Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez."

Transcripción

1 Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez. Comprobar que la familia de funciones del seno y la del coseno de la forma: Estando definidas entre 0 y L y donde son familias ortogonales por sí solas y entre sí. Probar si la familia de exponenciales imaginarias: También lo es. ( y pertenecen a los números enteros) SOLUCION: Lo primero que debemos hacer es definir un producto escalar entre funciones para definir de alguna forma lo que significa la ortogonalidad entre funciones. Tenemos una cierta función y otra función, el producto escalar entre ambas funciones lo vamos a definir como: Esto implica que el producto escalar se aplica sobre una región ( a ) del espacio (en este caso el espacio de números reales) en la que ambas funciones estén definidas. Estas dos funciones son ortogonales si: Podemos observar que el producto escalar es un número escalar, que se puede pensar como la proyección de una función sobre la otra. 1

2 Como vamos a trabajar en espacios de funciones, nos interesa conocer bases de funciones relativamente sencillas, para empezar necesitamos encontrar bases de funciones que sean ortogonales. Las familias anteriormente definidas del seno y el coseno son familias de funciones ortogonales (en estos dos casos y pertenecen a los números naturales), vamos a comprobarlo: Utilizamos las relaciones trigonométricas: Y sustituyendo en la integral del producto escalar: * * + + ( ) ( ) ( ) ( ) Ahora tenemos que sustituir en la expresión los límites de integración 0 y L. Al sustituir el límite de integración de cero quedará el seno de cero que es igual a cero. 2

3 ( ) ( ) Como y pertenecen a los números naturales el primer término de la solución siempre va a ser igual a cero. ( ) Ahora estudiamos este caso y vemos que si entonces igual que el primer término, este segundo término se hace cero. Sin embargo si el numerador tiende a cero pero el denominador también tiende a cero, para resolverlo hacemos el desarrollo en serie de Taylor del seno: Si aplicamos el desarrollo de Taylor a nuestro caso: ( ) Por lo tanto: { 3

4 El símbolo utilizado: se refiere al delta de Dirac, es una distribución que vale cero en todos los puntos salvo en uno en donde vale infinito, siendo su área total 1, de manera que si y si. Para comprobar la ortogonalidad de la familia de funciones del seno podemos proceder de la misma manera: Utilizamos las relaciones trigonométricas: Y sustituyendo en la integral del producto escalar: * + ( ) ( ) Ahora sustituimos los límites de integración: ( ) ( ) 4

5 Como y pertenecen a los números naturales el segundo término de la solución siempre va a ser igual a cero. ( ) Ahora estudiamos este caso y vemos que si entonces igual que el segundo término, este primer término se hace cero. Sin embargo si el numerador tiende a cero pero el denominador también tiende a cero, para resolverlo hacemos el desarrollo en serie de Taylor del seno: Si aplicamos el desarrollo de Taylor a nuestro caso: ( ) Por lo tanto: { Ambas familias forman bases de funciones ortogonales en el espacio de funciones. Los que hemos utilizado eran aunque se puede comprobar que habríamos obtenido el mismo resultado si hubiésemos utilizado. 5

6 Hemos comprobado que ambas familias de funciones forman bases ortogonales en el espacio de funciones, ahora comprobemos si son ortogonales entre sí ambas familias: Utilizamos las relaciones trigonométricas: Ahora sustituimos estas expresiones en la fórmula del producto escalar: ( ) ( ) Sustituimos los límites de integración: ( ) ( ) 6

7 Ahora diferenciamos dos casos igual que en los procedimientos interiores. En el caso en el que fácilmente y obtenemos: todos los términos se pueden calcular ( ) ( ) Es igual a cero confirmando la ortogonalidad en este caso. En el caso en el que existen dos términos cuyo denominador se hace cero y divergen, sin embargo el hecho de que también hace que esos dos términos sean exactamente iguales pero de signo contrario, por lo tanto se pueden anular: ( ) ( ) De esta manera queda demostrado que la familia de funciones del seno multiplicada escalarmente por la familia de funciones del coseno es igual a cero, de esta manera ambas familias forman bases de funciones ortogonales. 7

8 Una de las propiedades del producto escalar es la conmutatividad, comprobemos ahora si el producto escalar que hemos definido es conmutativo o no, para ello comprobaremos si al hacer el producto escalar anterior pero con las familias de funciones en el orden contrario sale un resultado diferente: Tenemos que: ( ) ( ) Sustituimos los límites de integración: ( ) ( ) Ya nos ha aparecido esta suma al realizar el producto escalar de estas mismas funciones cambiando el orden y hemos demostrado que es igual a cero tanto si como si, por lo tanto ambos productos escalares son iguales, y el producto escalar que hemos definido es conmutativo. Observamos que en estos dos casos en los que hemos comprobado la ortogonalidad entre dos familias de funciones diferentes (el seno y el coseno) para que la ortogonalidad se cumpla los. No valen los como en el ejercicio anterior. 8

9 Ahora comprobemos si también es ortogonal la familia de funciones de las exponenciales complejas Hacemos su producto escalar: Estamos trabajando con números complejos, y al realizar el producto escalar, se multiplica el segundo término del producto por el complejo conjugado del primero. Fórmula de Euler: Aplicamos la fórmula de Euler: ( ) ( ) [ ] [ ] Ya hemos realizado estas integrales: 9

10 Por lo tanto: La exponencial compleja es sólo una combinación de senos y cosenos en el espacio de números complejos, por lo tanto era previsible que formara una familia de funciones ortogonal. Es más, se puede comprobar como la familia de exponenciales imaginarias también es ortogonal a la familia de senos y a la familia de cosenos: Tanto el seno como el coseno son funciones periódicas, por lo que solo funciones periódicas se pueden descomponer en familias de senos o cosenos. Ya que el seno es una función impar, su familia de funciones sólo permite expresar funciones impares, de la misma manera que al ser el coseno una función par sólo permite expresar funciones pares. La exponencial imaginaria, al ser una combinación de las dos permite expresar funciones tanto pares como impares pero deben ser periódicas. Por eso las familia de funciones en las que se descomponen las funciones al expresarlas en series de Fourier son exponenciales imaginarias. En el caso de las exponenciales imaginarias, nos quedan las integrales que hemos realizado anteriormente y se puede comprobar que los únicos que hacen posible la ortogonalidad en la familia de las exponenciales imaginarias son. 10

Resolución de la EDO del oscilador armónico simple y amortiguado

Resolución de la EDO del oscilador armónico simple y amortiguado Álvaro García Corral Resolución de la EDO del oscilador armónico simple y amortiguado Un oscilador armónico es un sistema en el que siempre actúa una fuerza, que es recuperadora, es decir, del tipo, también

Más detalles

Límites y continuidad

Límites y continuidad Límites elementales Límites y continuidad Límites elementales Ejercicio. a) 7+4 b) 5+3 2 2 + c) 2 2 4 2 d) 2 + 2 +4 2 Solución. a) 7+4 = 7 b) 5+3 2 2 + = 0 c) 2 2 4 2 d) 2 + 2 +4 2 = + Ejercicio 2. a)

Más detalles

Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio

Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Raíces 1. Raíces cuadradas y cúbicas Comencemos el estudio de las raíces

Más detalles

Integral de Fourier y espectros continuos

Integral de Fourier y espectros continuos 9 2 2 2 Esta expresión se denomina forma de Angulo fase (o forma armónica) de la serie de Fourier. Integral de Fourier y espectros continuos Las series de Fourier son una herramienta útil para representar

Más detalles

Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez.

Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez. Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez. Un sonido se propaga dentro de una caja cilíndrica llena de un fluido, de una altura y un radio. El sonido se propaga como una onda de presión longitudinal,

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD LÍMITES Y CONTINUIDAD Tema 4: LÍMITES Y CONTINUIDAD. Índice:. Límite de una función en un punto. Límites laterales.. Límites en el infinito.. Cálculo de límites... Propiedades de los límites... Límites

Más detalles

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos

Más detalles

S2: Polinomios complejos

S2: Polinomios complejos S: Polinomios complejos Un polinomio complejo de grado n es un polinomio de la forma: p x = a 0 + a 1 x + a x + + a n x n Donde los a i C se llaman coeficientes y a n 0. Observa que como R C los coeficientes

Más detalles

Unidad 3: Vectores. c) Cuándo dos vectores son equipolentes? Mismo módulo, dirección y sentido

Unidad 3: Vectores. c) Cuándo dos vectores son equipolentes? Mismo módulo, dirección y sentido Unidad 3: Vectores Ejercicio 1 a) Dibuja dos vectores con distinto módulo, misma dirección y mismo sentido que el vector dado: b) Dibuja dos vectores con distinto módulo, misma dirección y sentido contrarios

Más detalles

UNIDAD 1 NUMEROS COMPLEJOS

UNIDAD 1 NUMEROS COMPLEJOS UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo

Más detalles

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos)

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos) PROPUESTA A 1A. a) Determina el valor del parámetro a R, para que la función f(x) = (x a) e x tenga un mínimo relativo en x = 0. Razona, de hecho, es un mínimo absoluto. (1 25 puntos) b) Para el valor

Más detalles

DERIVADAS (1) (para los próximos días)

DERIVADAS (1) (para los próximos días) DERIVADAS (1) (para los próimos días) Derivada de una constante K K F ( ) 0 LA DERIVADA DE UNA CONSTANTE es cero. Ejercicio nº 1) Ejercicio nº 2) Ejercicio nº 3) Ejercicio nº 4) Ejercicio nº 5) Ejercicio

Más detalles

Departamento de Matemáticas http://matematicasiestiernogalvancom 1 Desigualdades e inecuaciones de primer grado Hemos visto ecuaciones de 1º y º grados, en los cuales el número de soluciones era siempre

Más detalles

DERIVADAS (1) Derivada de una constante. LA DERIVADA DE UNA CONSTANTE es cero. Derivada de una función potencial: Forma simple.

DERIVADAS (1) Derivada de una constante. LA DERIVADA DE UNA CONSTANTE es cero. Derivada de una función potencial: Forma simple. DERIVADAS (1) Derivada de una constante f ( ) K K F ( ) 0 LA DERIVADA DE UNA CONSTANTE es cero. nº 1) nº ) nº 3) nº 4) nº 5) nº 6) Derivada de una función potencial: Forma simple r f ( ) r f ( ) r. r 1

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Límite de una sucesión

Límite de una sucesión Límite de una sucesión Idea intuitiva del límite de una sucesión En la sucesión a n = 1/n, observamos que los términos se van acercando a cero. Consideremos que 0 es el límite de la sucesión porque: 1

Más detalles

Si el producto de dos números es cero

Si el producto de dos números es cero Matemáticas I, 2012-I Si el producto de dos números es cero Empezamos con un acertijo: Silvia tiene dos números. Si los multiplica sale 0 y si los suma sale 256. Cuáles son estos dos números que tiene

Más detalles

TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD.

TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. 1.LÍMITE DE UNA FUNCIÓN EN UN PUNTO El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes por f de puntos x, cuando los originales

Más detalles

1. NUMEROS REALES a. Los Números Reales

1. NUMEROS REALES a. Los Números Reales 1. NUMEROS REALES a. Los Números Reales Los números reales comprenden todo el campo de números que utilizamos en las matemáticas, a excepción de los números complejos que veremos en capítulos superiores.

Más detalles

Apuntes de Funciones

Apuntes de Funciones Apuntes de Funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar la transformación

Más detalles

Método de Sustitución

Método de Sustitución Método de Sustitución El nombre de este método nos indica qué es lo que vamos a hacer: para resolver el S.E.L. de dos ecuaciones con dos incógnitas vamos a «despejar» una de las incógnitas de una de las

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números

Más detalles

Guía de Ejercicios: Métodos de Integración

Guía de Ejercicios: Métodos de Integración Guía de Ejercicios: Métodos de Integración Área Matemática Resultados de aprendizaje Resolver integrales usando diferentes métodos de integración Contenidos 1. Método de sustitución simple 2. Método de

Más detalles

UNIDAD DE APRENDIZAJE III

UNIDAD DE APRENDIZAJE III UNIDAD DE APRENDIZAJE III Que debo de saber antes de empezar el tema? -Concepto de derivada. -Reglas de derivación para funciones algebraicas. -Regla de la cadena. -Regla del producto. -Regla del cociente.

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Capítulo 2 Funciones de Variable Compleja Se estudian en este tema las relaciones que se puedan establecer entre conjuntos de números complejos, extendiendo a C el concepto de función, como aplicación

Más detalles

UNIDAD 8.- LÍMITES DE FUNCIONES. CONTINUIDAD (tema 11 del libro) tiene por límite L cuando la variable independiente x tiende a x.

UNIDAD 8.- LÍMITES DE FUNCIONES. CONTINUIDAD (tema 11 del libro) tiene por límite L cuando la variable independiente x tiende a x. UNIDAD 8.- ÍMITES DE FUNCIONES. CONTINUIDAD (tema del libro). ÍMITE. ÍMITES ATERAES Diremos que una función y f () tiene por ite cuando la variable independiente tiende a, y se nota por f ( ), cuando al

Más detalles

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera:

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera: PROBLEMA 1 A una esfera maciza de radio unidad se le hace una perforación cilíndrica siguiendo un eje diametral de la esfera. Suponiendo que el cilindro es circular de radio, con y que el eje que se usa

Más detalles

TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES

TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES Dado un polinomio P(x) y un número real a, el resto de la división de P(x) entre (x a) es P(a) (es decir, el resultado de sustituir el valor de x por

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Tutor: Antonio Rivero Cuesta 2.1 De las siguientes operaciones, cuál no permite operar cualquier par de números naturales para obtener un resultado natural? a) La suma.

Más detalles

1. Límites Algebraicos. 2. Límites Trigonométricos. 3. Límites al infinito

1. Límites Algebraicos. 2. Límites Trigonométricos. 3. Límites al infinito Dependiendo de la clase de límite con la que nos encontremos, tenemos diferentes procedimientos para resolverlos. Para aprender cada procedimiento, haga Click sobre el nombre respectivo: 1. Límites Algebraicos

Más detalles

Lección: Ortogonalidad y Series de Fourier

Lección: Ortogonalidad y Series de Fourier Lección: Ortogonalidad y Series de Fourier Dr. Miguel Angel Uh Zapata, Centro de Investigación en Matemáticas, Unidad Mérida Facultad de Matemáticas, UADY Octubre 2015 Miguel Uh Lección: Ortogonalidad

Más detalles

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos.

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. 1. Introducción Los números complejos o imaginarios nacen de la necesidad de resolver

Más detalles

Capítulo 2 Análisis espectral de señales

Capítulo 2 Análisis espectral de señales Capítulo 2 Análisis espectral de señales Objetivos 1. Se pretende que el alumno repase las herramientas necesarias para el análisis espectral de señales. 2. Que el alumno comprenda el concepto de espectro

Más detalles

Clasificación de los números.

Clasificación de los números. Clasificación de los números. Alguna vez te has preguntado cómo sería la vida sin números? Trata de imaginar un día sin números. No importa el día, trata de imaginar pasar las primeras horas sin números.

Más detalles

a) Producto interno: Si y son vectores de, definimos su producto punto, producto interno o producto escalar como

a) Producto interno: Si y son vectores de, definimos su producto punto, producto interno o producto escalar como Similitudes entre el espacio y las series de Fourier Funciones Ortogonales En esta sección mostraremos la forma en que los conceptos vectoriales de producto interno, o producto escalar, y el de ortogonalidad

Más detalles

Límite de una función

Límite de una función Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden

Más detalles

Geometría Analítica Espacios Vectoriales VECTORES EN EL PLANO

Geometría Analítica Espacios Vectoriales VECTORES EN EL PLANO VECTORES EN EL PLANO 1 ESPACIO VECTORIAL Un vector fijo es una pareja ordenada de puntos en el plano (origen y extremo) Si A y B son dichos puntos, representaremos el vector por AB Gráficamente, lo representamos

Más detalles

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se

Más detalles

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...

Más detalles

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz

Más detalles

INSTITUTO SALESIANO NUESTRA SEÑORA DE LUJAN 2008 TRIGONOMETRÍA

INSTITUTO SALESIANO NUESTRA SEÑORA DE LUJAN 2008 TRIGONOMETRÍA INSTITUTO SLESINO NUESTR SEÑOR DE LUJN 008 TRIGONOMETRÍ Vamos a estudiar ahora, una parte de la matemática que se ocupa de las relaciones que eisten entre los lados de un triángulo rectángulo. Recordemos

Más detalles

TEMA 6. Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas

TEMA 6. Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas TEMA 6 Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas 1. Ecuación de Primer grado con dos incógnitas Vamos a intentar resolver el siguiente problema: En una bolsa hay bolas azules y rojas,

Más detalles

Calculo de límites vol.1

Calculo de límites vol.1 Calculo de límites vol.1 Propiedades de los límites Teoría Ejemplos f (x)= p g( x)=q f (x)=2 g( x)= (f (x)+ g(x))= p+q (f (x) g(x))= p q (f (x) g(x))= p q ( f (x) g(x) )= p q si q 0 (k f (x))=k p k R (f

Más detalles

Recurrencias. Si a 0, a 1, a 2, es una progresión geométrica, entonces a 1 /a 0 = a 2 /a 1 = = a n+1 /a n = r, la razón común.

Recurrencias. Si a 0, a 1, a 2, es una progresión geométrica, entonces a 1 /a 0 = a 2 /a 1 = = a n+1 /a n = r, la razón común. Recurrencias Def. Progresión geométrica. Es una sucesión infinita de números, como: 5, 45, 135, donde el cociente de cualquier término entre su predecesor es una constante, llamada razón común. (Para nuestro

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: 4-X-2015 CURSO ) D = ( 4 2

Apellidos: Nombre: Curso: 2º Grupo: A Día: 4-X-2015 CURSO ) D = ( 4 2 EXAMEN DE MATEMATICAS II 1ª EVALUACIÓN Apellidos: Nombre: Curso: 2º Grupo: A Día: 4-X-2015 CURSO 2015-16 Opción A 1.- Considera las matrices A = ( 1 2 2 1 ), B = ( 2 1 0) y C = ( 1 5 0 ) a) [1,5 puntos]

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Líneas y s en el Espacio Departamento de Matemáticas ITESM Líneas y s en el Espacio Álgebra Lineal - p. 1/34 Los conjuntos solución a un sistema de ecuaciones lineales cuando tienen

Más detalles

Método de Gauss. Ejercicios resueltos.

Método de Gauss. Ejercicios resueltos. Método de Gauss. Ejercicios resueltos. El método de Gauss consiste en transformar un sistema de ecuaciones lineal en otro escalonado. Por ejemplo:! +# +3% = 8 +# +3% = 8 +% = 2 El sistema transformado

Más detalles

Cálculos matemáticos POR EL MÉTODO DE DIAGONALES

Cálculos matemáticos POR EL MÉTODO DE DIAGONALES Cálculos matemáticos POR EL MÉTODO DE DIAGONALES Para realizar este cálculo es necesario contar con el croquis dibujado en la hoja de registro y trazado, con los promedios de las mediciones recabadas durante

Más detalles

GUIA DE MATEMATICAS I, CAPITULO III

GUIA DE MATEMATICAS I, CAPITULO III UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICE-RECTORADO ACADEMICO DEPARTAMENTO DE CIENCIA Y TECNOLOGIA AREA DE MATEMATICAS GUIA DE MATEMATICAS I, CAPITULO III Prof. Orlando Baisdem Pérez Puerto Ordaz,

Más detalles

PRACTICO: : LÍMITES DE FUNCIONES

PRACTICO: : LÍMITES DE FUNCIONES APUNTE TEORICO-PRACTICO PRACTICO: : LÍMITES DE FUNCIONES UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática 1 Carreras: Lic. en Economía Profesor: Prof. Mabel Chrestia Semestre: 1ero Año: 16 Introducción

Más detalles

El Producto escalar para las comunicaciones (parte 1) Luca Mar9no Apuntes no revisados Cuidado!

El Producto escalar para las comunicaciones (parte 1) Luca Mar9no Apuntes no revisados Cuidado! El Producto escalar para las comunicaciones (parte ) Luca Mar9no Apuntes no revisados Cuidado! Producto Escalar El producto escalar, también conocido como producto interno o producto punto, es una operación

Más detalles

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia.

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia. TRIGONOMETRÍA MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico 1.- Ángulos en la Circunferencia. 2.- Razones Trigonométricas de un Triángulo Rectángulo. 3.- Valores del Seno, Coseno y Tangente

Más detalles

Capítulo 5: Identidades Trigonométricas

Capítulo 5: Identidades Trigonométricas Capítulo 5: Identidades Trigonométricas Identidad Trigonométrica Una identidad trigonométrica es una relación de igualdad entre funciones trigonométricas, que se cumple cualquiera sea el valor o valores

Más detalles

Técnicas de integración. Cambio de variable

Técnicas de integración. Cambio de variable Técnicas de integración En matemáticas, cada tipo de problema sugiere un tipo de solución. Para calcular la derivada de una función, en general, el problema es muy sencillo, pues solamente se requiere

Más detalles

José Humberto Serrano Devia Página 1

José Humberto Serrano Devia Página 1 Similitudes entre el espacio y las series de Fourier Funciones Ortogonales En esta sección se muestra la forma en que los conceptos vectoriales de producto interno, o producto escalar, y el de ortogonalidad

Más detalles

Conjuntos de Vectores y Matrices Ortogonales

Conjuntos de Vectores y Matrices Ortogonales Conjuntos de Vectores y Matrices Ortogonales Departamento de Matemáticas, CCIR/ITESM 28 de junio de 2011 Índice 21.1.Introducción............................................... 1 21.2.Producto interno............................................

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Tema Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca.1 De las siguientes operaciones, cuál no permite operar cualquier par de números naturales para obtener un resultado natural? a) La suma.

Más detalles

Conjuntos numéricos. Apuntes de Matemática I. Tatiana Inés Gibelli C.U.R.Z.A.

Conjuntos numéricos. Apuntes de Matemática I. Tatiana Inés Gibelli C.U.R.Z.A. Conjuntos numéricos Apuntes de Matemática I Tatiana Inés Gibelli C.U.R.Z.A. Un concepto básico y elemental del lenguaje matemático es el de número. Para poder trabajar en matemática, es imprescindible

Más detalles

Límites de Funciones

Límites de Funciones . Introducción y notación Límites de Funciones Hasta ahora, se han visto muchos conceptos sobre las funciones desde un enfoque muy intuitivo. Cosas como la continuidad, el crecimiento o los máximos y los

Más detalles

Dado un vector fijo, existen infinitos vectores fijos que tienen igual módulo, dirección y sentido

Dado un vector fijo, existen infinitos vectores fijos que tienen igual módulo, dirección y sentido 1. VECTORES. DEFINICIONES. OPERACIONES Un vector fijo AB queda determinado por dos puntos, el origen A y el extremo B Se llama módulo del vector AB a la distancia que hay entre A y B. Se designa por AB

Más detalles

PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas.

PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas. PROPUESTA A 1A. a) Enuncia el Teorema de Bolzano y el Teorema de Rolle. (1 punto) b) Demuestra, usando el Teorema de Bolzano, que existen al menos tres raíces reales distintas de la ecuación, x 5 5x +

Más detalles

UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico.

UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. UNIDAD 1. NÚMEROS. (Página 22 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. Clasificación de los números Números naturales son aquellos que utilizamos para contar. N = 0,1,2,,,5,6, Números

Más detalles

Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo.

Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo. Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo. Introducción. En este documento se describe como el proceso de convolución aparece en forma natural cuando se trata

Más detalles

lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 =

lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 = LÍMITES LECCIÓN 7 Índice: Cálculo de ites en un punto. Epresión indeterminada L/0. Epresión indeterminada 0/0. Algunos ites de funciones irracionales. Otras técnicas básicas para el cálculo de ites. Problemas..-

Más detalles

Límite de una función

Límite de una función Idea intuitiva de límite Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

FIN EDUCATIVO FIN INSTRUCTIVO

FIN EDUCATIVO FIN INSTRUCTIVO FIN EDUCATIVO Todos somos números en las Matemáticas de la vida, con valores: absolutos, relativos, positivos y negativos. Los primeros representan a nuestras cualidades y virtudes ; los segundos a los

Más detalles

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1 Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos

Más detalles

Ejercicios Resueltos

Ejercicios Resueltos Ejercicios Resueltos Ejercicio 1 La función de transferencia de un sistema de control tiene como expresión: Determinar, aplicando el método de Routh, si el sistema es estable. Para comprobar la estabilidad

Más detalles

DIVISIBILIDAD. - DIVISOR DE UN NÚMERO: Un número es divisor de un número dado, cuando al dividir el número entre el divisor, nos da resultado exacto.

DIVISIBILIDAD. - DIVISOR DE UN NÚMERO: Un número es divisor de un número dado, cuando al dividir el número entre el divisor, nos da resultado exacto. DIVISIBILIDAD La divisibilidad es la parte de las matemáticas que nos enseña la relación entre los números, sus múltiplos y divisores. Lo primero que hemos de conocer es por tanto qué es un múltiplo o

Más detalles

La suma de n términos de una progresión. aritmética es: Sn= El producto de n términos de una progresión. geométrica es: P = ( a a ).

La suma de n términos de una progresión. aritmética es: Sn= El producto de n términos de una progresión. geométrica es: P = ( a a ). Progresiones INTRODUCCIÓN Las sucesiones aparecen en diversos campos, tales como la medicina (evolución de un cultivo bacteriano), genética (distribución de los caracteres), informática (utilización de

Más detalles

CEPA Rosalía de Castro. Fundamentos de Matemáticas Tema 4: Expresiones algebraicas

CEPA Rosalía de Castro. Fundamentos de Matemáticas Tema 4: Expresiones algebraicas TEMA 4. Expresiones algebraicas: 1. Una expresión algebraica es una expresión formada por operadores algebraicos que combinan operandos que pueden ser letras o números. Las letras se llaman variables y

Más detalles

Sobre funciones reales de variable real. Composición de funciones. Función inversa

Sobre funciones reales de variable real. Composición de funciones. Función inversa Sobre funciones reales de variable real. Composición de funciones. Función inversa Cuando en matemáticas hablamos de funciones pocas veces nos paramos a pensar en la definición rigurosa de función real

Más detalles

Funciones: Límites y continuidad.

Funciones: Límites y continuidad. Límites finitos de sucesiones. Funciones: límites y continuidad Matemáticas I Funciones: Límites y continuidad. + Decimos que una sucesión numérica ( ) n= tiene por límite r R y se escribe =r o de forma

Más detalles

PROPUESTA A. f(x) = x 3 + ax 2 + bx + c,

PROPUESTA A. f(x) = x 3 + ax 2 + bx + c, PROPUESTA A 1A. Dada la función f(x) = x 3 + ax 2 + bx + c, calcula los parámetros a, b, c R sabiendo que: La recta tangente a la gráfica de f(x) en el punto de abcisa x = 1 tiene pendiente 3. f(x) tiene

Más detalles

R 3 = { ( x, y, z ) / x R, y R, z R }

R 3 = { ( x, y, z ) / x R, y R, z R } El conjunto R 3 Es un conjunto de ternas ordenadas de números reales R 3 = { ( x, y, z ) / x R, y R, z R } Primera componente Segunda componente Tercera componente Igualdad de ternas: (x, y, z) = (x',

Más detalles

Integración de funciones trigonométricas

Integración de funciones trigonométricas Integración de funciones trigonométricas Ya vimos las reglas para calcular integrales de funciones trigonométricas. Ahora vamos a considerar productos de funciones trigonométricas y potencias. Para este

Más detalles

TEMA 11.- VECTORES EN EL ESPACIO

TEMA 11.- VECTORES EN EL ESPACIO TEMA 11.- VECTORES EN EL ESPACIO 1.- INTRODUCCIÓN Un vector fijo AB del espacio (también lo era en el plano) es un segmento orientado que tiene su origen en un punto A y su extremo en otro punto B. Estos

Más detalles

Potencias = = 3 4

Potencias = = 3 4 Potencias Las potencias son una manera de expresar el producto de un número por sí mismo una cantidad determinada de veces. Esto resulta especialmente útil para el cálculo de operaciones que de otro modo

Más detalles

2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).

2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores). Bloque 3. ECUACIONES Y SISTEMAS (En el libro Temas 4 y 5, páginas 63 y 81) 1. Ecuaciones: Definiciones. Reglas de equivalencia. 2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las

Más detalles

Unidad 10 Integrales definidas. Aplicaciones

Unidad 10 Integrales definidas. Aplicaciones Unidad Integrales definidas. Aplicaciones PÁGINA 5 SOLUCIONES. Las áreas quedan: A u A u A 5 u. El área del recinto viene dada por : ( ) ( ) Área d,5 u PÁGINA 9 SOLUCIONES. La solución queda: Directo:

Más detalles

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS Potencias de la unidad imaginaria i 0 = 1 i 1 = i i 2 = 1 i 3 = i i 4 = 1 Los valores se repiten de cuatro en cuatro, por eso, para saber cuánto

Más detalles

1. Álgebra de Números Complejos.

1. Álgebra de Números Complejos. 1. Álgebra de Números Complejos. Los números complejos se pueden introducir en el proceso de búsqueda de soluciones para ecuaciones polinomiales como x 2 + 1 = 0 ó x 2 + 4x + 13 = 0. En general un valor

Más detalles

TEMA 9: RENTAS VARIABLES, ANUALES, TEMPORALES Y PERPETUAS 1.- INTRODUCCIÓN

TEMA 9: RENTAS VARIABLES, ANUALES, TEMPORALES Y PERPETUAS 1.- INTRODUCCIÓN TEMA 9: RENTAS VARIABLES, ANUALES, TEMPORALES Y PERPETUAS 1.- INTRODUCCIÓN Las rentas financieras pueden tener términos cuya cuantía no sea constante, sino que vayan modificándose en el tiempo. Si la variación

Más detalles

MATERIAL DOCENTE MATEMATICAS 8 BASICO: ESTRATEGIAS Y GUIAS DE TRABAJO

MATERIAL DOCENTE MATEMATICAS 8 BASICO: ESTRATEGIAS Y GUIAS DE TRABAJO Especificaciones MATERIAL DOCENTE MATEMATICAS 8 BASICO: ESTRATEGIAS Y GUIAS DE TRABAJO I. Estrategia: se destacan en cada paso II. Contenidos: Repaso contenidos del primer Semestre. III. Esta estrategia

Más detalles

Matemáticas de 2º de bachillerato página 1 Integral indefinida. Integral indefinida

Matemáticas de 2º de bachillerato página 1 Integral indefinida. Integral indefinida Matemáticas de º de bachillerato página Integral indefinida Integral indefinida.introducción.- La integración es el proceso recíproco de la derivación, es decir, en la derivación se trata de hallar la

Más detalles

SOLUCIONARIO EXAMEN DE ADMISION UNET MATEMÁTICA. 1) La Suma de los tres primeros números primos en N es un número:

SOLUCIONARIO EXAMEN DE ADMISION UNET MATEMÁTICA. 1) La Suma de los tres primeros números primos en N es un número: SOLUCIONARIO EXAMEN DE ADMISION UNET 2008-2 MATEMÁTICA 1) La Suma de los tres primeros números primos en N es un número: Para resolver este problema debemos conocer que es un número primo? Un número primero

Más detalles

1 of 16 10/25/2011 6:38 AM

1 of 16 10/25/2011 6:38 AM http://tutorias.upra.edu/mod/book/print.php?id42119 Prof. Anneliesse Sánchez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo Objetivos: Hallar raíces cuadradas exactas de: enteros fracciones

Más detalles

REPRESENTACIÓN GRÁFICA DE CURVAS - II

REPRESENTACIÓN GRÁFICA DE CURVAS - II REPRESENTACIÓN GRÁFICA DE CURVAS - II 1.- Representa gráficamente la función a) Dominio: f(x) es el cociente del valor absoluto de una función polinómica de 2º grado entre la variable x. Ambas son continuas

Más detalles

ESTALMAT-Andalucía Actividades 09/10

ESTALMAT-Andalucía Actividades 09/10 Veteranos Sesión Conjunta. Sesión: on line Fecha: Curso 2009-2010 Título: Problemas sobre fracciones egipcias. En este documento mostramos algunas soluciones de los alumnos y alumnas Veteranos de 1º y

Más detalles

Tema 5: Funciones. Límites de funciones

Tema 5: Funciones. Límites de funciones Tema 5: Funciones. Límites de funciones 1. Concepto de función Una aplicación entre dos conjuntos y es una transformación que asocia a cada elemento del conjunto un único elemento del conjunto. Una función

Más detalles

Lección 2: Notación exponencial

Lección 2: Notación exponencial GUÍA DE MATEMÁTICAS III Lección 2: Notación exponencial En la lección anterior hemos visto cómo trabajar con números reales y cómo para facilitar el trabajo con ellos es conveniente utilizar aproximaciones,

Más detalles

TEMA 3. Algebra. Teoría. Matemáticas

TEMA 3. Algebra. Teoría. Matemáticas 1 1 Las expresiones algebraicas Las expresiones algebraicas son operaciones aritméticas, de suma, resta, multiplicación y división, en las que se combinan letras y números. Para entenderlo mejor, vamos

Más detalles

Tema 5: Funciones, límites y Continuidad

Tema 5: Funciones, límites y Continuidad Tema 5: Funciones, límites y Continuidad 0.- Introducción.- Definición de Función..- Funciones elementales..- Operaciones con funciones...- Composición de funciones...- Función inversa o recíproca 3.-

Más detalles

LÍMITES. Ing. Ronny Altuve

LÍMITES. Ing. Ronny Altuve UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE CIENCIAS ADMINISTRATIVAS Unidad Curricular: Matemática II LÍMITES Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, septiembre 2016 INDICADOR DE LOGRO Aplicar la definición

Más detalles

Apunts. Ejercicios resueltos de series numéricas. Series numéricas. Continuitat. Prof Ximo Beneyto

Apunts. Ejercicios resueltos de series numéricas. Series numéricas. Continuitat. Prof Ximo Beneyto Series numéricas Ejercicios resueltos de series numéricas Prof Ximo Beneyto PROBLEMES RESOLTS 1. De una serie sabemos el término general de su suma parcial de orden "n",. Se pide : 2. Hallar a n y formar

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles