TEMA 5: SUCESIONES Y LIMITE
|
|
|
- Juana Luna Escobar
- hace 9 años
- Vistas:
Transcripción
1 TEMA 5: SUCESIONES Y LIMITE DEFINICIÓN DE SUCESIÓN Ejemplo histórico: la sucesión de Fibonacci: La solución que dio Fibonacci fue que cada mes habría las mismas parejas de conejos que ya había el mes anterior (se suponía que no había muerto ninguno) más un número nuevo de parejas igual al número de parejas fértiles, que son las que ya había 2 meses antes. Si escribimos una serie con el número de parejas que hay cada mes, obtenemos: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, Así, el número total de parejas al final del año es de 144 (la que había al principio y otras 143 nuevas). Esta secuencia recibe el nombre de sucesión de Fibonacci, y cada número es un número de Fibonacci, que resulta de sumar los dos números anteriores. 1
2 TÉRMINO GENERAL DE UNA SUCESIÓN EJERCICIO 1: 2
3 EJERCICIO 2: EJERCICIO 3: 3
4 EJERCICIO 4: ALGUNAS SUCESIONES IMPORTANTES 1.- Progresiones Aritméticas 4
5 EJERCICIO 6: EJERCICIO 7: 5
6 EJERCICIO 8 EJERCICIO 9 6
7 2.- Progresiones Geométricas EJERCICIO 10 7
8 EJERCICIO Sucesiones de Potencias EJERCICIO 12 8
9 CÁCULO DEL TÉRMINO GENERAL DE ALGUNAS SUCESIONES RECONOCIBLES 9
10 REPRESENTACIÓN DE UNA SUCESIÓN Una forma de representar gráficamente las sucesiones reales es como funciones, es decir, como pares ordenados (n, an), lo que puede ser útil en ocasiones para el estudio de sus propiedades. En el eje de abcisas se representan los números naturales n y en el eje de ordenadas los valores reales an. Dado que la variable n solo admite valores naturales, la representación gráfica se visualizará, entonces, como un conjunto de puntos aislados. EJERCICIO 16 10
11 EJERCICIO 17 11
12 SUCESIONES MONÓTONAS 12
13 SUCESIONES ACOTADAS 13
14 LIMITE DE UNA SUCESIÓN El límite de una sucesión es el valor al que se van aproximando los términos de la sucesión, cuando se va avanzando en ella, esto es, cuando n toma valores cada vez mayores. EJERCICIO 20 14
15 DEFINICIÓN FORMAL DEL CONCEPTO DE LIMITE DE UNA SUCESIÓN Traducción: Que lim a n = λ significa: Dada una cantidad muy pequeña ε > 0 siempre encontramos una posición n0 en la sucesión (que corresponde al término a n0 de la sucesión) tal que, a partir de ese término de la sucesión en adelante n n 0, la distancia entre un término a n de la sucesión y el limite λ es MENOR que la cantidad fijada ε, esto es, d(a n, λ ) < ε, o lo que es lo mismo a n λ < ε o que a n E(λ, ε) (entorno de centro λ y radio ε ) 15
16 EJERCICIO 20 16
17 CÁLCULO DE LÍMITES 0 < a <1 0 < a <1 Límite de sucesiones del tipo lim Ejemplos: lim K n K n = 0 lim p = 0 con p > 0 y K ε R K n 2 = 0 lim K n = 0 etc RESOLUCIÓN DE INDETERMINACIONES 17
18 Indeterminación Tipo - Se saca factor común la mayor potencia y tenemos en cuenta que lim K n p = 0 con p > 0 Ejemplos: lim 4n3 + 5n 2 n + 1 = lim n 3 ( n 1 n n3) = + ( ) = lim 2n4 3n 3 + 7n 2 = lim n 4 (2 3 n + 7 n 3 2 n4) = + ( ) = + Regla: El límite es más infinito si el coeficiente del término de mayor grado es positivo y es menos infinito si el coeficiente del término de mayor grado es negativo. Indeterminación Tipo / Se saca factor común la mayor potencia en el numerador y en el denominador, luego se simplifica y tenemos en cuenta que lim Ejemplos: K n p = 0 con p > 0 4n 3 + n 2 2n 1 n 3 1 (4 + lim 3n 3 + 5n = (+ ) n 2 = lim n 2 1 n 3) IND n 3 ( n + 2 n 3) lim lim Regla: 4n 5 + n 2 2n 1 3n 3 + 5n = (+ ) = lim IND 5n 3 + n 2 2n 1 3n 4 + 5n 2 = ( ) = lim IND n 2 n 2 1 n n + 2 = 4 3 n 3 = lim n 5 1 (4 + n 3 2 n 1 n 5) n 2 1 (4 + n 3 ( n + 2 = lim n 3 2 n 1 n 5) n 3 ) ( n + 2 = (+ ) ( 4 n 3 ) 3 ) = n 3 1 ( 5 + n 2 n 2 1 n 3) n 4 (3 + 5 n = lim n 4) n 2 n 2 1 n 3 n (3 + 5 n n 4) = 5 + = 0 Si el grado del numerador es mayor que el del denominador el límite es ± (Dependiendo del signo del coeficiente de mayor grado del numerador y del denominador) Si el grado del numerador es menor que el del denominador el límite es 0. Si el grado del numerador y denominador es el mismo el límite es igual al cociente entre los coeficientes de los términos de mayor grado del numerador y denominador. Indeterminación Tipo ( - ) con expresiones radicales Se elimina la indeterminación multiplicando y dividiendo por el conjugado, para quitarnos la raíz. lim n2 + 1 n 2 1 = (+ ) (+ ) = lim ( n n 2 1) ( n n 2 1) ( n n 2 1) = n (n 2 1) lim n n 2 1 = lim n n n n 2 1 = lim 2 n n 2 1 = 2 + = 0 18
19 lim n2 2n + 3 n 2 1 = (+ ) (+ ) IND = lim ( n 2 2n + 3 n 2 1) ( n2 2n n 2 1) ( n 2 2n n 2 1) = n 2 2n + 3 (n 2 1) = lim n 2 2n n 2 1 = lim n 2 2n + 3 n n 2 2n n 2 1 = lim 4 n ( 2 + = lim n ) 4 n ( 2 + n 2 (1 2 n + 3 n 2) + n2 (1 1 = lim n ) 4 n ( 2 + n 2) n 1 2 n + 3 n 2 + n 1 1 = lim n ) n 2 n ( 1 2 n + 3 n = n 2) 2n + 4 n 2 2n n 2 1 = ( + ) IND = = lim n n + 3 n = = 1 n 2 EL NÚMERO e Consideremos la sucesión de término general siguiente: (a n ) = (1 + 1 n )n con n N Ésta sucesión verifica lo siguiente: 1. Es monótona creciente, esto es, a n < a n+1 n N 2. Está acotada superiormente, pues a n < 3 n N Aplicando un teorema que afirma que toda sucesión monótona creciente y que esté acotada superiormente es convergente (tiene limite), podemos decir, que la sucesión (a n ) = (1 + 1 n )n honor a Leonard Euler): tiene limite, el cuál, es un número irracional denominado e (en lim (1 + 1 n )n = e 2,
20 Se podrían dar más ejemplos que son casos particulares de la llamada ley del crecimiento, donde una cierta magnitud (dinero, habitantes, bacilos, etc), susceptible de multiplicarse a un ritmo constante cada cierto tiempo, el crecimiento se agrega a la población inicial y toma parte a su vez, en su multiplicación 20
21 Indeterminación Tipo 1 Se resuelve utilizando el nº e : lim (1 + 1 n )n = e De éste modo, si tenemos: en general lim (1 + 1 a n ) a n = e con an ± Ejemplo: lim a n b n = (1 ) IND = e lim b n (a n 1) lim (2n + 1 n 2 2n + 4 ) n+1 = (1 + ) IND = e lim n 2 3 ( n+1 = e lim n 2 n+1 (2n+1 2n+4 1) = e lim 3n 2 2n+4 ) = e lim (n+1) (2n+4) = e 3 2 = 1 e 3 n 2 n+1 (2n+1 2n 4 ) 2n+4 21
Límite de una sucesión
Límite de una sucesión Idea intuitiva del límite de una sucesión En la sucesión a n = 1/n, observamos que los términos se van acercando a cero. Consideremos que 0 es el límite de la sucesión porque: 1
Matemáticas CCSS LÍMITES DE FUNCIONES 1. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS. Ejercicio nº 1.- Ejercicio nº 2.
LÍMITES DE FUNCIONES. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS Ejercicio nº.- Ejercicio nº.- Página B) LÍMITES APOYÁNDONOS EN LAS GRÁFICAS B.) FUNCIONES POLINÓMICAS De grado : a ) 3 + b ) 3 + c )
UNIDAD. Logaritmos ÍNDICE DE CONTENIDOS
UNIDAD 2 Sucesiones y número e. Logaritmos ÍNDICE DE CONTENIDOS 1. Sucesiones de números reales............................... 35 1.1. Progresiones aritméticas y geométricas....................... 36 1.2.
Sucesiones. Convergencia
Sucesiones. Convergencia Sucesión: Es una aplicación de IN en IR: f : IN IR n = f (n) En vez de f (n) se escribe a n, que se denomina término general de la sucesión. A la sucesión se le representa por:
INTRODUCCIÓN. FUNCIONES. LÍMITES.
INTRODUCCIÓN. FUNCIONES. LÍMITES. Este capítulo puede considerarse como una prolongación y extensión del anterior, límite de sucesiones, al campo de las funciones. Se inicia recordando el concepto de función
1. Conocimientos previos. 2. Sucesión Progresiones aritméticas. 1 CONOCIMIENTOS PREVIOS. 1
CONOCIMIENTOS PREVIOS. Límites.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Repasar las operaciones básicas con expresiones algebraicas. Repasar
EJERCICIOS DE SUCESIONES. Estudia la monotonia, la convergencia o divergencia y las
EJERCICIOS DE SUCESIONES Estudia la monotonia, la convergencia o divergencia y las cotas de las sucesiones 1a n = 1, 2, 3, 4, 5,...n 2a n = -1, -2,-3, -4, -5,... -n 3a n = 2, 3/2, 4/3, 5/4,..., n+1 /n
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS B. SUCESIONES B.1 Diversos conjuntos numéricos. En
LÍMITES DE FUNCIONES
LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos la función: f Su gráfica: si < si > Si toma valores próimos a, distintos de y menores que ej.: 9, 99, 999,,
INTRO. LÍMITES DE SUCESIONES
INTRO. LÍMITES DE SUCESIONES Con el estudio de límites de sucesiones se inaugura el bloque temático dedicado al cálculo (o análisis) infinitesimal. Este nombre se debe a que se va a especular con cantidades
Límite de una función
Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden
Series numéricas y de potencias. 24 de Noviembre de 2014
Cálculo Series numéricas y de potencias 24 de Noviembre de 2014 Series numéricas y de potencias Series numéricas Sucesiones de números reales Concepto de serie de números reales. Propiedades Criterios
TEMA 4. Sucesiones de números reales.
Cálculo I E.T.S.I. de Minas Curso 2008-2009 TEMA 4. Sucesiones de números reales. Definición. Una sucesión de números reales es una aplicación que a cada número natural n 1leasignaunúnico número real x
TEMA 10 INTRODUCCIÓN AL CONCEPTO DE LÍMITE
TEMA 10 INTRODUCCIÓN A CONCEPTO DE ÍMITE. Objetivos / Criterios de evaluación O.10.1 Cálculos de límites de unciones, propiedades de los límites O.10.2 Continuidad y discontinuidad de una unción 1 Concepto
u n i d a d Sucesiones. Progresiones aritméticas y geométricas
u n i d a d Sucesiones. Progresiones aritméticas y geométricas Sucesiones Una sucesión es un conjunto ordenado de números u objetos, llamados términos. Cada término de la sucesión se representa con una
TEMA1: CÁLCULO DE LÍMITES DE FUNCIONES.
TEMA: CÁLCULO DE LÍMITES DE FUNCIONES.. Límite en un punto ( a) La condición necesaria y suficiente para que eista el límite de una función en un punto es que eistan los dos límites laterales de la función
el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha)
pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO gnifica que toma valores cada vez más próimos a. Se lee tiende a. Ejemplo: ;,9;,;,;,8;,;,9;,;,999; Es una secuencia de números cada vez más próimos a. Escribimos.
Apuntes de Límites de funciones
Apuntes de Límites de funciones En el tema anterior estudiamos el concepto de función real de variable real y sus principales características. En este tema, introducimos la idea intuitiva de límite de
BORRADOR. Sucesiones y series numéricas Sucesiones. es un conjunto ordenado de números
Capítulo 4 Sucesiones y series numéricas 4.1. Sucesiones Una sucesión {s n } es un conjunto ordenado de números {s 1,s 2,s 3,...,s n,...}. Técnicamente, una sucesión puede considerarse como una aplicación
TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD.
TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. 1.LÍMITE DE UNA FUNCIÓN EN UN PUNTO El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes por f de puntos x, cuando los originales
10. LIMITES DE FUNCIONES
10. LIMITES DE FUNCIONES Definición de límite La función no está definida en el punto x = 1 ya que se anula el denominador. Para valores próximos a x = 1 tenemos Taller matemático 1/12 Definición de límite
TEMA 6 LÍMITE Y CONTINUIDAD
TEMA 6 LÍMITE Y CONTINUIDAD 6.. IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN. Dada la función f() = 2, a qué valor se aproima f() cuando se aproima a 2? Dada la función f() =?, a qué valor se aproima f() cuando
Sucesiones. Límite de una sucesión.
1 CONOCIMIENTOS PREVIOS. 1 Sucesiones. Límite de una sucesión. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Repasar las operaciones básicas
2º) El límite de la función f(x)=x, tanto en - como en + : Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en + :
LÍMITES LECCIÓN 6 Índice: Cálculo de ites en el infinito. Epresión indeterminada -. Epresión indeterminada /. Epresión indeterminada 0. Epresión indeterminada ±. Límites de sucesiones. Cálculo de ites
CURSO PROPEDÉUTICO 2017
CURSO PROPEDÉUTICO 2017 1 FUNDAMENTOS DE MATEMÁTICAS OBJETIVO Formar estudiantes altamente capacitados, que cuenten con competencias y conocimientos para construir y utilizar técnicas que contribuyan a
Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =
1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite
UNIDAD 1: ESTUDIEMOS SUCECIONES ARITMETICAS Y GEOMETRICAS.
UNIDAD 1: ESTUDIEMOS SUCECIONES ARITMETICAS Y GEOMETRICAS. Sucesiones Una sucesión es un conjunto de números que son imagen de una función, cuyo dominio son, (normalmente), los enteros positivos, comenzando
Límite de una función
Idea intuitiva de límite Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es
FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =
Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.
CRITERIOS DE CONVERGENCIA
CRITERIOS DE CONVERGENCIA 1.- CRITERIO DE COMPARACIÓN ( MEDIANTE ACOTACIÓN ) Sea una Serie de Términos positivos, y una Serie ( Auxiliar ) de términos positivos. P Si œ n 0 ù y CONVERGE CONVERGE P Si œ
UNIDAD 1 NUMEROS COMPLEJOS
UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo
Límite de una función Funciones continuas
Límite de una función Funciones continuas Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 2014-2015 1 LÍMITE CUANDO LA VARIABLE TIENDE A INFINITO. 3 1. Límite cuando la variable tiende
Alumno/a:... Lo primero que debes tener en cuenta cuando trabajes con radicales es que no son más que potencias con exponente fraccionario.
Hoja Cálculos con radicales Calificación Alumno/a:... Curso: º E.S.O. A Definición de radical Lo primero que debes tener en cuenta cuando trabajes con radicales es que no son más que potencias con exponente
1. Halla el dominio, el recorrido, las asíntotas y los límites e imágenes que se indican para cada gráfica. y asíntota vertical de:
Identificación gráfica de funciones, límites asíntotas Al observar la gráfica de una función es posible determinar gran cantidad de parámetros características de dicha función aunque no conozcamos su epresión,
Tema 4: Funciones. Límites de funciones
Tema 4: Funciones. Límites de funciones 1. Concepto de función Una aplicación entre dos conjuntos A y B es una transformación que asocia a cada elemento del conjunto A un único elemento del conjunto B.
Sucesiones y series numéricas
Capítulo 4 Sucesiones y series numéricas 4.. Sucesiones Una sucesión {s n } es un conjunto ordenado de números {s,s 2,s 3,...,s n,...}. Técnicamente, una sucesión puede considerarse como una aplicación
Tema 5: Funciones. Límites de funciones
Tema 5: Funciones. Límites de funciones 1. Concepto de función Una aplicación entre dos conjuntos y es una transformación que asocia a cada elemento del conjunto un único elemento del conjunto. Una función
Ejercicios de sucesiones.
Ejercicios de sucesiones. 1.- Cuando escribimos a n queremos decir: término n-ésimo o toda la sucesión? Qué diferencia hay entre a n y (a n )? a).-cuando escribimos a n nos referimos a término enésimo.
Tema 2: Polinomios, ecuaciones y sistemas de ecuaciones.
Tema 2: Polinomios, ecuaciones y sistemas de ecuaciones. Polinomios Ecuaciones Ecuaciones de primer grado Ecuaciones de segundo grado Ecuaciones polinómicas de grado superior Ecuaciones racionales Ecuaciones
LÍMITES DE FUNCIONES Y DE SUCESIONES
LÍMITES DE FUNCIONES Y DE SUCESIONES Índice: 1.Funciones reales de variable real-------------------------------------------------------------- 1 2. Límites de sucesiones----------------------------------------------------------------------------
EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO
EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO Página 1 de 12 Entregar el día del examen de recuperación de matemáticas. Será condición indispensable para aprobar la asignatura. 1. Calcula: NUMEROS ENTEROS. FRACCIONES.
LÍMITE DE UNA FUNCIÓN EN UN PUNTO
pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO c significa que toma valores cada vez más próimos a c. Se lee tiende a c. Por ejemplo: ; `9; `; `; `; `; `9; `; `999; Es una secuencia de números cada vez más próimos
Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }
LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden
RESUMEN DE FUNCIONES REALES Y LIMITES (parte 0)
RESUMEN DE FUNCIONES REALES Y LIMITES (parte 0). DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción real de variable real es una aplicación de un subconjunto D de los números reales en un subconjunto
Sucesiones y Suma Finita
Sucesiones y Suma Finita Hermes Pantoja Carhuavilca Centro Pre-Universitario CEPRE-UNI Universidad Nacional de Ingeniería Algebra Hermes Pantoja Carhuavilca 1 de 21 CONTENIDO Convergencia de una sucesión
******* Enunciados de Problemas *******
******* Enunciados de Problemas ******* CÁLCULO ESCUELA SUPERIOR DE LA MARINA CIVIL DIPLOMADO EN MÁQUINAS NAVALES DIPLOMADO EN NAVEGACIÓN MARÍTIMA ISIDORO PONTE ESMC EL NÚMERO REAL Sea o un número racional
LÍMITES Y CONTINUIDAD
LÍMITES Y CONTINUIDAD Tema 4: LÍMITES Y CONTINUIDAD. Índice:. Límite de una función en un punto. Límites laterales.. Límites en el infinito.. Cálculo de límites... Propiedades de los límites... Límites
Sucesiones y series numéricas
Sucesión Se llama sucesión a una función f : N R que a cada natural n asocia un número real a n. Se denota por {a n } o (a n), o {a 1,a 2,...,a n,...}. Ejemplos 1, 4 3, 9 7, 16 15,..., n 2 2 n 1,... {0.3,0.33,0.333,...}
Veamos ahora el comportamiento de la función parte entera (f(x) = E(x)). Si x se aproxima a 2, a qué valor tiende f(x)?
LÍMITES Y CONTINUIDAD DE FUNCIONES. C O N C E P T O D E L Í M I T E D E U N A F U N C I Ó N E N U N P U N T O Consideremos la función f(x)x², cuya gráfica es una parábola. Si x se aproxima a, a qué valor
De los tres conceptos que se estudian es este tema, funciones, límites y continuidad, el primero y el último son muy sencillos de comprender.
INTRODUCCIÓN. FUNCIONES. LÍMITES. Este tema lo iniciamos recordando el concepto de función y dando algunas nociones básicas sobre funciones, para dar paso al estudio del límite de una función, cálculo
MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES
MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1
Tema Contenido Contenidos Mínimos
1 Estadística unidimensional - Variable estadística. - Tipos de variables estadísticas: cualitativas, cuantitativas discretas y cuantitativas continuas. - Variable cualitativa. Distribución de frecuencias.
Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 20 - Todos resueltos
página /0 Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 20 - Todos resueltos Hoja 20. Problema. Sabiendo que x 0 x cos(2 x)+b sen( x) 4 x 2 es finito, calcula b y el valor del límite.
Tema II: Análisis Límites
Tema II: Análisis Límites En matemáticas, se usa el concepto del límite para describir la tendencia de una sucesión o una función. La idea es que en una sucesión o una función, decimos que existe el límite
NOTACIÓN Y REPRESENTACIÓN
TEORÍA NÚMEROS COMPLEJOS DEFINICIÓN: Los números complejos son el conjunto de todos los números reales e imaginarios. Surgen de la necesidad de expresar la raíz par de un número negativo. APLICACIÓN: Los
01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial.
2.6 Criterios específicos de evaluación. 01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 03. Conoce la definición
1. GENERALIDADES SOBRE LOS POLINOMIOS.
GENERALIDADES SOBRE LOS POLINOMIOS Funciones polinómicas LAS DEFINICIONES Sea p la función definida por: p ( ) = 2( 2 ) + 2 ( 2 ) + 2 2, p es una función de R en R Y para todo real, se tiene p ( ) = 2
UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos
UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P. DE. MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos
10. Series de potencias
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San
UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico.
UNIDAD 1. NÚMEROS. (Página 22 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. Clasificación de los números Números naturales son aquellos que utilizamos para contar. N = 0,1,2,,,5,6, Números
Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito
OPERACIONES CON INFINITO Sumas con infinito Infinito más un número Infinito más infinito Infinito menos infinito Productos con infinito Infinito por un número Infinito por infinito Infinito por cero Cocientes
1.- Álgebra de números complejos.
.- Álgebra de números complejos. a) Definición y representación geométrica. b) Sumas y productos de números complejos. c) Vectores y módulos en el plano complejo. d) Representación en forma exponencial.
TEMA 1. Números Reales. Teoría. Matemáticas
1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo
K = número ; 0 = número muy pequeño ; = número muy grande ; 1 = número próximo a 1
OPERACIONES ÁSICAS TEORÍA DE CÁLCULO DE LÍMITES CCNN K número ; 0 número muy pequeño ; número muy grande ; número próimo a ) ) k ) - k 4) k - - ) - ind. 6) 0k 0 ) 0 ind. 8) k 9) 0) k 0 0 ) 0 0 ind. ) 0
1. Conjuntos de números
1.2. Números complejos 1.2.1. FORMA BINÓMICA Números complejos en forma binómica Se llama número complejo a cualquier expresión de la forma z = x + yi donde x e y son números reales cualesquiera e i =
TEMA 1: NÚMEROS REALES
TEMA 1: NÚMEROS REALES 1. INTRODUCCIÓN El conjunto formado por los números racionales e irracionales es el conjunto de los números reales, se designa por Con los números reales podemos realizar todas las
TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS
TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS 2.1 SUCESIONES DE NUMEROS REALES 2.1.1 Definición de sucesión de números reales Definición: Una sucesión de números reales es una aplicación del conjunto
TEMA 4: SUCESIONES EN R.
TEMA 4: SUCESIONES EN R. 4.0. INTRODUCCIÓN. El concepto de límite desempeña un papel fundamental en todo el Cálculo Infinitesimal. En este tema introduciremos este concepto de la forma más sencilla posible:
c n sucesiones numéricas. Si n a n. } k=1 dos subsucesiones de la sucesión { } k=1 = an. Entonces, si lím = L se tiene que lím a n = L.
147 Matemáticas 1 : Cálculo diferencial en IR Anexo 4: Demostraciones Sucesiones de números Series numéricas Demostración de: Proposición 241 de la página 138 Proposición 241- Sean { }, { } y { } c n sucesiones
SUCESIONES. Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,...
SUCESIONES DEFINICIÓN DE SUCESIÓN Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,... Los elementos de la sucesión se llaman términos
Series numéricas (I) 1 Convergencia y divergencia. 2 Series importantes. 3 Propiedades generales. 4 Series de términos positivos
Convergencia y divergencia Series numéricas (I Definición Sea { } una sucesión de reales y sea la sucesión asociada {S n } de sumas parciales, S n = a + a 2 + a 3 + +. LLamaremos serie a la pareja formada
Inecuaciones con valor absoluto
Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:
E J E R C I C I O S R E S U E L T O S D E S U C E S I O N E S
E J E R C I C I O S R E S U E L T O S D E S U C E S I O N E S EJERCICIO : Halla el término general de cada una de las siguientes sucesiones: a), 8 7, 5, 5,... b) 7, 7, 5 7, 7,... c),5, 0, 7 5,... a), 8
1. EXPRESIONES ALGEBRAICAS.
TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas
Funciones: Límites y continuidad.
Límites finitos de sucesiones. Funciones: límites y continuidad Matemáticas I Funciones: Límites y continuidad. + Decimos que una sucesión numérica ( ) n= tiene por límite r R y se escribe =r o de forma
TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD
MATEMÁTICAS I LÍMITES-CONTINUIDAD TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD 1. LÍMITES EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores
T2. Teorema fundamental del cálculo Parte II. Regla de Barrow. Enunciar y demostrar.
EXAMEN TEÓRICO FINAL I T1. Dado y = f(x). Definir función continua en un punto, en un intervalo abierto y en un intervalo cerrado. T2. Teorema fundamental del cálculo Parte II. Regla de Barrow. Enunciar
Sucesiones de números reales
Sucesiones de números reales Llamaremos sucesión de números reales a una función a : IN IR. Notaremos a(n) =a n. Para referirnos a la sucesión cuyo término n-ésimo es a n usaremos la notación {a n }. 1.
Ejercicios de aplicaciones de las derivadas y del teorema del valor medio
Se proponen a continuación varios ejercicios relacionados con las derivadas y sus aplicaciones (por ejemplo, cálculo de etremos, monotonía, cálculo de la imagen de una función, soluciones de ciertas ecuaciones...).
open green road Guía Matemática POTENCIAS DE EXPONENTE RACIONAL profesor: Nicolás Melgarejo .cl
Guía Matemática POTENCIAS DE EXPONENTE RACIONAL profesor: Nicolás Melgarejo.cl . Introducción Hemos escuchado muchas veces que una potencia es la multiplicación abreviada de un término por sí mismo un
FRACCIONES. Profesora: Charo Ferreira
FRACCIONES - Definición: La fracción puede tener varias interpretaciones, todas ellas aplicables y correctas: 1. Fracción es una expresión que indica una cantidad que expresa una o varias unidades no completas.
LOS NÚMEROS COMPLEJOS
LOS NÚMEROS COMPLEJOS Para una mirada sobre el origen y desarrollo histórico de los números complejos leer el siguiente documento páginas 8-13 CANTIDADES IMAGINARIAS Definición: Las cantidades imaginarias
Recurrencias. Si a 0, a 1, a 2, es una progresión geométrica, entonces a 1 /a 0 = a 2 /a 1 = = a n+1 /a n = r, la razón común.
Recurrencias Def. Progresión geométrica. Es una sucesión infinita de números, como: 5, 45, 135, donde el cociente de cualquier término entre su predecesor es una constante, llamada razón común. (Para nuestro
Expresiones algebraicas
Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos
División de polinomios
División de polinomios. Realiza las siguientes divisiones de monomios. 7 6 6 7 7 7. Dados los polinomios P 6, Q 0 y R 6 P P Q R P Q R R 6 calcula. Calcula el cociente y el resto de las siguientes divisiones.
TEMA 2. Números racionales. Teoría. Matemáticas
1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden
PRACTICO: : LÍMITES DE FUNCIONES
APUNTE TEORICO-PRACTICO PRACTICO: : LÍMITES DE FUNCIONES UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática 1 Carreras: Lic. en Economía Profesor: Prof. Mabel Chrestia Semestre: 1ero Año: 16 Introducción
Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales.
Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Índice de contenido Polinomios y fracciones algebraicas: nociones básicas...2 Qué es y qué no es un polinomio...2
I. Determinar los siguientes límites, aplicando las propiedades. lim =
Ejercicios resueltos I. Determinar los siguientes límites, aplicando las propiedades ) 3 + 2 4 3 + 2 4 = (2) 3 + 2 (2) 2 - (2) - 4 Sustituir la por el 2 = 8 + 8-2 - 4 = 0 Aplicar límite a cada término
Álgebra 2. Plan de estudios (305 temas)
Álgebra 2 Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales pueden personalizar el
Para las ecuaciones diferenciales ordinarias no lineales no existen métodos generales.
Unidad IV: Sistemas continuos (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones
PRÁCTICA FINAL. Mª Esther Ruiz Morillas
PRÁCTICA FINAL Mª Esther Ruiz Morillas Repasamos Números x y =z y Álgebra Logaritmos Sucesiones: Aritméticas Geométricas Ecuaciones: De primer grado De segundo grado De grado superior Algebraicas Irracionales
ORIENTACIONES DE MATEMÁTICAS CONTENIDOS MÍNIMOS DE MATEMÁTICAS
IES SAN BENITO ORIENTACIONES DE MATEMÁTICAS MATEMÁTICAS 1º ESO MATERIALES Cuaderno de clase Actividades de Matemáticas (actividades realizadas durante el curso). Libro de texto. Otros materiales que sirvan
LOGRO: Reconoce distintas representaciones de los números reales y usa sus propiedades para resolver Problemas.
ESTANDARES Utilizo números reales en sus diferentes representaciones y en diversos contextos. Resuelvo problemas y simplifico cálculos usando propiedades y relaciones de los números reales y de las relaciones
