Límite de una sucesión
|
|
|
- Guillermo Martin Vidal
- hace 8 años
- Vistas:
Transcripción
1 Límite de una sucesión Idea intuitiva del límite de una sucesión En la sucesión a n = 1/n, observamos que los términos se van acercando a cero. Consideremos que 0 es el límite de la sucesión porque: 1 Los términos se aproximan a cero tanto como se quiera a medida que se avanza en la sucesión. 2La distancia a cero puede ser tan pequeña como queramos. d(1, 0) = 1 d(1/10, 0) = 0.1 d(1/100, 0) = 0.01 d(1/1000, 0) = d(1/ , 0) = d(1/ , 0) = Vemos que el límite es 0, pero no hay ningún valor de la sucesión que coincida con el límite. Límite finito de una sucesión Se dice que una sucesión a n tiene por límite L si y sólo si para cualquiera número positivo ε que tomemos, existe un término a k, a partir del cual todos los términos de a n, siguientes a a k cumplen que a n L < ε. La sucesión a n = 1/n tiene por límite 0. Ya que podemos determinar a partir de qué término de la sucesión, su distancia a 0 es menor que un número positivo (ε), por pequeño que éste sea.
2 Como k>10 a partir del a 11 se cumplirá que su distancia 0 es menor que 0.1. Vamos a determinar a partir de que término la distancia a 0 es menor que A partir del a 1001 se cumplirá que su distancia 0 es menor que También podemos definir el límite de una sucesión mediante entornos: Se dice que una sucesión a n tiene por límite L si y sólo si para cualquier entorno de L que tomemos, por pequeño que sea su radio ε, existe un término de la sucesión, a partir del cual, los siguientes términos pertenecen a dicho entorno. Límite infinito de una sucesión Se dice que una sucesión a n tiene por límite + cuando para toda M>0 existe un término a k, a partir del cual todos los términos de a n, siguientes a a k cumplen que a n > M. Vamos a comprobar que el límite de la sucesión a n = n 2 es +. 1, 4, 9, 16, 25, 36, 49,... Si tomamos M = , su raíz cuadrada es 100, por tanto a partir de a 101 superará a a 101 = = Se dice que una sucesión a n tiene por límite cuando para toda N >0 existe un término a k, a partir del cual todos los términos de a n, siguientes a a k cumplen que a n < N.
3 Vamos a comprobar que el límite de la sucesión a n = n 2 es. 1, 4, 9, 16, 25, 36, 49,... Si tomamos N= , su raíz cuadrada es 100, por tanto a partir de a 101 superará a a 101 = = Sucesiones convergentes Son las que tienen límite finito. Sucesiones divergentes Son las que tienen límite infinito (+ ó ). Sucesiones oscilantes No son convergentes ni divergentes. Sus términos alternan de mayor a menor o viceversa. 1, 0, 3, 0,5, 0, 7,... Sucesiones alternadas Son aquellas que alternan los signos de sus términos. Pueden ser: Convergentes 1, 1, 0.5, 0.5, 0.25, 0.25, 0.125, 0.125,.. Tantos los términos pares como los impares tienen de límite 0. Divergentes 1, 1, 2, 4, 3, 9, 4, 16, 5, 25,... Tantos los términos pares como los impares tienden de límite +. Oscilantes 1, 2, 3, 4, 5,..., ( 1) n n Propiedades de los límites 1 El límite si existe es único. 2 Todas las sucesiones convergentes están acotadas. 3 Hay sucesiones acotadas que no son convergentes.
4 4 Todas las sucesiones monótonas y acotadas son convergentes. 5 Hay sucesiones convergentes que no son monótonas. Infinitésimos Una sucesión a n es un infinitésimo si es una sucesión convergente que tiene por límite cero. lim a n = 0 Ejemplo Las sucesiones: son infinitésimos porque: Operaciones con límites lim (a n + b n ) = lim (a n ) + lim (b n ) lim (a n b n ) = lim (a n ) lim (b n ) lim (a n b n ) = lim (a n ) lim (b n )
5 lim (a n : b n ) = lim (a n ) : lim (b n ) lim k a n =k lim a n lim a n k = (lim a n ) k lim log a a n = log a lim a n Al aplicarse estas propiedades pueden presentarse estos casos:
6 Indeterminación infinito partido infinito Se dividen todos los sumandos por la potencia de mayor exponente. Regla práctica 1 Si el numerador y denominador tienen el mismo grado el límite es el cociente entre los coeficientes de las potencias de mayor grado. 2 Si el numerador tiene mayor grado que el denominador el limite es ±, dependiendo del signo del coeficiente de mayor grado. 3 Si el denominador tiene mayor grado el límite es 0.
7 Indeterminación infinito menos infinito 1. Sucesión entera. Se saca factor común de la potencia de mayor exponente. Regla práctica El límite es ±, dependiendo del signo del coeficiente de mayor grado. 2. Sucesiones racionales. Ponemos a común denominador, y si obtenemos resolvemos la indeterminación. 3. Sucesiones irracionales. Multiplicamos y dividimos por el conjugado.
8 Indeterminación cero por infinito Se transforma a. Indeterminación cero partido por cero Se transforma a Indeterminación uno elevado a infinito: el número e Indeterminación uno elevado a infinito Se resuelve transformando la expresión en una potencia del número e.
9 En general se puede comprobar que: 1 er Método
10 2º Método
TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD.
TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. 1.LÍMITE DE UNA FUNCIÓN EN UN PUNTO El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes por f de puntos x, cuando los originales
Límite de una función
Idea intuitiva de límite Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es
Límite de una función
Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden
TEMA 5: SUCESIONES Y LIMITE
TEMA 5: SUCESIONES Y LIMITE DEFINICIÓN DE SUCESIÓN Ejemplo histórico: la sucesión de Fibonacci: La solución que dio Fibonacci fue que cada mes habría las mismas parejas de conejos que ya había el mes anterior
CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3,
RESUMEN LÍMITES Y CONTINUIDAD Límite de una función en un punto El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan
Matemáticas CCSS LÍMITES DE FUNCIONES 1. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS. Ejercicio nº 1.- Ejercicio nº 2.
LÍMITES DE FUNCIONES. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS Ejercicio nº.- Ejercicio nº.- Página B) LÍMITES APOYÁNDONOS EN LAS GRÁFICAS B.) FUNCIONES POLINÓMICAS De grado : a ) 3 + b ) 3 + c )
LÍMITES. Ing. Ronny Altuve
UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE CIENCIAS ADMINISTRATIVAS Unidad Curricular: Matemática II LÍMITES Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, Enero de 2016 INDICADOR DE LOGRO Aplicar la definición
EJERCICIOS DE SUCESIONES. Estudia la monotonia, la convergencia o divergencia y las
EJERCICIOS DE SUCESIONES Estudia la monotonia, la convergencia o divergencia y las cotas de las sucesiones 1a n = 1, 2, 3, 4, 5,...n 2a n = -1, -2,-3, -4, -5,... -n 3a n = 2, 3/2, 4/3, 5/4,..., n+1 /n
INTRO. LÍMITES DE SUCESIONES
INTRO. LÍMITES DE SUCESIONES Con el estudio de límites de sucesiones se inaugura el bloque temático dedicado al cálculo (o análisis) infinitesimal. Este nombre se debe a que se va a especular con cantidades
Límite Idea intuitiva del significado Representación gráfica
LÍMITES DE FUNCIONES (resumen) LÍMITE DE UNA FUNCIÓN f(x) se lee: límite de la función f(x) cuando x tiende a k x k Límite Idea intuitiva del significado Representación gráfica Cuando x f(x) = l Al aumentar
Funciones: Límites y continuidad.
Límites finitos de sucesiones. Funciones: límites y continuidad Matemáticas I Funciones: Límites y continuidad. + Decimos que una sucesión numérica ( ) n= tiene por límite r R y se escribe =r o de forma
Apuntes de Límites de funciones
Apuntes de Límites de funciones En el tema anterior estudiamos el concepto de función real de variable real y sus principales características. En este tema, introducimos la idea intuitiva de límite de
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS B. SUCESIONES B.1 Diversos conjuntos numéricos. En
LÍMITES DE FUNCIONES Y DE SUCESIONES
LÍMITES DE FUNCIONES Y DE SUCESIONES Índice: 1.Funciones reales de variable real-------------------------------------------------------------- 1 2. Límites de sucesiones----------------------------------------------------------------------------
Sucesiones. Convergencia
Sucesiones. Convergencia Sucesión: Es una aplicación de IN en IR: f : IN IR n = f (n) En vez de f (n) se escribe a n, que se denomina término general de la sucesión. A la sucesión se le representa por:
SUCESIONES sucesión a1, a2, a3,..., an a1, a2, a3,... términos de la sucesión El subíndice lugar que el término ocupa sucesión El término general
SUCESIONES Se llama sucesión a un conjunto de números dispuestos uno a continuación de otro. a 1, a 2, a 3,..., a n 3, 6, 9,..., 3n Los números a 1, a 2, a 3,...; se llaman términos de la sucesión. El
LÍMITES DE FUNCIONES
LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos la función: f Su gráfica: si < si > Si toma valores próimos a, distintos de y menores que ej.: 9, 99, 999,,
tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x
UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos
TEMA 10.-LÍMITES DE FUNCIONES Y CONTINUIDAD
TEMA.-Límites de funciones y continuidad.- Matemáticas I. SUCESIONES DE NÚMEROS REALES TEMA.-LÍMITES DE FUNCIONES Y CONTINUIDAD Una sucesión de números reales es un conjunto de números (a, a, a 3,...,
Repartido 4. Profesor Fernando Díaz Matemática A 3ro E.M.T. Iscab 2016
Repartido 4 Profesor Fernando Díaz Matemática A 3ro E.M.T. Iscab 2016 6. Estudiar los límites laterales de las siguientes funciones en los puntos que anulan al denominador: A) B) 7. Estudiar la existencia
TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD.
TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD. 1. Concepto de función.. Dominio e imagen de una función. 3. Tipos de funciones. 4. Operaciones con funciones. 5. Concepto de límite. 6. Cálculo de límites. 7.
INTRODUCCIÓN. FUNCIONES. LÍMITES.
INTRODUCCIÓN. FUNCIONES. LÍMITES. Este capítulo puede considerarse como una prolongación y extensión del anterior, límite de sucesiones, al campo de las funciones. Se inicia recordando el concepto de función
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 2º BACHILLERATO
LÍMITES: OPERACIONES CON INFINITOS LÍMITES: RESOLUCIÓN DE INDETERMINACIONES DEL TIPO 1 Estas indeterminaciones están relacionadas con el número e se calculan de la siguiente forma: 1 DOMINIO E IMAGEN DE
Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito
OPERACIONES CON INFINITO Sumas con infinito Infinito más un número Infinito más infinito Infinito menos infinito Productos con infinito Infinito por un número Infinito por infinito Infinito por cero Cocientes
UNIDAD. Logaritmos ÍNDICE DE CONTENIDOS
UNIDAD 2 Sucesiones y número e. Logaritmos ÍNDICE DE CONTENIDOS 1. Sucesiones de números reales............................... 35 1.1. Progresiones aritméticas y geométricas....................... 36 1.2.
Tema 9. Limite de funciones. Continuidad
Tema 9. Limite de funciones. Continuidad 1. Límite de una función. Funciones convergentes La idea intuitiva de límite de una función en un punto es fácil de comprender: es el valor hacia el que se aproxima
Tema II: Análisis Límites
Tema II: Análisis Límites En matemáticas, se usa el concepto del límite para describir la tendencia de una sucesión o una función. La idea es que en una sucesión o una función, decimos que existe el límite
De los tres conceptos que se estudian es este tema, funciones, límites y continuidad, el primero y el último son muy sencillos de comprender.
INTRODUCCIÓN. FUNCIONES. LÍMITES. Este tema lo iniciamos recordando el concepto de función y dando algunas nociones básicas sobre funciones, para dar paso al estudio del límite de una función, cálculo
UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático
Análisis Matemático Unidad 4 - Límite de una función en un punto Límite de una función en un punto El límite de una función para un valor de x es el valor al que la función tiende en los alrededores de
Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice
Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...
Tema 4: Funciones. Límites de funciones
Tema 4: Funciones. Límites de funciones 1. Concepto de función Una aplicación entre dos conjuntos A y B es una transformación que asocia a cada elemento del conjunto A un único elemento del conjunto B.
Las soluciones son los valores que deben tomar las letras para que la igualdad sea cierta.
TEMA ECUACIONES, INECUACIONES Y SISTEMAS- 1. ECUACIONES Una ecuación es una igualdad matemática entre dos epresiones algebraicas, denominadas miembros, en las que aparecen valores conocidos o datos, desconocidos
Límites y continuidad
Límites y continuidad Podríamos empezar diciendo que los límites son importantes en el cálculo, pero afirmar tal cosa sería infravalorar largamente su auténtica importancia. Sin límites el cálculo sencillamente
x f(x) ?
Idea intuitiva de ite: Sea c R y una función f definida cerca de c aunque no necesariamente en el mismo c. El número L es el ite de f cuando se aproima a c, y se escribe f() = L si y sólo si los valores
TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS
TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 9.1. LÍMITE DE UNA FUNCIÓN
Potencias. Potencias con exponente entero. Con exponente racional o fraccionario
Potencias con exponente entero Potencias Con exponente racional o fraccionario Propiedades 1.a 0 = 1 2.a 1 = a 3.Producto de potencias con la misma base: Es otra potencia con la misma base y cuyo exponente
LÍMITES Y CONTINUIDAD
LÍMITES Y CONTINUIDAD Tema 4: LÍMITES Y CONTINUIDAD. Índice:. Límite de una función en un punto. Límites laterales.. Límites en el infinito.. Cálculo de límites... Propiedades de los límites... Límites
Tema 1.- Los números reales
Tema 1.- Los números reales Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se puede expresar en forma de fracción. El número irracional
El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras.
1.- LOS NÚMEROS REALES Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción. El número irracional más
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
Series numéricas y de potencias. 24 de Noviembre de 2014
Cálculo Series numéricas y de potencias 24 de Noviembre de 2014 Series numéricas y de potencias Series numéricas Sucesiones de números reales Concepto de serie de números reales. Propiedades Criterios
LÍMITES, CONTINUIDAD, ASÍNTOTAS LÍMITE DE UNA FUNCIÓN. Límite de una función en un punto
LÍMITES, CONTINUIDAD, ASÍNTOTAS LÍMITE DE UNA FUNCIÓN Límite de una función en un punto xc Se lee: El límite cuando x tiende a c de f(x) es l Notas: - Que x se aproxima a c significa que toma valores muy
TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD
MATEMÁTICAS I LÍMITES-CONTINUIDAD TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD 1. LÍMITES EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores
Tema 5: Funciones. Límites de funciones
Tema 5: Funciones. Límites de funciones 1. Concepto de función Una aplicación entre dos conjuntos y es una transformación que asocia a cada elemento del conjunto un único elemento del conjunto. Una función
el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha)
pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO gnifica que toma valores cada vez más próimos a. Se lee tiende a. Ejemplo: ;,9;,;,;,8;,;,9;,;,999; Es una secuencia de números cada vez más próimos a. Escribimos.
10. LIMITES DE FUNCIONES
10. LIMITES DE FUNCIONES Definición de límite La función no está definida en el punto x = 1 ya que se anula el denominador. Para valores próximos a x = 1 tenemos Taller matemático 1/12 Definición de límite
TEMA 1: NÚMEROS REALES
TEMA 1: NÚMEROS REALES 1. INTRODUCCIÓN El conjunto formado por los números racionales e irracionales es el conjunto de los números reales, se designa por Con los números reales podemos realizar todas las
Ecuaciones de 2º grado
Ecuaciones de 2º grado Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Resolución de ecuaciones de segundo grado Para resolver ecuaciones de segundo grado utilizamos
AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1
AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga
Tema 1 Límites 1.0.Definición de límite de una función
Tema 1 Límites 1.0.Definición de límite de una función L es el límite de de la función f(x) cuando la variable x tiende (se acerca) al valor x p. El límite de una función es el valor que toma la función
TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1
TEMA : Potencias y raíces Tema : Potencias y raíces ESQUEMA DE LA UNIDAD.- Concepto de potencia..- Potencias de exponente natural..- Potencias de exponente entero negativo..- Operaciones con potencias..-
TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1
TEMA : Potencias y raíces Tema : Potencias y raíces ESQUEMA DE LA UNIDAD.- Concepto de potencia..- Potencias de exponente natural..- Potencias de exponente entero negativo..- Operaciones con potencias..-
TEMA 6 LÍMITE Y CONTINUIDAD
TEMA 6 LÍMITE Y CONTINUIDAD 6.. IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN. Dada la función f() = 2, a qué valor se aproima f() cuando se aproima a 2? Dada la función f() =?, a qué valor se aproima f() cuando
UNIDAD 8.- LÍMITES DE FUNCIONES. CONTINUIDAD (tema 11 del libro) tiene por límite L cuando la variable independiente x tiende a x.
UNIDAD 8.- ÍMITES DE FUNCIONES. CONTINUIDAD (tema del libro). ÍMITE. ÍMITES ATERAES Diremos que una función y f () tiene por ite cuando la variable independiente tiende a, y se nota por f ( ), cuando al
K = número ; 0 = número muy pequeño ; = número muy grande ; 1 = número próximo a 1
OPERACIONES ÁSICAS TEORÍA DE CÁLCULO DE LÍMITES CCNN K número ; 0 número muy pequeño ; número muy grande ; número próimo a ) ) k ) - k 4) k - - ) - ind. 6) 0k 0 ) 0 ind. 8) k 9) 0) k 0 0 ) 0 0 ind. ) 0
lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 =
LÍMITES LECCIÓN 7 Índice: Cálculo de ites en un punto. Epresión indeterminada L/0. Epresión indeterminada 0/0. Algunos ites de funciones irracionales. Otras técnicas básicas para el cálculo de ites. Problemas..-
Calculo de límites vol.1
Calculo de límites vol.1 Propiedades de los límites Teoría Ejemplos f (x)= p g( x)=q f (x)=2 g( x)= (f (x)+ g(x))= p+q (f (x) g(x))= p q (f (x) g(x))= p q ( f (x) g(x) )= p q si q 0 (k f (x))=k p k R (f
Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.
Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos
Sucesiones y series numéricas
Sucesión Se llama sucesión a una función f : N R que a cada natural n asocia un número real a n. Se denota por {a n } o (a n), o {a 1,a 2,...,a n,...}. Ejemplos 1, 4 3, 9 7, 16 15,..., n 2 2 n 1,... {0.3,0.33,0.333,...}
REPASO DE Nºs REALES y RADICALES
REPASO DE Nºs REALES y RADICALES 1º.- Introducción. Números Reales. Números Naturales Los números naturales son el 0, 1,,,. Hay infinitos naturales, es decir, podemos encontrar un natural tan grande como
OPERAR CON POTENCIAS: MULTIPLICACIÓN, DIVISIÓN Y POTENCIA DE POTENCIA
OPERAR CON POTENCIAS: MULTIPLICACIÓN, DIVISIÓN Y POTENCIA DE POTENCIA OBJETIVO MULTIPLICACIÓN DE POTENCIAS Como las potencias son multiplicaciones, se va a trabajar con ellas cuando multiplicamos o dividimos:
Tema 1 Los números reales Índice
Tema 1 Los números reales Índice 1. Números reales. La recta real... 2 1.1. Números naturales... 2 1.1.1. Representación de los números naturales... 2 1.2. Números enteros... 2 1.2.1. Valor absoluto de
EXAMEN DE JUNIO DE MAS I
EXAMEN DE JUNIO DE MAS I Se recomienda: a) Antes de hacer algo, lee todo el eamen. b) Resuelve antes las preguntas que se te den mejor. c) Responde a cada parte del eamen en una hoja distinta. d) Es una
TEMA 8. LÍMITES Y CONTINUIDAD
TEMA 8. LÍMITES Y CONTINUIDAD. IDEA DE LÍMITE. La idea de lmite de una función f() cuando ésta tiende a un punto a, (se escribe f () ), es la del valor al que se acerca la función cuando vamos tomando
TEMA1: CÁLCULO DE LÍMITES DE FUNCIONES.
TEMA: CÁLCULO DE LÍMITES DE FUNCIONES.. Límite en un punto ( a) La condición necesaria y suficiente para que eista el límite de una función en un punto es que eistan los dos límites laterales de la función
PROF. JESÚS OLIVAR. Prof. Jesús Olivar Página 1
PROF. JESÚS OLIVAR Prof. Jesús Olivar Página 1 Límite y Continuidad de Funciones Resumen Estudio del límite de funciones en un punto; comenzaremos dicho estudio analizando la gráfica de una función. Trataremos
1. Límites Algebraicos. 2. Límites Trigonométricos. 3. Límites al infinito
Dependiendo de la clase de límite con la que nos encontremos, tenemos diferentes procedimientos para resolverlos. Para aprender cada procedimiento, haga Click sobre el nombre respectivo: 1. Límites Algebraicos
ECUACIONES DE 2º GRADO. Se resuelve mediante la siguiente fórmula:
ECUACIONES DE 2º GRADO Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Se resuelve mediante la siguiente fórmula: ( 1). Si es a
TEMA 1: LÍMITES DE FUNCIONES
TEMA 1: LÍMITES DE FUNCIONES 1.- LÍMITE DE UNA FUNCIÓN CUANDO X TIENDE A INFINITO: lim () a) lim () = Al aumentar x la función se aproxima a un cierto valor b: lim () = / > () < b) lim () = + Al aumentar
TEMA: 6 ECUACIONES 3º ESO
TEMA: ECUACIONES 3º ESO. ECUACIONES Una ecuación es una igualdad matemática entre dos epresiones algebraicas, denominadas miembros, en las que aparecen valores conocidos o datos, y desconocidos o incógnitas,
FUNCIONES REALES DE VARIABLE REAL
Pag. 1 FUNCIONES REALES DE VARIABLE REAL 1.- Aplicaciones y Funciones. Definiciones. 2.- Tipos de funciones. 3.-Operaciones con funciones. 4.-Composición de funciones. 5.- Función identidad y funciones
TEMA 6 : LÍMITES DE FUNCIONES. CONTINUIDAD
TEMA 6 : DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejercicio: Observa la gráfica siguiente: a) Estudia el dominio, el recorrido y la continuidad de f(). b) Indica si eisten los límites
1. Halla el dominio, el recorrido, las asíntotas y los límites e imágenes que se indican para cada gráfica. y asíntota vertical de:
Identificación gráfica de funciones, límites asíntotas Al observar la gráfica de una función es posible determinar gran cantidad de parámetros características de dicha función aunque no conozcamos su epresión,
Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma
Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Estamos acostumbrados a trabajar con números naturales o enteros en la vida cotidiana pero en algunas ocasiones tendrás
FUNCIONES REALES. D(f(x)) = R {Raices del denominador} { Indice impar D(f(x)) = D(g(x)) Indice par D(f(x)) = R {P untos del radicando negativo}
FUNCIONES REALES Una función real se define como una aplicación entre dos conjuntos de números reales. Esta aplicación asigna a cada elemento del primer conjunto un único elemento del segundo conjunto.
El conjunto de números enteros está formado por los números naturales, sus opuestos (negativos) y el cero.
1 1. NÚMEROS ENTEROS El conjunto de números enteros está formado por los números naturales, sus opuestos (negativos) y el cero. La necesidad de representar el dinero adeudado, la temperatura bajo cero,
IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11
IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como
TEMA 2. Números racionales. Teoría. Matemáticas
1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden
TEMA: 5 ÁLGEBRA 3º ESO
TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x
Capitulo IV - Inecuaciones
Capitulo IV - Inecuaciones Definición: Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que sólo se verifica para determinados valores de la incógnita o
CRITERIOS DE CONVERGENCIA
CRITERIOS DE CONVERGENCIA 1.- CRITERIO DE COMPARACIÓN ( MEDIANTE ACOTACIÓN ) Sea una Serie de Términos positivos, y una Serie ( Auxiliar ) de términos positivos. P Si œ n 0 ù y CONVERGE CONVERGE P Si œ
1. Conocimientos previos. 2. Sucesión Progresiones aritméticas. 1 CONOCIMIENTOS PREVIOS. 1
CONOCIMIENTOS PREVIOS. Límites.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Repasar las operaciones básicas con expresiones algebraicas. Repasar
