TUTORIAL SERIES DE FOURIER
|
|
|
- Juan Luis Mendoza Maidana
- hace 7 años
- Vistas:
Transcripción
1 TUTORIAL SERIES DE FOURIER Ya se han presentado Tutoriales sobre el espectro (transformada de Fourier) y la convergencia de series, pero de manera independiente al menos argumentalmente. En este tutorial pretendo introducir la convergencia de las series de Fourier, teoría de importante aplicación para valorar la viabilidad matemática de cada uno de los elementos que aparecen en un espectro de frecuencias. Dada la amplitud de la materia en este tutorial solo se expondrán los conceptos relativos a la definición de Serie de Fourier, entrándose con posterioridad en otros relativos a su convergencia y viabilidad matemática. DEFINICIÓN Una serie de Fourier es una sucesión de Senos y Cosenos como ya se dijo en el tutorial sobre el espectro de vibración. Matemáticamente si tenemos una aplicación: :, entonces la serie 2 + cos + sin Si converge a á! "#$! $% ó. BAGAJE CONCEPTUAL Funciones Continuas a Trozos en un intervalo es aquella que presenta en ese intervalo un número finito de discontinuidades de Primera Especie. Una función periódica de período T tiene también por período ZT siendo Z un número entero. Período fundamental es el menor de los valores períodos de una función. Función par en un intervalo es aquella que no cambia de valor invirtiendo el signo de la variable. Función impar en un intervalo es aquella que invierte su signo al cambiar el signo de la variable. 1 Producto Escalar de 2 funciones, ) > =, ())() //////! Tutoriales Página 1
2 FUNCIONES TRIGONOMÉTRICAS Se trata de funciones que se analizarán en el intervalo,, representándose como la unión de las 3 funciones: CARACTERÍSTICAS cos4 5 2sin4 %# 7 Tienen por período fundamental cos4 es una función par en,. 2sin 4 es una función impar en, Son funciones ortonormales 2 a 2 puesto que sus productos escalares son : o 1, cos > =, cos 1 o 1, sin > =, sin 1! =! = o cos, sin : > =, cos sin:! = :, : 7 1 o cos, cos: > =, cos cos:! = :, : 7 1 o sin, sin: > =, sin sin:! = :, : 7 1 SERIE DE FOURIER La serie definida con anterioridad: 2 + cos + sin es la serie de Fourier de la función f, y basándose en las propiedades de ortonormalidad anteriores con los siguientes coeficientes: =, () cos! 1 =, 1 ()! = CASOS PARTICULARES, () sin! 1 Si :, es par su serie de Fourier es: ~ 2 + cos > ()cos! Tutoriales Página 2
3 Si :, es impar su serie de Fourier es: ~ sin! > () cos! EJEMPLOS Valor Absoluto de x Calcular los coeficientes de la serie de Fourier de la función () = con, = = 1B C A A A :A, sin! 1 Por lo que la función puede aproximarse por: Coseno al Cubo de x ~ 2 4 (2 1) E cos(2 1) Calcular los coeficientes de la serie de Fourier de la función () = %# F con, A 1 H 3 F = G B = B EXTENSIONES PARA FUNCIONES DEFINIDAS EN OTROS INTERVALOS Las definiciones dadas hasta ahorase limitan al intervalo,. Dada la utilidad de esta serie de funciones se detallan las extensiones para funciones definidas en otros intervalos: EXTENSIÓN PAR DE FUNCIONES DEFINIDAS EN J, K Dada la función : L, M se denomina N ó A!, con período 2 a: O () = P () () O () = O ( + 2) > () cos! Tutoriales Página 3
4 EXTENSIÓN IMPAR DE FUNCIONES DEFINIDAS EN J, K Dada la función : L, M se denomina N ó :A!, con período 2 a: GENERALIZACIÓN A S, T V R () = P () () R ( 1 ) + R ( 1 ) 2 = = > () sin! Si la variable N recorre el intervalo, entonces la variable definida por: = 2 N + + recorrerá el intervalo W, Y, definiéndose así las funciones trigonométricas: Zcos (2N ( + ))[ 5 Zsin( (2N ( + ))[ Las funciones anteriores serán ortonormales en el intervalo, La serie de Fourier quedará definida para la función :, de la siguiente manera: (N) ~ 2 + cos 2N ( + ) + sin 2N ( + ) El concepto de paridad se complica pues ya no es el punto medio (ahora es \]^ E ): o A, (N) = ( + N) o :A, (N) = ( + N) De igual manera que se hablaba sobre extensiones para el intervalo, se puede hablar para [a,b] o Extensión par al intervalo [2a-b, b] sería una función que tuviese por argumento y series y coeficientes de Fourier los siguientes: N O (N)~ 2 + cos (N )!N ^ > O(N) \ cos (N )!N Tutoriales Página 4
5 o Extensión impar al intervalo [2a-b, b] sería una función que tuviese por argumento y series y coeficientes de Fourier los siguientes: N R (N)~ sin (N )!N ^ > O(N) sin (N )!N \ EJEMPLOS Función (N) = N con N E, Se obtiene el argumento 2N ( + ) = 4N 3 para pasar al dominio [-, ^1\ Familia de funciones trigonométricas cos(4N 3)4 5 2sin(4N 3)4 Teniendo en cuenta las fórmulas de coseno y seno de una suma N ~ 2 + cos(4n) + sin(4n) = 1 4 = 1 4 > N cos4n!n E > N sin4n!n E Tutoriales Página 5
La transformada de Fourier
Capítulo 7 La transformada de Fourier 7.1. Definiciones Definición 7.1 Sea :( ) C; definimos la transformada de Fourier de () en R, a F [ ()] () F []() () donde esa integral tenga sentido, es decir, exista
La función, definida para toda, es periódica si existe un número positivo tal que
Métodos con series de Fourier Definición: Función periódica La función, definida para toda, es periódica si existe un número positivo tal que para toda. El número en un periodo de la función. Si existe
Demostración de la Transformada de Laplace. La serie de Fourier
Demostración de la Transformada de Laplace En el presente documento demostraremos matemáticamente si las siguientes igualdades se cumplen, para esto empezaremos haciendo un análisis de la serie de Fourier,
( + )= ( ) ( ) tiene periodo si es cualquier periodo de ( ). + =cos( +2 )=cos + = ( +2 )=. cosnt+ sinnt) ( )~ Métodos con series de Fourier
Métodos con series de Fourier Definición: Función periódica La función (), definida para toda, es periódica si existe un número positivo tal que (+)=() para toda. El número en un periodo de la función.
Lección: Ortogonalidad y Series de Fourier
Lección: Ortogonalidad y Series de Fourier Dr. Miguel Angel Uh Zapata, Centro de Investigación en Matemáticas, Unidad Mérida Facultad de Matemáticas, UADY Octubre 2015 Miguel Uh Lección: Ortogonalidad
Integral de Fourier y espectros continuos
9 2 2 2 Esta expresión se denomina forma de Angulo fase (o forma armónica) de la serie de Fourier. Integral de Fourier y espectros continuos Las series de Fourier son una herramienta útil para representar
Ecuaciones Diferenciales II. Series de Fourier
Ecuaciones Diferenciales II Series de Fourier José C. Sabina de Lis Universidad de La Laguna La Laguna, 9 de noviembre de 23 . Problemas de Contorno y series de autofunciones. A) Series de Fourier en senos.
Índice. Tema 8: Series de Fourier. Funciones periódicas. Algunas funciones periódicas. Marisa Serrano, José Ángel Huidobro
Índice Marisa Serrano, José Ángel Huidobro 1 Universidad de Oviedo email: [email protected] email: [email protected] Funciones periódicas Algunas funciones periódicas f : R R es una función periódica
Series de Fourier Trigonométricas
Capítulo 4 Series de Fourier Trigonométricas En el capítulo anterior hemos visto que toda función f L ([, ];R) se puede desarrollar en serie trigonométrica de senos y cosenos del tipo a + X (a n cos nx
Práctica 8 Series de Fourier
MATEMATICA 4 - Análisis Matemático III Primer Cuatrimestre de 8 Práctica 8 Series de Fourier. (**) a) Verificar que f n (x) = { n si x n si x > n converge uniformemente a cero en R pero que (f n ) no converge
1. Señales continuas o sinusoidales. 2. Cualquier señal (incluyendo continuas o sinusoidales).
La transformación de Laplace permite tratar cualquier señal en el dominio del tiempo mediante la formulación de dicha señal en el dominio complejo. Alternativamente, la transformación de Fourier expresa
TEMPORALIZACIÓN MATEMÁTICAS I CURSO 2011/2012
TEMPORALIZACIÓN MATEMÁTICAS I CURSO 2011/2012 BLOQUE I: ARITMÉTICA Y ÁLGEBRA Tema 1: Números Reales. Sesión 1: Presentación de la asignatura. N, Z, Q, R y C. Números reales. La recta real. Intervalos y
Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez.
Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez. Comprobar que la familia de funciones del seno y la del coseno de la forma: Estando definidas entre 0 y L y donde son familias ortogonales por sí
7.FUNCIÓN REAL DE VARIABLE REAL
7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el
Series de Fourier absolutamente convergentes
Series de Fourier absolutamente convergentes Objetivos. Estudiar las propiedades principales de series de Fourier absolutamente convergentes. Ya hemos mostrado que los caracteres del grupo Z se pueden
Aproximación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aproximación 1 / 19
Aproximación Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Aproximación 1 / 19 Motivación Intro Aproximar una función f consiste en reemplazarla con una
EV ALU ACIÓN EXTRAO RDIN ARI A DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS I.
EV ALU ACIÓN EXTRAO RDIN ARI A DE SEPTIEMBRE CURSO 2014-2015. Contenidos para la Prueba de Septiembre MATEMÁTICAS I. UNIDAD 1: NÚMEROS REALES Números racionales, irracionales y reales. Ordenación en el
Ecuaciones Diferenciales Tema 4. Series de Fourier
Ecuaciones Diferenciales Ester Simó Mezquita Matemática Aplicada IV 1 1. Funciones periódicas 2. Serie de Fourier de una función periódica 3. Convergencia. Teorema de Dirichlet. Fenómeno de Gibbs 4. Forma
Práctica 8. f n (x) = sea la mejor aproximación (en media cuadrática) de la función f(x) = 1 en (0, 2). (x 2 a b cos x c sen x) 2 dx.
MATEMATICA 4 er Cuatrimestre de 25 Práctica 8. a) Verificar que f n (x) = { n si x n si x > n converge uniformemente a cero en R pero que (f n ) no converge a cero en media cuadrática. b) Verificar que
Funciones: Límites y continuidad.
Límites finitos de sucesiones. Funciones: límites y continuidad Matemáticas I Funciones: Límites y continuidad. + Decimos que una sucesión numérica ( ) n= tiene por límite r R y se escribe =r o de forma
A502 - Teoría de Sistemas y Señales
A50 - Teoría de Sistemas y Señales Transparencias Densidad Espectral de Energía de Señales Aperiódicas Autor: Dr. Juan Carlos Gómez Señales de Potencia Verifican TD: TC: Algunas Definiciones N 1 < P lim
Práctica 9 (19/04/2016)
Series de Fourier Curso 5 6 Prácticas Matlab Cálculo II Objetivos Práctica 9 (9/0/06) Obtener series de Fourier de funciones periódicas. Visualizar gráficamente la aproimación de una función periódica
Matematicas I. Libro de texto. Temario. Números reales. Sucesiones. Logarítmos.
1 Matematicas I Libro de texto Para preparar el examen se puede utilizar cualquier libro de texto de Matemáticas de 1º de bachillerato de la modalidad de ciencias. Números reales Temario a) Repaso de los
FISICA MECANICA DOCUMENTO DE CONTENIDO MATEMATICAS PARA FISICOS
FISICA MECANICA DOCUMENTO DE CONTENIDO MATEMATICAS PARA FISICOS Objetivo general: Brindar algunas herramientas matemáticas que los estudiantes de física necesitan para su buen desempeño en el curso de
Prueba de Septiembre 2012/13
Contenidos 1º Bach. Matemáticas Aplicadas a las C. Sociales I Prueba de Septiembre 2012/13 Aritmética y Álgebra. - El número real. La recta real. - El número irracional. Ejemplos de especial interés, 2,.
Ingeniería de Control I Tema 2. Transformadas
Ingeniería de Control I Tema 2 Transformadas 1 1. Transformadas. Transformación de dominios: 1. Objetivo de la transformación de dominios 2. Representación de señales 3. Series de Fourier 4. Transformada
FUNCIONES PAR E IMPAR. Tenemos funciones periódicas, funciones pares y funciones impares
Cálculo Diferencial FUNCIONES PAR E IMPAR Tenemos funciones periódicas, funciones pares y funciones impares FUNCIONES PAR E IMPAR Tenemos funciones periódicas, funciones pares y funciones impares FUNCIONES
SILABO MATEMÁTICA III I. DATOS GENERALES
SILABO MATEMÁTICA III I. DATOS GENERALES 1.. Unidad Académica : Ingeniería Electrónica y Telecomunicaciones 1.1. Nivel : Pregrado 1.2. Semestre Académico : 218-1B 1.3. Código : 292-2921 1.. Ciclo : III
Tema 3. Series de Fourier. Análisis de Espectros. Indice:
Indice: Espectros de Frecuencia Discreta Representación de una señal compuesta en el Tiempo y la Frecuencia Espectro de Amplitud y Fase Espectro Unilateral o de una Cara Espectro de Frecuencia de dos Caras.
Capítulo 2 Análisis espectral de señales
Capítulo 2 Análisis espectral de señales Objetivos 1. Se pretende que el alumno repase las herramientas necesarias para el análisis espectral de señales. 2. Que el alumno comprenda el concepto de espectro
7.- Teorema integral de Fourier. Transformada de Fourier
7.- Teorema integral de Fourier. Transformada de Fourier a) Introducción. b) Transformada de Fourier. c) Teorema integral de Fourier. d) Propiedades de la Transformada de Fourier. e) Teorema de Convolución.
UD 1: NÚMEROS REALES Y COMPLEJOS
UD 1: NÚMEROS REALES Y COMPLEJOS 1. Qué es un número? Para qué sirve? 2. Haz una breve historia de los conjuntos numéricos, por qué surgen cada uno. 3. Cómo clasificarías todos los números que conoces?
Un resultado de Leonhard Euler relativo a series infinitas
Miscelánea Matemática 33 2) 57 67 SMM Un resultado de Leonhard Euler relativo a series infinitas Gonzalo Aguilar Quiroz Departamento de Física y Matemáticas Universidad de las Américas Puebla MÉXICO [email protected]
CONTINUIDAD DE FUNCIONES
CONTINUIDAD CONTINUIDAD DE FUNCIONES CONTINUIDAD DE UNA FUNCIÓN EN UN PUNTO Una función f es continua en a si y sólo si se cumplen las tres condiciones siguientes: 1) Existe f(a), es decir, a Dom f. 2)
José Humberto Serrano Devia Página 1
Similitudes entre el espacio y las series de Fourier Funciones Ortogonales En esta sección se muestra la forma en que los conceptos vectoriales de producto interno, o producto escalar, y el de ortogonalidad
7.- Teorema integral de Fourier. Transformada de Fourier
7.- Teorema integral de Fourier. Transformada de Fourier a) Introducción. b) Transformada de Fourier. c) Teorema integral de Fourier. d) Propiedades de la Transformada de Fourier. e) Teorema de Convolución.
FUNCIONES REALES. D(f(x)) = R {Raices del denominador} { Indice impar D(f(x)) = D(g(x)) Indice par D(f(x)) = R {P untos del radicando negativo}
FUNCIONES REALES Una función real se define como una aplicación entre dos conjuntos de números reales. Esta aplicación asigna a cada elemento del primer conjunto un único elemento del segundo conjunto.
UNIDAD 7.- FUNCIONES ELEMENTALES (tema 10 del libro)
UNIDAD 7.- FUNCIONES ELEMENTALES (tema 10 del libro) 1. FUNCIONES AFINES Y LINEALES Son funciones cuya gráfica es una recta (como ya vimos en geometría). De manera general son de la forma f ( ) = m + n
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se
Apuntes de Funciones
Apuntes de Funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar la transformación
ÍNDICE Capítulo 2 La transformada de Laplace 1 Capítulo 2 Series de Fourier 49 Capítulo 3 La integral de Fourier y las transformadas de Fourier 103
ÍNDICE Capítulo 2 La transformada de Laplace... 1 1.1 Definición y propiedades básicas... 1 1.2 Solución de problemas con valores iniciales usando la transformada de Laplace... 10 1.3 Teoremas de corrimiento
Análisis de Fourier. Resumen de los apuntes de D. Antonio Cañada Villar. Sergio Cruz Blázquez. Curso 2015/2016
Análisis de Fourier Resumen de los apuntes de D. Antonio Cañada Villar Curso 2015/2016 Sergio Cruz Blázquez Índice 1 El espacio L 2 (a, b) Definición y primeras notas El espacio L 1 (a, b) L 2 (a, b) como
Problemas de Series de Fourier
Problemas de Series de Fourier 1. Generalidades MMF II: Grupo I http://euler.us.es/~renato/clases.html Definición 1.1 Se dice que un espacio vectorial E es un espacio euclídeo si dados dos elementos cualesquiera
CAPITULO 9. TRANSFORMADA DE FOURIER Transformada de Fourier
CAPITULO 9. TRANSORMADA DE OURIER 9.. Transformada de ourier Sea una función definida en un intervalo finito y desarrollable en serie de ourier, por tanto, la podemos representar como una superposición
La Transformada de Laplace La Transformada Unilateral de Laplace
Indice: La Transformada de Laplace La Transformada Bilateral de Laplace La Transformada Unilateral de Laplace Región de Convergencia (ROC) Cálculo de La Transformada de Laplace Propiedades de La Transformada
TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD.
TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD. 1. Concepto de función.. Dominio e imagen de una función. 3. Tipos de funciones. 4. Operaciones con funciones. 5. Concepto de límite. 6. Cálculo de límites. 7.
Introducción series de fourier Métodos matemáticos Primavera 2018
Introducción series de fourier Métodos matemáticos Primavera 018 Genaro Luna Carreto 15 de Abril 018. :05 pm. 0.1. Funciones periódicas Una función f(t) es llamada periódica si existe tal que t R : f(t)
Funciones polinomiales
1 Hacia finales del siglo XVIII, los matemáticos y científicos había llegado a la conclusión de que un gran número de fenómenos en la vida real podían representarse mediante modelos matemáticos, construidos
Sucesiones y series con Mathematica
ucesiones y series con Mathematica Á Resumen de comandos UCEIONE Y ERIE NUMÉRICA Limit#a i, i! ˆ] calcula el límite de la sucesión a i cuando i tiende a infinito imax um#a i, {i, imin,imax,paso}]= Å a
Matemáticas. Pruebas de Competencias Específicas. Diciembre, 2017 UNED
Matemáticas Pruebas de Competencias Específicas José Luis Estévez Diciembre, 2017 UNED Table of contents 1. Introducción 2. La prueba 3. Ejemplo 4. Conclusión 1 Introducción Estadísticas 2016 17 Asignatura
DEPARTAMENTO DE MATEMÁTICAS CURSO
1º ESO. Contenidos mínimos. 1. La recta numérica. Representación de números naturales en la recta 2. Suma y resta. Propiedades y relaciones 3. Multiplicación. Propiedades 4. División exacta. Relaciones
Funciones, Límites y Continuidad
Tema Funciones, Límites y Continuidad Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real, así como de los límites en dichas
Análisis de Fourier: efectos de un medio físico ideal en la transmisión de una señal digital
Análisis de Fourier: efectos de un medio físico ideal en la transmisión de una señal digital Pedro Manuel Díaz Varela Estudiante de Ingeniería en Computación Universidad Nacional del Sur Avda. Alem 153
Lista de ejercicios # 3. Sistemas de ecuaciones diferenciales
UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-005 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA I Ciclo del 207 Uso de operadores Lista de ejercicios # 3 Sistemas de ecuaciones diferenciales (3PII206
Análisis Matemático 1 para estudiantes de Ingeniería
Alejandro E. García Venturini - Mónica Scardigli Análisis Matemático 1 para estudiantes de Ingeniería EDICIONES COOPERATIVAS , INDICE 505 NOCIONES PREVIAS... 7 Los conjuntos numéricos... 9 Conjuntos de
FUNCIÓN BÁSICA DEL SENO Y DEL COSENO, GRÁFICAS Y CARACTERÍSTICAS
FUNCIÓN BÁSICA DEL SENO Y DEL COSENO, GRÁFICAS Y CARACTERÍSTICAS Sugerencias para quien imparte el curso: Es importante que la interacción con los alumnos dentro del salón de clases sea lo más activa posible,
UNIVERSIDAD ALAS PERUANAS FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INDUSTRIAL
UNIVERSIDAD ALAS PERUANAS FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INDUSTRIAL MATEMATICA III SÍLABO I. DATOS GENERALES CARRERA PROFESIONAL : INGENIERÍA INDUSTRIAL
FUNCIONES REALES DE VARIABLE REAL
Pag. 1 FUNCIONES REALES DE VARIABLE REAL 1.- Aplicaciones y Funciones. Definiciones. 2.- Tipos de funciones. 3.-Operaciones con funciones. 4.-Composición de funciones. 5.- Función identidad y funciones
MATEMÁTICA - 6 A C y D - Prof. Sandra M. Corti
TEMA: Derivada La derivada de una función es una medida de la rapidez con la que cambia el valor de dicha función matemática, según cambie el valor de su variable independiente Sea f(x) una función continua
Unidad IV. La sucesión de sumas parciales asociada a una sucesión está definida para cada como la suma de la sucesión desde hasta :
Unidad IV Series. 4.1 Definición de seria. Una serie es la generalización de la noción de suma a los términos de una sucesión infinita. Informalmente, es el resultado de sumar los términos: a 1 + a 2 +
Tema 1: Repaso de conocimientos previos. Funciones elementales y sus gráficas. Límites. Continuidad.
Tema 1: Repaso de conocimientos previos.... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Outline Relaciones trigonométricas 1 Relaciones trigonométricas 2 3 4 5 6 Outline Relaciones
CREDITOS CONCLUSION GLOSARIO INTRODUCCION SEÑALES SISTEMAS SEÑALES C SEÑALES D TIPOS DIFERENCIA
CREDITOS CONCLUSION GLOSARIO INTRODUCCION SEÑALES SISTEMAS SEÑALES C SEÑALES D TIPOS DIFERENCIA INTRODUCCION Una señal es cualquier fenómeno que puede ser representado de manera cuantitativa mediante una
Tema 7: Funciones de una variable. Límites y continuidad.
Tema 7: Funciones de una variable. Límites y continuidad. José M. Salazar Noviembre de 2016 Tema 7: Funciones de una variable. Límites y continuidad. Lección 8. Funciones de una variable. Límites y continuidad.
FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =
Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.
Series de potencias y de Fourier
Capítulo 2. Series de potencias y de Fourier En este capítulo estudiaremos dos casos particulares, pero muy importantes, de series de funciones: las series de potencias y las series de Fourier. Ambas series
El Producto escalar para las comunicaciones (parte 1) Luca Mar9no Apuntes no revisados Cuidado!
El Producto escalar para las comunicaciones (parte ) Luca Mar9no Apuntes no revisados Cuidado! Producto Escalar El producto escalar, también conocido como producto interno o producto punto, es una operación
TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD
TEMA. FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD . FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD... LÍMITE DE UNA FUNCIÓN EN UN PUNTO... LÍMITES INFINITOS... LÍMITES EN EL INFINITO..4.
2. Método de separación de variables
APUNTES DE AMPIACIÓN DE MATEMÁTICAS II PARA INGENIEROS DE TEECOMUNICACIONES Elaborados por Arturo de Pablo, Domingo Pestana y José Manuel Rodríguez 2. Método de separación de variables 2.1. Separación
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS
Estudios J.Concha ( fundado en 00) ESO, BACHILLERATO y UNIVERSIDAD Departamento Bachillerato MATEMATICAS º BACHILLERATO Profesores Javier Concha y Ramiro Froilán Tema 8 Límites de funciones, continuidad
PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERIA ELECTRICA ASIGNATURA
PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERIA ELECTRICA SEMESTRE ASIGNATURA 3er TRANSFORMADAS INTEGRALES CÓDIGO HORAS MAT-20254
Instituto Tecnológico de Saltillo
Instituto Tecnológico de Saltillo Departamento de Ciencias Básicas Curso propedéutico Cuadernillo Álgebra y Trigonometría MC Olivia García Calvillo Ing. Alicia Guadalupe del Bosque Martínez Agosto - Diciembre
PRÁCTICA SERIES DE FOURIER CURSO CÁLCULO II. Práctica 7 (14/04/2015)
PRÁCTICA SERIES DE FOURIER CURSO -5 CÁLCULO II Prácticas Matlab Práctica 7 (//5) Objetivos Conocer el significado de los parámetros que intervienen en la definición de una función armónica o armónico.
FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA AMBIENTAL
FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA AMBIENTAL MATEMATICA III I. DATOS GENERALES 1.0. Unidad Académica : Ingeniería Ambiental 1.1. Semestre Académico : 2018-1B 1.2. Código
Matemáticas Empresariales I. Funciones y concepto de ĺımite
Matemáticas Empresariales I Lección 3 Funciones y concepto de ĺımite Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales I 1 / 22 Concepto de función Función de
Propiedad importante: Si una recta pasa por los puntos ( a, 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO
1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO Son funciones de la forma mx n ó y mx n donde: m : se llama pendiente de la recta n : se llama ordenada en el origen. La recta pasa por el punto 0,n Ya sabemos
3º ESO PMAR FUNCIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa FUNCIONES
FUNCIONES.- CARACTERÍSTICAS DE LAS FUNCIONES Definición: Una función es una relación entre dos variables de tal forma que a cada valor de la primera (variable independiente, ) le corresponde un valor o
