GUÍA DE EJERCICIOS UNIDAD II



Documentos relacionados
Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

LÍMITES DE FUNCIONES. CONTINUIDAD

Tema 7. Límites y continuidad de funciones

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14

Tema 2 Límites de Funciones

CÁLCULO VECTORIAL Notas de clase. Profesor: A. Leonardo Bañuelos Saucedo

Lección 24: Lenguaje algebraico y sustituciones

APLICACIONES DE LA DERIVADA

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Funciones definidas a trozos

JOSE VICENTE CONTRERAS JULIO CALCULO INTEGRAL LA ANTIDERIVADA

INECUACIONES: DESIGUALDADES. 3. Usa métodos para solucionar desigualdades lineales y cuadráticas.

Integrales paramétricas e integrales dobles y triples.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

Matemática I Extremos de una Función. Definiciones-Teoremas

1.4.- D E S I G U A L D A D E S

Profr. Efraín Soto Apolinar. Factorización

Biblioteca Virtual Ejercicios Resueltos

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

ANÁLISIS DE FUNCIONES RACIONALES

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y

1-Comportamiento de una función alrededor de un punto:

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente.

LÍMITES Y CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO

DESIGUALDADES página 1

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS

Polinomios y fracciones algebraicas

Se introduce en la Ventana de Álgebra la expresión cuya primitiva queremos calcular. Con la expresión seleccionada

EL MÉTODO DE LA BISECCIÓN

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS

Tema 6: Ecuaciones e inecuaciones.

x : N Q 1 x(1) = x 1 2 x(2) = x 2 3 x(3) = x 3

5 Ecuaciones lineales y conceptos elementales de funciones

Límites y Continuidad de funciones

UNIDAD I NÚMEROS REALES

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Selectividad Septiembre 2009 SEPTIEMBRE Opción A

SOLUCIÓN DE INECUACIONES DE UNA VARIABLE

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

M a t e m á t i c a s I I 1

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS

El rincón de los problemas. Oportunidades para estimular el pensamiento matemático. Triángulos de área máxima o de área mínima Problema

Descomposición factorial de polinomios

1 Límites de funciones

Qué son los monomios?

Polinomios y Ecuaciones

Características de funciones que son inversas de otras

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Matrices Invertibles y Elementos de Álgebra Matricial

x [ 64, ] se tiene:

Los números racionales

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { }

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0100

La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx

EXPRESIONES ALGEBRAICAS. POLINOMIOS

Módulo 9 Sistema matemático y operaciones binarias

Ejercicio Nº 3: Realizar aumentos en una Tabla de Sueldos

Unidad: Representación gráfica del movimiento

Cálculo Simbólico también es posible con GeoGebra

DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA BÁSICA 1 SEGUNDO SEMESTRE PROYECTO No. 2

NOCIONES BÁSICAS DE LA GEOMETRÍA ANALÍTICA

1. Hallar los extremos de las funciones siguientes en las regiones especificadas:

Gráfica de una función

TÍTULO: CUÁNDO SE PUEDE APLICAR LA INTEGRAL DEFINIDA PARA RESOLVER UN PROBLEMA? AUTOR: Dr. Reinaldo Hernán de z Camacho.

Departamento de Matemáticas

NÚMEROS NATURALES Y NÚMEROS ENTEROS

SISTEMA DIÉDRICO PARA INGENIEROS. David Peribáñez Martínez DEMO

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Sistemas de numeración y aritmética binaria

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD

Claves para las fórmulas: Incrementos Decrementos Porcentajes Múltiplos - Partes - Diferencia

Objetivos: Al inalizar la unidad, el alumno:

Capitulo 4. Polinomios

TÉCNICAS DE INTEGRACIÓN

REPRESENTACIÓN DE FUNCIONES

AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES

CASO PRÁCTICO DISTRIBUCIÓN DE COSTES

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: a) lim b) lim c) lim d) lim

(Tomado de:

Transcripción:

UNIDAD II: INTEGRAL DEFINIDA UNIVERSIDAD DE CARABOBO FACULTAD DE INGENIERÍA ESTUDIOS BÁSICOS DEPARTAMENTO DE MATEMÁTICA ANÁLISIS MATEMÁTICO II Corregido por: Prof. AOUAD Jamil Prof. LAURENTÍN María Prof. MORENO Guillermo Elaborado por: Prep. ACUÑA Gabriela 1

UNIDAD II: INTEGRAL DEFINIDA UNIVERSIDAD DE CARABOBO FACULTAD DE INGENIERÍA ESTUDIOS BÁSICOS DEPARTAMENTO DE MATEMÁTICA ANÁLISIS MATEMÁTICO II GUÍA DE EJERCICIOS UNIDAD II Corregido por: Prof. AOUAD Jamil Prof. LAURENTÍN María Prof. MORENO Guillermo Elaborado por: Prep. ACUÑA Gabriela 2011 2

UNIDAD II: INTEGRAL DEFINIDA 1. NOTACIÓN SIGMA Es una notación que se usa para facilitar la escritura de la suma de muchos términos., Donde: : límite superior de la suma : límite inferior de la suma : índice de la suma : i-ésimo término de la suma = + + + + Para representar al índice de la suma puede utilizarse cualquier otra letra j, k, l... Ejemplo 1.1 A continuación se presentan algunos ejemplos de cálculo de sumatorias Calcular la suma de las siguientes sumatorias: a. b. c. 2+2=21+2+22+2+23+2= =1 1 +3 = 1 5+3 + 1 6+3 + 1 7+3 + 1 8+3 = 2=2+2+2+2= =1 Ejemplo 1.2 Escriba la suma en notación sigma: a. b. 1 2 + 1 22 + 1 23 + + 1 210 = ln2+ln3+ln4+ +ln21=+ ó bien Existen sumatorias cuya resolución es más compleja, es por ello que existen propiedades y fórmulas que nos permiten calcular su suma. A continuación se presentan algunas propiedades y fórmulas de la suma. Ejercicio recopilado del libro PURCELL E., VARBERG D. & RIGDON S. 2001 Ejercicio recopilado del libro STEWART, James. 2008. 3

UNIDAD II: INTEGRAL DEFINIDA PROPIEDADES DE LA SUMATORIA: 1. Sea el i-ésimo término de la suma. Entonces: = 2. Sean y i-ésimos términos diferentes entre sí de la suma. Entonces: ± = ± 3. Sea <, entonces: = + 4. Propiedad de la suma telescópica 1= 1 FÓRMULAS DE LA SUMATORIA: 1. = 2. 3. 4. 5. = +1 2 = +12+1 6 = +1 4 = +16 +9 + 1 30 En el ejemplo 1.3 se muestra la resolución de diversas sumatorias donde se aplican varias fórmulas y propiedades de la suma. 4

UNIDAD II: INTEGRAL DEFINIDA Ejemplo 1.3 Calcular la suma: a. +1 Solución a: Se resuelve el producto notable y se aplica la propiedad dos 2 de la sumatoria vista anteriormente, +2 +1= +2 +1 Es necesaria la aplicación de las siguientes fórmulas para la resolución = +16 +9 + 1, fórmula 5 de la sumatoria 30 Se sustituyen los valores correspondientes, de manera que: De igual manera, Además, = 5005016500 +9500 +499 30 =6,2813.10 = +12+1, fórmula 3 de la sumatoria 6 = 5005011001 6 =83583500 =, fórmula 1 de la sumatoria Se aplica entonces esta fórmula, 1=500 Entonces, +2 +1=6,2813.10 +283583500+500 5

UNIDAD II: INTEGRAL DEFINIDA Finalmente, + =,. b. 4 Solución b: Se aplica la primera propiedad de la suma, de manera que: 4= 4 Ahora bien, para poder aplicar las fórmulas de la suma es necesario que estas comiencen en uno 1, para lo cual se realiza la siguiente operación: = +, Propiedad 3 de la sumatoria Como lo que se quiere es la suma de =5 hasta =30, entonces: De igual manera, Por lo tanto, = 4=4 4 4= 4 4 Se aplican las fórmulas correspondientes fórmulas 1 y 4 de la sumatoria y se sustituyen, 4= 302 30+1 2 4 42 4+1 2 4 430+44 Finalmente, = 6

UNIDAD II: INTEGRAL DEFINIDA Otra alternativa: Para lograr que la suma comience en uno 1 se realiza el siguiente cambio de variable: = 4 Entonces, si =5 =1 límite inferior de la suma si =30 =26 límite superior de la suma Se sustituye en la suma, Entonces, 4=+4 4 +4 4 = +12 +48+60 Se aplican las propiedades y fórmulas correspondientes, de manera que: +4 4 = 26 26+1 4 +12 2626+1226+1 6 +48 2626+1 +6026 2 + = Como era de esperarse el resultado es el mismo. Esta alternativa de resolución de sumas mediante cambio de variable es recomendada para cuando se tienen sumatorias donde el límite inferior es negativo. 7

UNIDAD II: INTEGRAL DEFINIDA Ejercicios propuestos 1. Calcular la suma de las siguientes sumatorias a. b. c. d. e. 7 1 +3 2+1 2 1 +2 10 10 2. Encuentre el número n tal que a. =78 b. 2 +1 =305 3. Si se sabe que =380 y además =49, determinar el valor de: 1 4. Si se sabe que +3+=10940, determinar el valor de Z 8

UNIDAD II: INTEGRAL DEFINIDA 2. PARTICIÓN: PARTICIÓN: se llama partición del intervalo,, al conjunto que cumpla con las siguientes condiciones: i. Conjunto finito, = y = ii. Conjunto ordenado, < < < < < Es así como, =,,,,,,,, = = Figura 1.1. Partición del intervalo, 2.1. LONGITUD DEL SUBINTERVALO : es la distancia que existe entre los extremos de un subintervalo. Siendo un subintervalo del intervalo,:, ;, ;, ;, Entonces, las longitudes de los subintervalos serán: = =... =... = Cuando las longitudes de los subintervalos son diferentes se dice que la partición es irregular, esto es: = =+ =+ +... =+ + + + Tal y como se muestra en la figura 1.1 9

UNIDAD II: INTEGRAL DEFINIDA Sin embargo, = Por otra parte, cuando las longitudes de los subintervalos son iguales se dice que la partición es regular, esto es: Siendo n el número de subintervalos de la partición: Entonces, 2... 2.2. DIÁMETRO O NORMA DE UNA PARTICIÓN : es la máxima longitud de un intervalo para una partición dada. Es decir, á 2.3. AFINO DE UNA PARTICIÓN: es una partición que se forma al agregar nuevos elementos a una partición ya establecida. Se dice entonces que es afino de si: Figura 2.1. Representación de un afino de P 10

UNIDAD II: INTEGRAL DEFINIDA Ejemplo 2.1 Para cada uno de los siguientes conjuntos determinar: a. Cuáles son particiones del intervalo 2,8 b. Si se trata de una partición regular o irregular c. Norma de la partición d. Existencia de un afino de la partición = 2,0, 3,6,8; = 2,0,2,4,6,8; =4,5,7,8; = 2, 1,5,7,8; = 2,0,1,2,3,4,6,8 ; = 2, 1,0, 1 2,1,2,3,7 2,4,6,8 Solución a: no es partición de 2,8 debido a que el conjunto no está ordenado en forma creciente. no es partición de 2,8 debido a que el primer termino no corresponde con el extremo inferior del intervalo., y son particiones de 2,8 debido a que se cumple que, el primer y último elemento de cada partición corresponden con los extremos del intervalo y están ordenados de forma creciente. Solución b: Debido a que, Entonces, Sea =,,,,, =0 2=2 =2 0=2 =4 2=2 =6 4=2 = = = es una partición regular Sea =,,,, = 1 2=1 =5 1=4 =7 5=2 11

UNIDAD II: INTEGRAL DEFINIDA Debido a que, Entonces, =8 7=1 = es una partición irregular Sea =,,,,,,, =0 2=2 =1 0=1 =2 1=1 =3 2=1 =4 3=1 =6 4=2 =8 6=2 es una partición irregular Sea =,,,,,,,,,, = 1 2=1 =0 1=1 = 1 2 0=1 2 =1 1 2 =1 2 =2 1=1 =3 2=1 = 7 2 3=1 2 =4 7 2 =1 2 =6 4=2 =8 6=2 es una partición irregular Basta con que una de las longitudes del subintervalo difiera de las demás para concluir que la partición es irregular. 12

UNIDAD II: INTEGRAL DEFINIDA Solución c: á 2 á 4 á 2 á 2 Solución d: Si se observan las particiones, 2,0,2,4,6,8; 2,0,1,2,3,4,6,8 ; 2,1,0, 1 2,1,2,3,7 2,4,6,8 Se encuentra que de derivan y por lo tanto estas particiones son afinos de. En la figura 2.2 se observa la inclusión de los nuevos elementos a la partición lo que genera a, se dice entonces que está incluido en. Figura 2.2. Representación del afino P5 De igual manera en la figura 2.3 se observa que se incluyen nuevos elementos a la partición lo que genera a, y por lo tanto se dice que está incluido en. Figura 2.3. Representación del afino P6 Entonces 13

UNIDAD II: INTEGRAL DEFINIDA 3. SUMA DE RIEMANN Sea continua en,, con 0 para toda en,. Si el i-ésimo subintervalo está denotado por, entonces, es un valor tal que: Por lo tanto, la suma e Riemann viene dada por: Figura 3.1. Suma de Riemann donde toma valores positivos Figura 3.2.. Suma de Riemann donde toma valores positivos y negativos La suma de Riemann representa geométricamente la aproximación del área de la región encerrada entre el eje x, la curva y las rectas = y =,, siempre y cuando se trate de una función positiva en,,, tal como se observa en la figura 3.1.. En los casos donde la función toma valores negativos, positivos y ceros la suma de Riemann representa la diferencia de las áreas por encima y por debajo del eje x, como se observa en las figura 3.2. A continuación se resuelven algunos ejemplos de sumas de Riemann 14

UNIDAD II: INTEGRAL DEFINIDA Ejemplo 3.1: Calcular la suma de Riemann para 1, cuya partición del intervalo 10,5 está definida por 10,8,6,2,1,1,3,5 si Solución: La función a la cual se le calculará la suma de Riemann es una parábola, la figura 3.1.a muestra la gráfica de la misma, así como también la representación de la suma de Riemann para cuando ; como es de observarse, el hecho de que cumpla con esta condición significa que la función será evaluada en los extremos superiores de cada subintervalo obteniéndose rectángulos tanto como por encima como por debajo de la función. Figura 3.1.a. Suma de Riemann 15

UNIDAD II: INTEGRAL DEFINIDA Para la resolución del ejercicio es de mucha ayuda realizar una tabla semejante a la tabla 3.1, donde se presenta la longitud de cada subintervalo y el valor de la función evaluado en cada. Tabla 3.1. Resolución del ejemplo 3.1 1-10 -8 2 57 2-8 -6 2 31 3-6 -2 4 3 4-2 -1 1 1 5-1 1 2 3 6 1 3 2 13 7 3 5 2 31 La columna, indica el número de subintervalos de la partición, la columna representa los extremos inferiores de cada subintervalo y la columna, representa a los extremos superiores de cada subintervalo de la partición. Esta tabla organiza la información necesaria para el cálculo de la suma de Riemann, de manera de que solo se sustituyen los datos encontrados en ella en la definición de suma de Riemann. Los punto rojos en la figura 3.1.a representan los valores de evaluados en la función, así como la altura de cada rectángulo en cada subintervalo de la partición. De acuerdo a la partición asignada la definición de la suma de Riemann queda como: = = + + + + + + Se sustituyen los datos necesarios de la tabla 3.1 = 572 + 312 + 34 + 11 + 32 + 132 + 312 Entonces, = Es posible cambiar el punto de evaluación de la función, es decir de, de manera que la suma de Riemann se verá afectada por dicha elección cambiando su valor final. Para verificar lo mencionado 16

UNIDAD II: INTEGRAL DEFINIDA anteriormente se calcularan dos sumas de Riemann para la misma función pero con y repitiendo el mismo procedimiento. Se le agregan varias columnas más a la tabla 3.1 las cuales nos permitirán conocer las imágenes de la función cuando se evalúan los diferentes Tabla 3.1.2. Resolución del ejemplo 3.1 con nuevos = = 1-10 -8 2-9 57 91 73 2-8 -6 2-7 31 57 43 3-6 -2 4-4 3 31 13 4-2 -1 1 3 2 1 3 7 4 5-1 1 2 0 3 1 1 6 1 3 2 2 13 3 7 7 3 5 2 4 31 13 21 Se sustituyen los valores correspondes en las igualdades siguientes, de manera que: con = = =912+ 572+ 314+ 31+ 12+ 32+ 132 = con = + = =732+ 432+ 134+ 7 1+ 12+ 72+ 212 4 = En las figuras 3.1.b y 3.1.c se observan como varía la suma de Riemann de acuerdo a la escogencia del para una misma función. 17

UNIDAD II: INTEGRAL DEFINIDA Figura 3.1.b. Suma de Riemann Figura 3.1.c. Suma de Riemann 18

UNIDAD II: INTEGRAL DEFINIDA Ejemplo 3.2: Dada la función = 1 y = 1, 1 2,1 2,3 2,2 determinar la suma de Riemann si perteneciente al intervalo 1,2, Solución: Se define la función como: 1 si 1 si ; entonces 1 si 1 si,,, Figura 3.2. Suma de Riemann = + La figura 3.2 muestra la representación gráfica de la suma de Riemann para = + y los puntos rojos corresponden al valor de esos evaluados en la función 19

UNIDAD II: INTEGRAL DEFINIDA Nuevamente se realiza una tabla para recopilar toda la información necesaria para la resolución del ejercicio. Tabla 3.2. Resolución del ejemplo 3.2 = + 1-1 1 2 1 2 1 2 3 4 2 1 2 1 2 1 0 1 3 1 2 3 2 1 1 0 4 3 2 2 1 2 2 3 Se sustituyen los valores correspondientes en la igualdad siguiente: = = + + + = 3 4 1 2 +11+ 01+ 31 2 Finalmente, = Ejemplo 3.3: Sea la función definida por: = 4 si y sea = 1, 1 2+1 si 2,1 4,5 4,8 3,3 una partición del intervalo 1,3. Determinar la suma de Riemann, tomando un punto tal que: a. = 2 b. = + Solución: Para la resolución del ejercicio se construye la gráfica de la función y la tabla de datos que contienen a los elementos de la partición, la longitud del subintervalo, los distintos donde será evaluada la función y las imágenes de la función 20

UNIDAD II: INTEGRAL DEFINIDA Figura 3.3.a. Suma de Riemann 2 Figura 3.3.b. Suma de Riemann 21

UNIDAD II: INTEGRAL DEFINIDA Tabla 3.2. Resolución del ejercicio 3.3 = = + 1-1 1 2 1 2-1 7 8 3 207 64 2 1 2 1 4 3 4 0 1 4 4 63 16 3 1 4 5 4 1 1 3 4 3 55 16 4 5 4 8 3 17 12 2 13 8 5 87 64 5 8 3 3 1 3 3 11 4 7 13 2 Se sustituyen los valores correspondientes, tal y como se ha hecho en los ejercicios anteriores a. R P con = 2 b. con = + = = + + + + =3 1 2 + 43 + 31+ 517 4 12 + 71 3 = 207 64 1 63 + 2 16 3 4 = 55 + 16 = 1+ 87 64 17 12 + 13 2 1 3 22

UNIDAD II: INTEGRAL DEFINIDA 4. SUMA SUPERIOR Y SUMA INFERIOR Sea una función definida en,, y una paritición del intervalo. =,,,,,, Siendo el máximo absoluto de en,, es decir, Figura 4.1. Suma superior Sea una función definida en, y una paritición del intervalo.,,,,,, Siendo el mínimo absoluto de en,, es decir, Figura 4.2. Suma inferior Las sumas superior e inferior son sumas de Riemann que cumplen con ciertas condiciones. En la suma superior existe un máximo dentro de cada subintervalo, este máximo delimita la altura de los rectángulos de cada subintervalo y por lo tanto su cálculo corresponde a la aproximación por exceso de la suma de Riemann; mientras que el cálculo de la suma inferior corresponde a la aproximación por defecto de esta, ya que existe un mínimo dentro de cada subintervalo de la partición que delimita la altura de los rectángulos de cada subintervalo. 23

UNIDAD II: INTEGRAL DEFINIDA A continuación se resuelven algunos ejemplos de suma superior e inferior. Ejemplo 4.1: Calcular la suma superior e inferior para 1,, cuya partición del intervalo 10,5 está definida por 10, 8,6,2,1,1,3,5 Solución: Inicialmente es recomendable realizar la gráfica de la función para visualizar mejor los puntos críticos de la misma. En la figura 4.1.a se observa la gráfica de la función y la representación de la suma superior, los máximos absolutos de cada subintervalo, antes de llegar al vértice, corresponden a los extremos inferiores de cada subintervalo, y los puntos máximos de cada subintervalo luego del vértice, corresponden a los extremos superiores de cada subintervalo. Figura 4.1.a. Suma superior 24

UNIDAD II: INTEGRAL DEFINIDA En la figura 4.1.b se observa la representación de la suma inferior, en este caso los mínimos absolutos de cada subintervalo, antes de llevar al vértice, corresponden a los extremos superiores de cada subintervalo y, luego del vértice, los mínimos corresponden a los extremos inferiores de cada subintervalo. Entre el subintervalo 1,1 se encuentra el vértice de la parábola que corresponde al mínimo absoluto de ese subintervalo, pero si se observa la partición ese punto no está incluido como elemente de la partición, sin embargo debe tomarse en cuenta como único punto mínimo del subintervalo y evaluarse en la función. Figura 4.1.b. Suma inferior Se realiza una tabla semejante a la construida en los ejercicios de suma de Riemann, solo que con información referente a los puntos donde la función toma valores máximos y mínimos en cada subintervalo, así como la evaluación de estos puntos en la función y. 25

UNIDAD II: INTEGRAL DEFINIDA Tabla 4.1 Resolución del ejercicio 4.1 1-10 -8 2-10 -8 91 57 2-8 -6 2-8 -6 57 31 3-6 -2 4-6 -2 31 3 4-2 -1 1-2 -1 3 1 5-1 1 2 1 1 2 3 3 4 6 1 3 2 3 1 13 3 7 3 5 2 5 3 31 13 La igualdad para el cálculo de la suma superior es la siguiente:,= = + + + + + + + Se sustituyen los valores correspondientes,, = 912 + 572 + 314 + 31 + 32 + 132 + 312 = La igualdad para el cálculo de la suma inferior viene dada por:,= = + + + + + + Se sustituyen los valores correspondientes,, = 572+ 312+ 34+ 11+ 3 2+ 32+ 132= 4 Como es de apreciarse la función a la cual se le cálculo la suma superior e inferior es la misma función del ejemplo 3.1, esto nos permitirá comparar estas sumas con la suma de Riemann por lo tanto al observar los valores de las sumas y las figuras correspondientes se concluye que,<,<, 26

UNIDAD II: INTEGRAL DEFINIDA Ejemplo 4.2: +3 Sea = 7 5 si si si 2 2<<2 2 y sea P -5, - 7,-2, 2-1, 1, 5, 4 una partición del 2 2 Intervalo 5,4 determinar la suma superior, e inferior, Solución: Las figuras 4.2.a y 4.2.b representan la suma a superior e inferior de la función dada. Es recomendable realizar la grafica de la función para ubicarse en la definición de las sumas y observar los máximos y los mínimos de la misma. Figura 4.2.a Suma superior 27

UNIDAD II: INTEGRAL DEFINIDA Figura 4.2.b Suma inferior Se realizan igualmente una tabla de apoyo en la resolución del ejercicio, semejante a la tabla 4.1. Tabla 4.2. Resolución del ejercicio 4.2 1-5 2-3,5 3-2 4-0,5 5 1 6 2,5-3,5 1,5-5 -3,5-2 1,5-3,5-2 -0,5 1,5-2 -0,5 1 1,5-0,5-1 2,5 1,5 2,5 2 4 1,5 4 2,5 28 15,25 15,25 7 7 7 7 7 7,5 7 9 7,5 28

UNIDAD II: INTEGRAL DEFINIDA Se sustituyen los valores correspondientes en las igualdades:,= = + + + + + = 281,5 + 15,251,5 + 71,5 + 71,5 + 7,51,5 + 91,5 = 110,625,= = + + + + + = 15,251,5 + 471,5 + 7,51,5 = 76,125 Ejemplo 4.3: Si = 2, calcular la suma superior e inferior si se tiene una partición = 2,0,,1,2,3 perteneciente al intervalo 2,3 Solución: Se define la función: 2 = 2 si 2 si Se realiza el estudio del comportamiento de la función mediante los métodos aprendidos en la cátedra de análisis matemático I, para obtener: 2 = 2 si,, 2 si,, Los puntos rojos de las figuras 4.3.a y 4.3.b corresponden a los valores mínimos y máximos de la función en cada subintervalo. 29

UNIDAD II: INTEGRAL DEFINIDA Figura 4.3.a Suma superior Figura 4.3.b Suma inferior 30

UNIDAD II: INTEGRAL DEFINIDA Tabla 4.3. Resolución del ejercicio 4.3 1 2 0 2 2 2 4 0 2 0 1 2 1 2 1 2 0 7 8 0 3 1 2 1 1 2 2 3 1 2 4 6 9 7 8 4 1 2 1 2 2 4 0 5 2 3 1 3 2 21 4 Se vacía la información de la tabla 4.3 en las igualdades correspondientes y se calculan las sumas,= = + + + +,= 42+ 7 8 1 4 6 + 2 9 1 + 41+ 211=, 2,= = + + + +, = 02+0 1 2 + 7 8 1 +01+ 41= 2 31

UNIDAD II: INTEGRAL DEFINIDA Ejercicios Propuestos 1. Sea 3 4 y la partición 2,0,1,,3,,4, del intervalo 2,4 determinar: a. El diámetro de la partición b. La suma de Riemann, tomando en cada subintervalo un punto = 2. Sea la función definida por: = 2 5 2 1 partición de 1,6. Determinar: si si ; y sea = 1,0,1,3,4,6 una a. La suma de Riemann para = b. La suma de las áreas de los rectángulos inscritos c. La suma de las áreas de los rectángulos circunscritos 3. Sea la función definida como: = 9 si ɬ +7 si y sea = 2, 1,,,2 una partición de 2,2. Calcular empleando una aproximación a través de, 4. Sea =3 3 y =0,,,4,6 una partición del intervalo 0,6. Determinar a. La suma de Riemann empleando = b. La suma inferior c. Si a la partición anterior se le agregar los elementos y 3 calcular la suma inferior para la nueva partición y comparar los resultados obtenidos en b y c 32

UNIDAD II: INTEGRAL DEFINIDA 5. DEFINICIÓN DE INTEGRAL DEFINIDA Sea una función continua e integrable en el intervalo, y sea entonces: = lim Al disminuir la norma de la partición a su vez aumenta el número de subintervalos de manera que: = lim ; Por lo tanto, la integral definida no es más que el valor exacto de la diferencia de las áreas Teorema de integrabilidad. Si es acotada en, y si es continua, excepto en un número finito de puntos, entonces es integrable en,. En particular, si es continua en todo el intervalo,, integrable en dicho intervalo. Para facilitar el cálculo y la comprensión continuación las propiedades y teoremas de la integral definida. de algunas integrales definidas se presentan a Propiedades de la integral l definida 1. Si se define en, entonces: 2. Si es integrable en,, entonces: 0 = 3. Si es integrable en, y C es número real, entonces: = 33

UNIDAD II: INTEGRAL DEFINIDA 4. Sean y integrables en,, entonces: 5. Si es integrable en,, y, entonces: Figura 5.a. Representación gráfica de propiedad 5 6. Sean y integrables en, y, entonces: Figura 5.b.. Representación gráfica de propiedad 6 7. Sea integrable y no negativa en,, entonces: 0 34

UNIDAD II: INTEGRAL DEFINIDA 8. Si es integrable en,, y para todo en,,, siendo y los valores máximo y mínimo de la función respectivamente, entonces: Figura 5.c.. Representación gráfica de propiedad 8 A continuación algunos ejemplos en donde se aplican las propiedades de la integral definida así como la resolución de las mismas por definición. Ejemplo 5.1: Sea una función continua en 2,5,, determinar el valor de la integral en el intervalo 0,3 si se sabe que: =9 ; 4 ; 12 Solución: La figura 4.1.a muestra la aplicación de la propiedad aditiva de intervalos. La región denotada con el color más claro representa lo que se le sustrajo al intervalo 2,5 mientras que la región oscura representa el valor de la integral definida a calcular 912 3 Figura 5.1.a 35

UNIDAD II: INTEGRAL DEFINIDA De igual manera en la figura 4.1.b la región denotada con el color más claro representa lo que se le sustrajo al intervalo 0,5 mientras que la región oscura representa el valor de la integral definida a calcular. Por lo tanto: Figura 5.1.b 4 3 7 Finalmente, Ejemplo 5.2: A partir de la definición de integral definida determinar el valor de las siguientes integrales con a. b. 3 c. siendo 8 Solución a: Se divide el intervalo en n subintervalos de igual longitud Por lo tanto, 5 3 22 3 si si 9 si Se necesita un el cual como lo dice el enunciado es que se obtiene: 2 3... 36

UNIDAD II: INTEGRAL DEFINIDA entonces, = 3 1 = 1+ 4 = 4 Se sustituyen los valores correspondientes en la definición de integral definida 8 = lim lim 8 4 1 4 lim 8 64 48+12 14 Simplificando y agrupando términos semejantes lim 36 48 +192 256 lim 1 36 48 + 192 Se aplican las formulas que se encuentran en el apéndice A 256 lim 36 48+1 2 + 192+12+1 6 256 +1 4 Se hacen las simplificaciones correspondientes para evaluar los límites para finalmente obtener el valor de la integral definida = 37

UNIDAD II: INTEGRAL DEFINIDA Solución b: Si se sabe que: Entonces, 3 3 si 3 si 3 3 3 si si Por lo tanto, 3 3 3 3 3 La integral definida queda dividida en dos integrales por lo tanto, se resolverá cada una por separado, entonces para la primera integral se tiene: Por lo tanto, lim 3 3 3 3 3 3 lim 9 lim 9 9 1 lim 2 Para la segunda integral definida se tiene: 5 5 lim 52 3 2 38

UNIDAD II: INTEGRAL DEFINIDA lim lim 4 lim lim 4 4 1 4 1 4 2 4 2 1 lim 4 Se suma algebraicamente 9 2 2 Finalmente, Solución c: Como se trata de una función definida por intervalos se tiene: Primera integral: 3 5 22 3 9 lim 1 2 2 3 1 52 lim lim 12 16 12 1 16 39

UNIDAD II: INTEGRAL DEFINIDA lim 12 1 2 16 Segunda integral: 1 3 lim 3 2 2 3 1 3 lim = lim 6 54 54 1 6 = lim 54+1 2 6 = Tercera integral: =4+ = lim 4+ 94+ 1 = lim = lim 20 1 1 1 1 20 +12+1 = lim 6 +1 2 20 = Sumando, = 10 33 121 6 40

UNIDAD II: INTEGRAL DEFINIDA Finalmente, Ejemplo 5.3: Determinar el valor de 4 8 5 2 5 empleando la definición con = Si se sabe que: Además, Entonces, = 2 = 2 = 2 1 = 2 1 Por definición: lim 2 1 lim 4 8 2 1 5 2 2 2 1 5 16 16+4 lim 2 16 8 5 4 2 5 lim 2 16 16+4 16+8 5 4 2 5 lim 2 161++41+2 5 16 4 2 5 Se factoriza el numerador 41

UNIDAD II: INTEGRAL DEFINIDA lim 2 4 24 5 2 4 2 5 Se hacen las simplificaciones correspondientes lim 2 4 2 lim 8 lim 2 1 2 2 8 1 2 2 4 = Ejemplo 5.4 PROPIEDAD DE ACOTACIÓN: Utilice la propiedad de acotación para verificar la siguiente desigualdad: 2 41+ 12 5 Solución: Para la aplicación de la propiedad de acotación se necesita buscar los extremos absolutos de la función por lo tanto: = 4 1+ = 4 1+ = 1 4 1 2 1+ + 1 1 2 1+ = 1 4 1 2 1+ = 1 8 1+ 1 21+ Se evalúa la función en los extremos del intervalo: 4= 1 6 = 16= 1 5 = 42

UNIDAD II: INTEGRAL DEFINIDA 1 6 16 4 41 1 16 4 5 Ejemplo 5.5 PROPIEDAD DE ACOTACIÓN: Determinar a partir de la propiedad de acotación un intervalo cerrado al pertenezca el valor de la integral h si 3 h 2 1 Solución: Como ya se ha visto en los ejemplos anteriores, cuando se tiene una función definida por intervalos la integral total será dividida de acuerdo al número de intervalos donde ella esté definida, es por ello: h 3 2 1 Entonces, para la primera integral se tiene: 3 h 2 0 Evaluando la función en el punto crítico y en los extremos del intervalo: h0 3 h1 h1 2 43

UNIDAD II: INTEGRAL DEFINIDA Se realiza el mismo procedimiento para la segunda integral 21 21 1 21 12 Una vez estudiada las funciones en cada uno de los intervalos correspondientes se escoge el mínimo y el máximo absoluto de la función h 1 3 Sustituyendo, 121 321 Existen otros tipos de ejercicios donde se aplica la definición de integral definida y algunas propiedades de la misma Ejemplo 5.6: Determinar el área de la figura anexa empleando la definición: Ecuación de la recta: h h 44

UNIDAD II: INTEGRAL DEFINIDA Integral por definición: = h = h lim h h +h lim h + h 1 1 lim h+1 2 + h +1 2 lim h+1 h 2 + lim 1 2 = h 2 +h 2 = 45

UNIDAD II: INTEGRAL DEFINIDA Ejercicios Propuestos 1. Sean y dos funciones continuas en 0, 2, calcular : si se sabe que: 2, 3, 1, 4 2. Aplicando la propiedad de acotación para integrales definidas, determinar un intervalo cerrado que contenga el valor de : 4 a. b. c. 5 8 h 7 2 1 h 2 2 4 3 3 0 0 3. Sea una función cuya gráfica se muestra en la figura 3.1. Verificar las igualdades siguientes:...... Figura 3.1 46

UNIDAD II: INTEGRAL DEFINIDA 4. Obtener mediante la definición de integral definida los valores de las siguientes integrales, expresar el resultado con 4 cifras significativas a. b. c. 4 3 6 3 1 3 2 1 < 1 1 > 1 5. Calcular el área de las figuras 4.1 y 4.2 mediante la definición de integral definida 47

UNIDAD II: INTEGRAL DEFINIDA Figura 4.1 Figura 4.2 48

UNIDAD II: INTEGRAL DEFINIDA 6. TEOREMA FUNDAMENTAL DEL CÁLCULO PARTE I Sea continua en el intervalo cerrado,. Si está definida por: Siendo un punto entre y, entonces es una antiderivada de Además, si se sabe: Por lo tanto: A continuación algunos ejemplos donde se aplica el teorema fundamental del cálculo parte I Ejemplo 6.1: Sabiendo que: 1 siendo h. Determinar la función h 4 4 5 Solución: h 1 4 4 5 1 4 4 5 2 49

UNIDAD II: INTEGRAL DEFINIDA Ejemplo 6.2: Sea si 1.. Determinar el valor de Solución: 1 3 Se aplica la propiedad aditiva respecto al intervalo, 1 3 1 3 1 3 Donde z es una constante, Se invierten los límites de integración, de manera que: 1 3 1 3 Finalmente se aplica el teorema fundamental del cálculo, 1 3 1 3 cos Entonces, 1 3 cos 1 3 1 3 cos 1 3 50

UNIDAD II: INTEGRAL DEFINIDA Ejemplo 6.3: Sean H, F y G funciones tales que: 1 1 y 0 4. Determinar la expresión de, si se sabe que la curva de la función H pasa por el punto 0, 2. Solución: Se ordena la integral aplicando algunas de las propiedades de la integral definida, siguiendo el procedimiento del ejemplo 6.2. 1 1 1 1 Aplicando el teorema fundamental del cálculo 1 2 3 1 3 Evaluando en 0 0 0 1 20 30 1 3 Se obtiene, Se realiza el mismo procedimiento para 1 1 51

UNIDAD II: INTEGRAL DEFINIDA Se sustituyen los términos correspondientes en la ecuación 0 4 3 4 1 1 2 Ordenando, 3 2 1 2 1 1 4 1 2 Si se sabe que, 3 21 21 1 4 1 2 Integrando, 3 2 1 2 1 1 4 1 2 Se aplica algunas propiedades de la integral indefinida: 3 2 1 2 1 1 4 1 2 Entonces, 3 2 1 3 2 Resolviendo la integral Resolviendo la integral 1 52

UNIDAD II: INTEGRAL DEFINIDA Realizando el siguiente cambio de variable 1 1 8 1 Se sustituye, 1 8 1 8 1 8 Entonces, 8 5 3 Devolviendo el cambio de variable: Sustituyendo en, 1 3 2 8 5 1 3 1 3 2 8 5 3 3 16 1 5 16 3 1 3 1 2 Se agrupan las constantes, de manera que: 3 2 53

UNIDAD II: INTEGRAL DEFINIDA Entonces, 3 16 5 1 16 1 3 Para hallar el valor de la constante C se evalúa la función en el punto: 2 30 16 5 2 30 16 5 1 0 1 0 16 3 16 3 1 0 1 0 Por lo tanto, Finalmente, 54

UNIDAD II: INTEGRAL DEFINIDA 7. TEOREMA FUNDAMENTAL DEL CÁLCULO PARTE II Sea continua e integrable en,, y sea cualquier antiderivada de en,. Entonces: Ejemplo 7.1 Se resolverán las integrales del ejemplo 4.2 aplicando el teorema fundamental de cálculo a. 8 b. 3 c. siendo 53 22 3 si si 9 si Solución a: 8 8 4 83 3 1 81 4 4 Solución b: 3 3 3 si 3 si < 3 3 3 3 55

UNIDAD II: INTEGRAL DEFINIDA Primera integral: 3 2 3 3 33 5 35 2 2 Segunda integral: 0 3 3 2 3 0 30 3 33 2 2 Sumando, 2 9 2 Entonces, Solución c: 3 5 22 3 9 Primera integral: 56

UNIDAD II: INTEGRAL DEFINIDA 3 5 3 2 5 31 51 31 51 2 2 Segunda integral: 22 3 2 2 3 2 2 24 34 31 2 21 2 2 Tercera integral: Sumando algebraicamente, Entonces, 9 3 2 5 3 9 95 2 10 33 121 6 4 3 94 2 57

UNIDAD II: INTEGRAL DEFINIDA 8. TEOREMA DEL VALOR MEDIO Sea continua en,, entonces existe al menos un número entre y tal que: Para poder aplicar el teorema del valor medio es necesario que la función sea continua en, Figura 6.1. Representación geométrica Del teorema del valor medio Ejemplo 8.1: 0 Si es una función definida por 2 0, entonces se puede asegurar que existe un 1,2 tal que 3 Se verifica la continuidad de la función en 0 i. 00 ii. lim 0 iii. lim 2 2 No se cumplen las condiciones de continuidad de la función en 0 por lo tanto, no es posible aplicar el teorema del valor medio y por consiguiente no es posible asegurar la existencia de un Ejemplo 8.2: Sea 62.. Determinar el valor promedio de en 2,5 y el o los valores de que lo satisfacen 58

UNIDAD II: INTEGRAL DEFINIDA Solución: La función es continua en el intervalo ya que se trata de una función polinómica donde su dominio son todos los números reales. 1 1 52 6 2 1 7 Se aplica el teorema fundamental del cálculo para obtener el valor de la integral: Entonces, 53 3 6 2 3 11 3 11 3 11 3 2 3 115112 3 El valor promedio de la función será, 1 7 280 3 = Se calcula el o los valores promedios como: +6 2= 40 3 59

UNIDAD II: INTEGRAL DEFINIDA 3 11 40 3 3 73 3 ± 73 3 3 Entonces, 73 3 3, 73 3 3, El valor de que satisface el teorema del valor medio es ya que es el que pertenece al intervalo 2,5 Ejemplo 8.3: Para el intervalo dado 1,4, calcular el valor promedio de y los valores de donde la función alcanza su valor promedio Solución: Se verifica la continuidad de la función en 1 i. 1 0 ii. lim 2 2 0 iii. lim 1 0 1 1 2 2 > 1 La función es continua en el intervalo por lo tanto es aplicable el teorema del valor medio para integrales 1 1 4 1 1 2 2 60

UNIDAD II: INTEGRAL DEFINIDA Aplicando el teorema fundamental del cálculo Entonces, el valor medio de la función: 3 2 1 3 11 3 14 24 1 21 1 4 1 23 3 Para el intervalo 1,1 1= 23 15 =± 38 15 = 38 15 = 1,5916 = 38 15 = 1,5916 En este intervalo no existen valores de que satisfagan el teorema de valor medio Para el intervalo 1,4 2 2= 23 15, Por lo tanto el valor de que satisface el teorema es 1,7667 61

UNIDAD II: INTEGRAL DEFINIDA 9. TEOREMA DE CAMBIO DE VARIABLE Y TEOREMA DE INTEGRACIÓN POR PARTES PARA INTEGRALES DEFINIDAS: Ejemplo 9.1: Calcular las siguientes integrales aplicando los teoremas correspondientes: a. 1 b. 5 5 Solución a: 1 Se realiza el siguiente cambio de variable Sustituyendo, 1 1 1 6 1 Si 1ዺ 0 Si 1 1 6 1 1 6 1 6 6 4 62

UNIDAD II: INTEGRAL DEFINIDA 6 1 4 Solución b: 5 5 Se escogen las variables correspondientes para realizar la integración por partes: Se sustituye, Se encuentra la primitiva de la integral 5 5 10 5 5 5 5 10 5 5 5 5 2 1 5 5 2 1 1 5 5 2 Se aplica el teorema fundamental del cálculo, para la resolución 102 1 4 Entonces,, 63

UNIDAD II: INTEGRAL DEFINIDA Ejercicios Propuestos 1. Utilizar el teorema fundamental del calculo para determinar el valor exacto de las siguientes integrales: a. tan 1 b. c. d. 7 32 2. Calcular el valor de la integral en 2, 0 si se sabe que: h3 3. Si se sabe que: a. b. Calcular : cuando h 0 siendo 51 1 1 4 18 4. Determinar el valor medio de las siguientes integrales, así como los valores que satisfacen dicha condición: 5 a., 6 5 <1 b. 4 1 3 1617 >3 143 ln4 4 5. Utilizar el teorema de cambio de variable y el teorema de integración por partes para integrales definidas para resolver las siguientes integrales: a. b. c. d. 41 ln 3 2 5 2 12 6. Calcular la altura del rectángulo que tiene por base la longitud del intervalo 2,4 y área igual al valor de la integral: 8 si 2 2 si 4 > 4 64

UNIDAD II: INTEGRAL DEFINIDA BIBLIOGRAFÍA LEITHOLD, L. L 1992. El Cálculo con Geometría Analítica. Sexta Edición. Editorial Harla. México LARSON, R., HOSTETLER, R. & BRUCE E. 2002. Cálculo diferencial e integral. Séptima edición. Editorial McGraw-Hill Interamericana. México PURCELL, E. VARBERG, D. Y RIGDON, S. 2000. Cálculo. Octava Edición. Editorial Prentice Hall. México. STEWART, James. 2008. Cálculo de unas variables transcendentes tempranas. Sexta edición. Editorial Thomson Learning. SMITH, R. y MINTON, R. 2004. Cálculo. Volumen 1. Editorial Mc Graw-Hill Interamericana de España. SWOKOWS OWSKI, E. 1989. Cálculo con geometría analítica. Segunda edición. Editorial Iberoamérica. México. 65