULO II Prácticas Matlab Práctica 7 (//5) Objetivos Conocer el significado de los parámetros que intervienen en la definición de una función armónica o armónico.

Más detalles

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA AMBIENTAL

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA AMBIENTAL FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA AMBIENTAL MATEMATICA III I. DATOS GENERALES 1.0. Unidad Académica : Ingeniería Ambiental 1.1. Semestre Académico : 2018-1B 1.2. Código

Más detalles

Matemáticas Empresariales I. Funciones y concepto de ĺımite

Matemáticas Empresariales I. Funciones y concepto de ĺımite Matemáticas Empresariales I Lección 3 Funciones y concepto de ĺımite Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales I 1 / 22 Concepto de función Función de

Más detalles

Propiedad importante: Si una recta pasa por los puntos ( a, 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO

Propiedad importante: Si una recta pasa por los puntos ( a, 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO Son funciones de la forma mx n ó y mx n donde: m : se llama pendiente de la recta n : se llama ordenada en el origen. La recta pasa por el punto 0,n Ya sabemos

Más detalles

3º ESO PMAR FUNCIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa FUNCIONES

3º ESO PMAR FUNCIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa FUNCIONES FUNCIONES.- CARACTERÍSTICAS DE LAS FUNCIONES Definición: Una función es una relación entre dos variables de tal forma que a cada valor de la primera (variable independiente, ) le corresponde un valor o

Más detalles