Práctica 9 (19/04/2016)
|
|
|
- Gloria Juana Gil Ramos
- hace 7 años
- Vistas:
Transcripción
1 Series de Fourier Curso 5 6 Prácticas Matlab Cálculo II Objetivos Práctica 9 (9/0/06) Obtener series de Fourier de funciones periódicas. Visualizar gráficamente la aproimación de una función periódica a partir de una suma finita de armónicos. Comandos de Matlab. Para calcular la integral definida de una función, f(), en el intervalo [a,b]. int(f,a,b) >> syms >> int(log(),,,);. Para representar segmentos verticales stem(vectori,vectorf) X = linspace(0,*pi,50)'; Y = [cos(x), 0.5*sin(X)]; stem(x,y) 3. Para crear una matriz de unos ones(size(t)) ones(n) t=linespace(,5,0) ones(size(t)) %Define una matriz de unos de la misma dimensión que t &en este ejemplo un vector de dimensión 0 ones() %Define una matriz con todos unos.
2 PÁGINA MATLAB: SERIES DE FOURIER Ejercicios Considera la función periódica de periodo siguiente si 0 f 0 si 0 (a) Calcula los coeficientes de la serie de Fourier. (b) Escribe la serie de Fourier de f e indica dónde es convergente. (c) Calcula el valor de la suma de la serie utilizando la serie de n Fourier obtenida en el apartado anterior. Comprueba con matlab el valor de la suma obtenida. (d) Considera la suma de los diez primeros armónicos y representa la gráfica de la función junto con la gráfica de la suma de estos armónicos. Apartado a) Apartado b) syms n t p=pi; w=pi/p; %a0=(int(0*t,t,-p,0)+int(t,0,p))/p a0=int(t,0,p)/p %an=(int(0*cos(n*w*t),t,-p,0)+int(t*cos(n*w*t),t,0,p))/p an= int(t*cos(n*w*t),t,0,p)/p %bn=(int(0*sin(n*w*t),t,-p,0)+int(t*sin(n*w*t),t,0,p))/p bn=int(t*sin(n*w*t),t,0,p)/p n Se cumple que f cos sen n para los n n k / k. valores de que en el conjunto Apartado c) n 8. Basta darse cuenta que f 0 0 f 0 n n n Puedes comprobarlo en Matlab escribiendo symsum(/(*n-)^,n,,inf)
3 MATLAB: PRÁCTICA 9 PÁGINA 3 Apartado d) %Suma de m+ armónicos tt = -pi:0.:pi; sum = a0*ones(size(t))/; m=0; for k=:m ank=subs(an,n,k); bnk=subs(bn,n,k); sum = sum + double(ank*cos(w*k*tt)+bnk*sin(w*k*tt)); end plot(tt,sum) hold on t=-pi:0.0:0; t=0:0.:pi; plot(t,0*t,t,t,'r') Definición (Espectro de amplitud). Se llama espectro complejo de amplitud de la gráfica resultante de representar la amplitud f t a c n frente a la frecuencia angular n. Nótese que el espectro de amplitud de f () t es una gráfica formada por un conjunto de n puntos discretos, correspondientes a las frecuencias discretas n n y se etiende a p frecuencias negativas. C n an ibn C 0 cn C C C C an bn C 3 C n El análisis de los espectros de amplitudes de la serie trigonométrica de Fourier, permite estudiar la influencia de cada armónico en la composición de la función periódica. Dada la función 0, g( ), 0, (a) Obtener la forma compleja de la serie de Fourier de la onda etensión periódica de la función g( ).
4 PÁGINA MATLAB: SERIES DE FOURIER (b) Escribir el código Matlab para representar el espectro de complejo de amplitud de la onda etensión periódica de la función g( ) (es decir la gráfica resultante de representar la amplitud frente a la frecuencia angular Indicación apartado a) Como la función es par solo tiene términos en coseno. En forma compleja, los cálculos de los coeficientes son: n n / / / i i i n i i e e e n cn f e d e d sen i n i n co / / / d Utiliza Matlab y comprueba que obtienes el mismo resultado. Indicación apartado b) w=*pi; n=-5:5; cn=abs(sin(n*pi/)./(n*pi)); %Espectro de amplitud stem([0,n], [/,cn],'o') label('frecuencia (nw)') ylabel(' Cn ') %Representación de la envolvente hold on t=-5:0.:5; ct=abs(sin(t*pi/)./(t*pi)); plot(t,ct,'r') 3, 0 El desarrollo en serie de Fourier de la función f( ), 0 es: A) 3 sen() 3 sen B) n n C) 3 sen() n D) Ninguna de las anteriores.
5 MATLAB: PRÁCTICA 9 PÁGINA 5 A partir de la serie de la función f ( ) para. Se puede deducir que la suma de la serie numérica es: n A) /. B) /. C) / D) Ninguna de las anteriores. n Sabiendo que el desarrollo de Fourier de la función, 0 f( ) sen() es, n0, 0 5 justificar si las afirmaciones de los apartados a) y b) son ciertas o falsas., 0 (a) La serie de Fourier de la función g ( ), 0 n0 sen() b) Se cumple n0 n ( ) es Resumen de comandos Estos son los comandos utilizados en esta práctica que se darán por conocidos en las prácticas siguientes y que conviene retener porque se podrán preguntar en las distintas pruebas de evaluación. Para calcular una integral de forma simbólica: int Para calcular una integral de forma simbólica: stem Define una matriz de unos: ones
PRÁCTICA SERIES DE FOURIER CURSO CÁLCULO II. Práctica 7 (14/04/2015)
PRÁCTICA SERIES DE FOURIER CURSO -5 CÁLCULO II Prácticas Matlab Práctica 7 (//5) Objetivos Conocer el significado de los parámetros que intervienen en la definición de una función armónica o armónico.
Tema 3. Series de Fourier. Análisis de Espectros. Indice:
Indice: Espectros de Frecuencia Discreta Representación de una señal compuesta en el Tiempo y la Frecuencia Espectro de Amplitud y Fase Espectro Unilateral o de una Cara Espectro de Frecuencia de dos Caras.
PRÁCTICA FUNCIONES DE VARIAS VARIABLES CURSO CÁLCULO. Práctica 9 (30/11/2012)
PRÁCTICA FUNCIONES DE VARIAS VARIABLES CURSO 01-013 CÁLCULO Prácticas Matlab Práctica 9 (30/11/01) Objetivos Determinar las derivadas parciales de una función de forma simbólica. Representar el campo gradiente
3 La transformada de Fourier
Prácticas de circuitos como sistemas lineales. Ejercicios sencillos con Matlab 57 3 La transformada de Fourier En esta sección se presentan algunas rutinas de Matlab de interés en relación con la utilización
Series numéricas y de potencias. 24 de Noviembre de 2014
Cálculo Series numéricas y de potencias 24 de Noviembre de 2014 Series numéricas y de potencias Series numéricas Sucesiones de números reales Concepto de serie de números reales. Propiedades Criterios
PRÁCTICA FUNCIONES CURSO Práctica 3 (14- X-2015) dibuja una línea que une los puntos de abscisas el vector x y ordenadas y.
PRÁCTICA FUNCIONES CURSO 015-016 Prácticas Matlab Práctica 3 (14- X-015) Objetivos Representar puntos con el comando plot. Representar gráficas de funciones con el comando plot y ezplot Definir funciones
Señales y Analisis de Fourier
Señales y Analisis de Fourier Señales y Análisis de Fourier En esta práctica se pretende revisar parte de la materia del tema 2 de la asignatura desde la perspectiva de un entorno de cálculo numérico y
PRÁCTICA INTEGRACIÓN MÚLTIPLE. SUMAS DE RIEMANN CURSO CÁLCULO II. Práctica 1 (9/02/2016)
PRÁCTICA INTEGRACIÓN MÚLTIPLE. SUMAS DE RIEMANN CURSO 2015-2016 CÁLCULO II Prácticas Matlab Práctica 1 (9/02/2016) Objetivos o o o Calcular integrales dobles mediante sumas de Riemann. Representar superficies,
Práctica 5: Transformada de Fourier
Práctica 5: ransformada de Fourier Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es mostrar al alumno el modo de obtener la ransformada de Fourier (F de una señal
TUTORIAL SERIES DE FOURIER
TUTORIAL SERIES DE FOURIER Ya se han presentado Tutoriales sobre el espectro (transformada de Fourier) y la convergencia de series, pero de manera independiente al menos argumentalmente. En este tutorial
Práctica 8. f n (x) = sea la mejor aproximación (en media cuadrática) de la función f(x) = 1 en (0, 2). (x 2 a b cos x c sen x) 2 dx.
MATEMATICA 4 er Cuatrimestre de 25 Práctica 8. a) Verificar que f n (x) = { n si x n si x > n converge uniformemente a cero en R pero que (f n ) no converge a cero en media cuadrática. b) Verificar que
Control en el Espacio de Estado 3. Controlabilidad. por Pascual Campoy Universidad Politécnica Madrid
Control en el Espacio de Estado 3. Controlabilidad por Pascual Campoy [email protected] Universidad Politécnica Madrid U.P.M.-DISAM P. Campoy Control en el Espacio de Estado 1 Controlabilidad Definiciones
Señales: Tiempo y Frecuencia PRÁCTICA 1
Señales: Tiempo y Frecuencia PRÁCTICA 1 (1 sesión) Laboratorio de Señales y Comunicaciones PRÁCTICA 1 Señales: Tiempo y Frecuencia 1. Objetivo El objetivo de esta primera práctica es revisar: las principales
Práctica 8 Series de Fourier
MATEMATICA 4 - Análisis Matemático III Primer Cuatrimestre de 8 Práctica 8 Series de Fourier. (**) a) Verificar que f n (x) = { n si x n si x > n converge uniformemente a cero en R pero que (f n ) no converge
Clasificación de ceros de una función y transformada z.
Capítulo 5 Clasificación de ceros de una función y transformada z. 5.1. Polinomio de Taylor El polinomio de Taylor de grado n de f (z) en z = a está definido por: P n (z) = f (a) + f (a) 1! (z a) + f (a)
Señales y Análisis de Fourier
2 Señales y Análisis de Fourier En esta práctica se pretende revisar parte de la materia del tema 2 de la asignatura desde la perspectiva de un entorno de cálculo numérico y simulación por ordenador. El
Introducción series de fourier Métodos matemáticos Primavera 2018
Introducción series de fourier Métodos matemáticos Primavera 018 Genaro Luna Carreto 15 de Abril 018. :05 pm. 0.1. Funciones periódicas Una función f(t) es llamada periódica si existe tal que t R : f(t)
Práctica 5: Transformada de Fourier
Práctica 5: Transformada de Fourier Apellidos, nombre Apellidos, nombre SOLUCION Grupo Puesto Fecha El objetivo de esta práctica es mostrar al alumno el modo de obtener la Transformada de Fourier (TF de
Series de Fourier Trigonométricas
Capítulo 4 Series de Fourier Trigonométricas En el capítulo anterior hemos visto que toda función f L ([, ];R) se puede desarrollar en serie trigonométrica de senos y cosenos del tipo a + X (a n cos nx
PRÁCTICA INTEGRACIÓN MÚLTIPLE. SUMAS DE RIEMANN CURSO CÁLCULO II. Práctica 1 (17/02/2015)
PRÁCTICA INTEGRACIÓN MÚLTIPLE. SUMAS DE RIEMANN CURSO 204-205 CÁLCULO II Prácticas Matlab Práctica (7/02/205) Objetivos o o o Calcular integrales dobles mediante sumas de Riemann. Representar superficies
Integral de Fourier y espectros continuos
9 2 2 2 Esta expresión se denomina forma de Angulo fase (o forma armónica) de la serie de Fourier. Integral de Fourier y espectros continuos Las series de Fourier son una herramienta útil para representar
2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS
º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS PRÁCTICA 7 SISTEMAS. UTILIDADES MATLAB. TRANSFORMADAS Y ANTITRANSFORMADAS Matlab permite obtener transformadas y antitransformadas de Fourier, Laplace
Las operaciones aritméticas básicas en MATLAB son las más sencillas que se pueden
CAPÍTULO 5 TEMAS 5.1 Aritmética 5.1.1 Variables y Operaciones Básicas Las operaciones aritméticas básicas en MATLAB son las más sencillas que se pueden realizar en este programa. Si asignamos valores a
Introducción a los comandos y funciones del programa Matlab en preguntas y respuestas
Editorial de la Universidad Tecnológica Nacional Introducción a los comandos y funciones del programa Matlab en preguntas y respuestas Lic Adriana Favieri Facultad Regional Haedo Universidad Tecnológica
Práctica 4: Series de Fourier
Práctica 4: Series de Fourier Apellidos, nombre Apellidos, nombre SOLUCION Grupo Puesto Fecha El objetivo de esta práctica es profundizar en la respuesta de sistemas LTI, comprobar el comportamiento de
ECUACIONES DIFERENCIALES DE PRIMER ORDEN CURSO CÁLCULO II. Práctica 8 (4/04/2017) Comandos de Matlab
ECUACIONES DIFERENCIALES DE PRIMER ORDEN CURSO 6-7 CÁLCULO II Prácticas Matlab Práctica 8 (4/4/7) Objetivos o Representar las isoclinas de una e.d.o. de primer orden como apoyo para trazar un campo de
PRACTICAS SEÑALES Y SISTEMAS
SEÑALES Y SISTEMAS. PRÁCTICAS 3/4 PRACTICAS SEÑALES Y SISTEMAS INTRODUCCIÓN.- Realización y presentación de las prácticas Para entregar las prácticas correctamente deberá seguirse el siguiente criterio
Ecuaciones Diferenciales Tema 4. Series de Fourier
Ecuaciones Diferenciales Ester Simó Mezquita Matemática Aplicada IV 1 1. Funciones periódicas 2. Serie de Fourier de una función periódica 3. Convergencia. Teorema de Dirichlet. Fenómeno de Gibbs 4. Forma
Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases...
Álgebra Lineal Grupo A Curso 2011/12 Espacios vectoriales. Bases 61) Dados los vectores v 1,v 2,...,v n linealmente independientes, probar que también lo son los vectores u 1 = v 1 u 2 = v 1 + v 2... u
3 RAÍCES REALES DE ECUACIONES NO-LINEALES. 3.1 Método de la bisección
3 RAÍCES REALES DE ECUACIONES NO-LINEALES Sea f: R R. Dada la ecuación f(x) = 0, se debe encontrar un valor real r tal que f(r) = 0. Entonces r es una raíz real de la ecuación Si no es posible obtener
Capítulo 2 Análisis espectral de señales
Capítulo 2 Análisis espectral de señales Objetivos 1. Se pretende que el alumno repase las herramientas necesarias para el análisis espectral de señales. 2. Que el alumno comprenda el concepto de espectro
ACE Análisis de Circuitos Eléctricos
º Ingeniería de Telecomunicación - Escuela Politécnica Superior Universidad Autónoma de Madrid ACE Análisis de Circuitos Eléctricos Práctica (ª Parte) Introducción a la Transformada de Laplace er. Apellido
Índice. Tema 8: Series de Fourier. Funciones periódicas. Algunas funciones periódicas. Marisa Serrano, José Ángel Huidobro
Índice Marisa Serrano, José Ángel Huidobro 1 Universidad de Oviedo email: [email protected] email: [email protected] Funciones periódicas Algunas funciones periódicas f : R R es una función periódica
PRÁCTICA INTEGRACIÓN MÚLTIPLE. CAMBIO DE VARIABLE CURSO CÁLCULO II. Práctica 2 (16/02/2016)
PRÁTIA INTEGRAIÓN MÚLTIPLE. AMBIO DE VARIABLE URSO 015-016 ÁLULO II Prácticas Matlab Práctica (16/0/016) Objetivos o alcular integrales dobles mediante cambio de variable o Definir dominios regulares en,
Conceptos básicos de funciones.
Conceptos básicos de funciones. En este documento usted podrá encontrar la solución de los ítems 23, 24, 25, 26, 27, 28, 29 y 30. A continuación se detalla cada solución: Pregunta 23 Sea M el domino de
Series de potencias y de Fourier
Capítulo 2. Series de potencias y de Fourier En este capítulo estudiaremos dos casos particulares, pero muy importantes, de series de funciones: las series de potencias y las series de Fourier. Ambas series
PRÁCTICA NÚMEROS REALES Y COMPLEJOS CURSO Práctica 1 (21- IX-2016)
PRÁCTICA NÚMEROS REALES Y COMPLEJOS CURSO 016-017 Prácticas Matlab Práctica 1 (1- IX-016) Objetivos Iniciarse en el uso de Matlab. Conocer comandos básicos de Matlab para realizar cálculos con números
DETERMINANTES. Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: 2x + 3y = x + 6y = 16.
DETERMINANTES REFLEXIONA Y RESUELVE Determinantes de orden 2 Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: 2x + y = 29 5x y = 8 a b x y = 5 10x + 6y = 16 4x
METODOS NUMERICOS TALLER 3, SEMESTRE
y y METODOS NUMERICOS 67 TALLER SEMESTRE Tema: Método de Newton para resolver FX)= Métodos iterativos de Jacobi Gauss-Seidel y relajación Se recomienda realizar los ejercicios propuestos en el teto guía
Demostración de la Transformada de Laplace. La serie de Fourier
Demostración de la Transformada de Laplace En el presente documento demostraremos matemáticamente si las siguientes igualdades se cumplen, para esto empezaremos haciendo un análisis de la serie de Fourier,
1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: con el método de diferencias centrales, existe y es única.
I. Resolución numérica de Problemas de Contorno en E.D.O.: Métodos en diferencias finitas 1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: y (x) + 4 sen x y (x) 4
Series de Fourier de funciones periodicas. FourierSeries[ f[x], x, n] (serie compleja, hasta el termino n)
Series de Fourier Reglas para utilizar Mathematica : ) Parentesis ( ) se utilizan solo para agrupar terminos en una operacion (a+b)/(c-d) (a+b) c a^(b+c) ) Corchetes [ ] Se usan solo para el argumento
Práctica 1: Señales y análisis de Fourier
Física de las Comunicaciones 2006/2007 Práctica 1 1 Práctica 1: Señales y análisis de Fourier 1. Objetivo y contenido En esta práctica pretendemos revisar parte de la materia del tema 2 de la asignatura
Problemas para la materia de Cálculo IV
Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica Problemas para la materia de álculo IV Febrero de 5 ompilación de problemas propuestos como parte de exámenes parciales
EJERCICIOS PROPUESTOS: Interpolación
EJERCICIOS PROPUESTOS: Interpolación 1º. Determínese el polinomio de primer grado que en x = 1 toma el valor y en x 1 = toma el valor. Para ello: a) Escríbase el sistema de ecuaciones lineales que proporciona
Lista de problemas: ciclos y funciones en el lenguaje MATLAB
Lista de problemas: ciclos y funciones en el lenguaje MATLAB Esta lista de problemas está compuesta para probar si el estudiante tiene ciertas habilidades básicas de programación con arreglos, funciones
Práctica 0. (Introducción a Maple)
Departamento de Matemáticas, Universidad de Alcalá Métodos Matemáticos Simbólicos (Ing. Electrónica) Curso 2005-2006 Práctica 0 (Introducción a Maple) 1. Averiguar en que librería se encuentra la función
CAPITULO 9. TRANSFORMADA DE FOURIER Transformada de Fourier
CAPITULO 9. TRANSORMADA DE OURIER 9.. Transformada de ourier Sea una función definida en un intervalo finito y desarrollable en serie de ourier, por tanto, la podemos representar como una superposición
Prácticas de Métodos Numéricos Prof. Tomás Martín
%%Control 1. Lecciones A-B Tomás Martín Hernández Iniciada: 16 de febrero de 2009 10:49 Preguntas: 5 Prácticas de Métodos Numéricos Prof. Tomás Martín 1. (Puntos: 0,5) Importante: El separador decimal
Introducción a Matlab y Simulink
Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Eléctrica Introducción a Matlab y Simulink Preparado por Diego Sepúlveda J. Version.0, 6 de agosto de 2002 Índice
MATERIA: CONTROL DIGITAL-LAB
MATERIA: CONTROL DIGITAL-LAB PRACTICA NUM 1: SEÑALES CONTINUAS Y DISCRETAS CON MATLAB DEPARTAMENTO: TECNOCIENCIAS 2 ALUMNOS POR EQUIPO(MAXIMO) ALUMNO: ALUMNO: FECHA: INTRODUCCION El objeto básico usado
2. Sistemas de ecuaciones lineales
2 Sistemas de ecuaciones lineales 2 Ejercicios resueltos Ejercicio 2 Estudiar el número de condición de Frobenius de la matriz a b A a + ε b Solución: El determinante de A es A ab + ba + ε b ε Si b 0 y
Aproximación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Aproximación 1 / 19
Aproximación Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Aproximación 1 / 19 Motivación Intro Aproximar una función f consiste en reemplazarla con una
MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA
1. APROXIMACIÓN DE ÁREAS BAJO UNA CURVA Hay infinidad de funciones extraídas del mundo real (científico, económico, física )para las cuales tiene especial relevancia calcular el área bajo su gráfica. Vamos
Práctica 4: Series de Fourier
Práctica 4: Series de Fourier Apellidos, nombre Apellidos, nombre Grupo Puesto Feca El objetivo de esta práctica es profundizar en la respuesta de sistemas LTI, comprobar el comportamiento de estos sistemas
La transformada rápida de Fourier (FFT) y otros algoritmos para la implementación de la DFT
1 La transformada rápida de Fourier (FFT) y otros algoritmos para la implementación de la DFT Existen diversas formas de implementar la transformada discreta de Fourier (DFT). Para estudiar algunas de
Análisis Espectral mediante DFT PRÁCTICA 4
Análisis Espectral mediante DFT PRÁCTICA 4 (2 sesiones) Laboratorio de Señales y Comunicaciones 3 er curso, Ingeniería Técnica de Telecomunicación Sistemas de Telecomunicación 1 PRÁCTICA 4 Análisis Espectral
Victrola de La Transformada de Fourier
Victrola de La Transformada de Fourier p. 1/2 Victrola de La Transformada de Fourier Introducción para Músicos Juan I Reyes [email protected] artelab Laboratorios de Artes Electrónicas Victrola de La
Derivadas laterales. Derivabilidad y continuidad en un punto. Derivabilidad y continuidad en un intervalo
Derivadas laterales Se define la derivada por la izquierda de f(x) en el punto x = a : Se define la derivada por la derecha de f(x) en el punto x = a : A ambas derivadas se les llama derivadas laterales.
: ING4520 Programación Matemática Semestre II : Juan Pérez Retamales : Francisco Vergara Matías Mujica Manuel Pavez
Curso Profesor Auiliares : ING0 Programación Matemática Semestre 0 - II : Juan Pérez Retamales : Francisco Vergara Matías Mujica Manuel Pavez PAUTA PREGUNTA - PRUEBA Pregunta (Total:.0 puntos) Las posiciones
ACTIVIDADES INICIALES. 14.I. Con ayuda de la calculadora, obtén la suma de los cien primeros términos de esta progresión: 5, 5, 5 5, 25, 25 5,...
Solucionario 4 Integral definida ACTIVIDADES INICIALES 4.I. Con ayuda de la calculadora, obtén la suma de los cien primeros términos de esta progresión: 5, 5, 5 5, 5, 5 5,... 4.II. Epresa la función f
Lección: Ortogonalidad y Series de Fourier
Lección: Ortogonalidad y Series de Fourier Dr. Miguel Angel Uh Zapata, Centro de Investigación en Matemáticas, Unidad Mérida Facultad de Matemáticas, UADY Octubre 2015 Miguel Uh Lección: Ortogonalidad
INTEGRALES DEFINIDAS. CÁLCULO DE ÁREAS
INTEGRALES DEFINIDAS. CÁLCULO DE ÁREAS. Dada la función f() = -. Calcular f () d. a) Representar y = ( ) 3. b b) Calcular la integral indefinida ( 3 ) d a c) Justificar el resultado de b en función de
Comenzando a usar MatLab:
Universidad Simón Bolívar Núcleo del Litoral Departamento de Tecnología Industrial TI-2284. Laboratorio de Sistemas de Control PRACTICA 1. INTRODUCCION A MATLAB Introducción: MatLab es una herramienta
Aproximación funcional por mínimos cuadrados
Aproximación funcional por mínimos cuadrados Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Introducción
ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 5: Transformada Discreta de Fourier Parte I
1 ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 5: Transformada Discreta de Fourier Parte I Este laboratorio está compuesto por dos sesiones en la cuales se estudiará la transformada
PROBLEMAS DEL TALLER DE MATEMÁTICAS (CÁLCULO 1) cos(n) n 3. S =
PROBLEMAS DEL TALLER DE MATEMÁTICAS (CÁLCULO 1) 1. (Sumas finitas [1]) Calcular la suma S = 100 n=1 cos(n) n 3. La suma es S 0,448572947508520. >> format long %Primera y ultima vez que escribimos esta
Laboratorio #1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el método Completando Cuadrados.
Laboratorio #1 Ecuaciones Cuadráticas I I.- Resolver las ecuaciones siguientes utilizando el método de Factorización. 1) 121 25x = 0 2) 27az 2 75a 3 = 0 3) 15y 2 = 21y II.- Resolver las ecuaciones siguientes
4.1. Qué es un número complejo. Representación geométrica.
Tema Números complejos.. Qué es un número complejo. Representación geométrica. Un número complejo z C C es el conjunto de los números complejos es una expresión de la forma z a + b i en la que a, b R a
Análisis de Fourier: efectos de un medio físico ideal en la transmisión de una señal digital
Análisis de Fourier: efectos de un medio físico ideal en la transmisión de una señal digital Pedro Manuel Díaz Varela Estudiante de Ingeniería en Computación Universidad Nacional del Sur Avda. Alem 153
Actividades del final de la unidad
Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,
ÁLGEBRA LINEAL I Práctica 5
ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2
Herramientas computacionales para la matemática MATLAB: Álgebra Simbólica
Herramientas computacionales para la matemática MATLAB: Álgebra Simbólica Verónica Borja Macías Junio 2012 1 Introducción MATLAB tiene algunos tipos diferentes de datos, incluidos datos numéricos de precisión
Lista de ejercicios # 5
UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS MA-005 Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Segundo Semestre del 206 Lista de ejercicios # 5 Ecuaciones diferenciales en derivadas
Matemáticas I 1º BACHILLERATO
Matemáticas I 1º BACHILLERATO Introducción Estas prácticas constituyen un complemento esencial de los esquemas. Su finalidad principal es la de afianzar los conocimientos expuestos en el módulo. Las actividades
Práctica 6: Operadores globales
Práctica 6: Operadores globales Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es presentar al alumno los fundamentos de las transformadas discretas lineales y parte
N o de examen: ESCRIBIR LAS RESPUESTAS AQUÍ Este examen consta de diez preguntas tipo verdadero/falso y diez ejercicios
N o de examen: NOMBRE: C.I.: Examen de Geometría y Álgebra Lineal 1 22 de julio de 2014 Instituto de Matemática y Estadística Rafael Laguardia Facultad de Ingeniería ESCRIBIR LAS RESPUESTAS AQUÍ 1 2 3
FÍSICA II VIBRACIONES MECÁNICAS UNIVERSIDAD POLITÉCNICA DE MADRID ETSI MINAS DEPARTAMENTO DE FÍSICA APLICADA A LOS RECURSOS NATURALES
1 FÍSICA II VIBRACIONES MECÁNICAS UNIVERSIDAD POLITÉCNICA DE MADRID ETSI MINAS DEPARTAMENTO DE FÍSICA APLICADA A LOS RECURSOS NATURALES T1 Vibraciones mecánicas 2 ÍNDICE» 1.1. Ecuaciones del movimiento
Programa del Diploma: Matemáticas
Programa del Diploma: Matemáticas Nivel: SL Topic Content Año 1 Conocimientos anteriores Conjuntos numéricos, aproximación, estimación,% de error, notación científica, intervalos, desigualdades (propiedades),
