MICROSCOPIOS MICROSCOPIOS MICROSCOPIOS MICROSCOPIOS



Documentos relacionados
MICROSCOPIOS MICROSCOPIOS MICROSCOPIOS MICROSCOPIOS

Microscopia y Tinciones

MICROSCOPIO. Partes de un Microscopio Óptico

El microscopio de campo oscuro se encuentra catalogado entre los microscopios ópticos.

TEMA 9: Microscopia de Efecto Túnel y Fuerza Atómica

ÁREA DE MICROSCOPÍA ELECTRÓNICA Y CONFOCAL

FÍSICA 2º BACHILLERATO

Problemas de Óptica II. Óptica geométrica 2º de bachillerato. Física

TIPOS DE MICROSCOPIOS

de"tejidos"a"moléculas""" 7"de"Mayo"de"2018" UNIVERSDAD NACIONAL AUTÓNOMA DE MÉXICO UNIDAD DE IMAGENOLOGÍA

HISTORIA: EL INVENTO. Se inventó, hacia 1610, por Galileo, según los italianos, o por Jansen, en opinión de los holandeses

La materia se ordena en los llamados niveles de organización biológica

Polarización por reflexión (ángulo de Brewster) Fundamento

Terapia Ocupacional 2012

CONOCIENDO EL MICROSCOPIO

PRÁCTICA 01 EL MICROSCOPIO COMPUESTO

TEMA 9. Métodos ópticos para el diagnóstico de laboratorio de enfermedades infecciosas

EL MICROSCOPIO. Laboratorio

Capítulo 2 Trabajando a escala nanométrica

Práctica 5. Polarización de ondas electromagnéticas planas

Microscopio óptico. Aumento total = aumento objetivo x aumento ocular. Ocular Capta y amplía la imagen formada en el objetivo

TEMA 9 MÉTODOS ÓPTICOS PARA EL DIAGNÓSTICO DE LABORATORIO DE ENFERMEDADES INFECCIOSAS

Tipos de microscopios y sus aplicaciones

OPTICA GEOMÉTRICA. Física de 2º de Bachillerato

AFM y STM: Microscopía de barrido por sonda

Ejercicios Repaso Tema 5: Óptica geométrica

TEMA 6 INTRODUCCIÓN A LA CÉLULA VIVA

El término microscopio proviene del vocablo griego mikroskopein que significa: Micro=pequeño Scopein=ver, observar

ÓPTICA FÍSICA MODELO 2016

Descripción del equipo

Técnicas ópticas en biofísica

2. Estudio cualitativo de algunas propiedades de las ondas: difracción, reflexión y refracción.

QUÉ ES EL COLOR. El mundo es de colores, donde hay luz, hay color. El color es un atributo de los objetos que percibimos cuando hay luz.

Historia del microscopio

TEMA 1 ELIMINACIÓN DE PARTÍCULAS (parte I)

Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba

CONCEPTOS BÁSICOS DE MICROSCOPÍA. Patricia Pérez-Alzola, MSc

ORGANOS, CELULAS y ATOMOS

OTRAS PROPIEDADES: TÉRMICAS, ELÉCTRICAS, DIELÉCTRICAS, AISLANTES Y MAGNÉTICAS DE LOS MATERIALES

1. Analizar situaciones y obtener información sobre fenómenos físicos utilizando las estrategias básicas del trabajo científico.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 23 septiembre 2015.

CAPITULO I: La Luz CAPITULO I: LA LUZ 1

ANÁLISIS QUÍMICO DE MATERIALES PICTÓRICOS: IDENTIFICACIÓN DE CARGAS Y PIGMENTOS IDENTIFICACIÓN DE FIBRAS TEXTILES SAN JUAN EVANGELISTA

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras

El Telescopio. Óptico. Emilio J. Alfaro Instituto de Astrofísica de Andalucía. Cuatro siglos a través del telescopio

MICROSCÓPIO ELECTRÓNICO MEINOLF LÓPEZ MALDONADO RAFAEL RAMOS GARAY ANA SERNA ROMERO

1. V F La fem inducida en un circuito es proporcional al flujo magnético que atraviesa el circuito.

Luz polarizada plana (LPP) Prof. Martin Reich

Fundamento Tipo de muestras Particularidad Diagrama óptico Imagen del microscopio Imagen que se obtiene o gráfico

FUNDAMENTOS CIENTIFICOS DEL METODO MONCAYO INSTITUTO DE INVESTIGACION MONCAYO ESPAÑA MEXICO - SUECIA

ÓPTICA GEOMÉTRICA (I). REFLEXIÓN Y REFRACCIÓN EN SUPERFICIES PLANAS Y ESFÉRICAS; DISPERSIÓN DE LA LUZ.

CONJUNTO COMPACTO DE ÓPTICA

Del Microscopio Optico al Electrónico

Universidad Central Del Este UCE Facultad de Ciencias de la Salud Escuela de Bioanálisis

FICHAS DE PRÁCTICAS 2ºBACHILLER FÍSICA

Diseño Pasivo: Diseñando para la Iluminación Natural

luz Longitud de onda frecuencia amplitud de onda espectro electromagnético micras milimicras(mm) nanómetros Angstrom. 400a (400mm, Violeta)

La separación de las especies minerales se produce mediante la aplicación selectiva de fuerzas.

Guía de laboratorio Nº1 El microscopio y el estudio de las células

microscopio epi-fluorescencia

Métodos para estudiar las células

Reflexión y refracción en superficies planas y curvas

Formación de imágenes en lentes convergentes

Bases de la Microscopía Confocal

RESUMEN CLASE DE MICROSCOPÍA

SPM (Scanning Probe Microscopies)

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1

PRACTICA Nº 1: FUNDAMENTOS Y MANEJO DEL MICROSCOPIO ÓPTICO COMPUESTO COMÚN: ACTIVIDADES A REALIZAR EN LA PRÁCTICA 1. Dr. Joaquín De Juan Herrero

Que es la fluorescencia?

TEORÍA CELULAR. Matias Schleiden (1838) y Theodore Schwann (1839) LA CÉLULA ES LA UNIDAD FUNDAMENTAL DE TODOS LOS ORGANISMOS.

Teoría Celular PROF. AURORA FERRO

Nanoscopías para todas y todos: Jornada de puertas abiertas del LANE

Imágenes y productos de Satélite

DIFRACCIÓN DE RAYOS X

3. a) Explique brevemente en qué consiste el efecto fotoeléctrico. b) Tienen la misma energía cinética todos los fotoelectrones emitidos?

Tema 1 Introducción a la Ciencia de los Materiales.

Tema II: La Teoría Celular

Microscopio de interferencia

HISTORIA DE LA MICROSCOPIA

Curso de Introducción a la Ciencia de Materiales y Nanomateriales

Física 2 Biólogos y Geólogos. Reflexión y refracción de la luz

PRACTICA 3 ÓPTICA GEOMÉTRICA

Optica del Microscopio Compuesto

PARTES DEL MICROSCOPIO OPTICO

Óptica en la Medicina (Formulas y Ejercicios)

TEMA 5: LA LUZ Y EL SONIDO

COMPROMISO DE HONOR. Yo,.. al firmar este compromiso, reconozco que el


Tema 1. Elementos de un sistema de Visión por Computador. Esquema general de un sistema de visión por computador

La Cristalografía y la Ciencia de Materiales

Unidad11 CARACTERISTICAS TERMICAS DE LOS MATERIALES

ORGANIZACIÓN DE LA MATERIA DE ELECTROMAGNETISMO Y ÓPTICA TEMARIO

4.3.- TRANSFORMACIÓN DE LA MATERIA PRIMA EN PRODUCTOS ACABADOS

INSTITUCIÓN EDUCATIVA PEDRO ESTRADA Física Grado: 11 PROFESOR: ELVER RIVAS

2 - El Microscopio. De los instrumentos de óptica conocidos con el nombre de microscopio existen:

1.- INTRODUCCIÓN 2.- DESCRIPCIÓN DE LAS MICROMUESTRAS

Filtros Un filtro es un dispositivo que bloquea cierta cantidad o determinado tipo de luz.

Microscopía: pasado y presente. M. Dolores Gómez

Métodos de Estudio en Biología Celular

Transcripción:

MICROSCOPIOS MICROSCOPIOS MICROSCOPIOS MICROSCOPIOS Griego: Mikros: pequeño Skopein: mirar

Zacharias Jansen Holanda (1588-1638) 3 y 9 aumentos Jan Swammerdam observó insectos y sangre con corpúsculos que le dan ese color. Nehemiah Grew estudió los órganos de reproducción de las plantas y descubrió los granos de polen. Reigner de Graaf describió en el ovario los folículos. Marcello Malpighi sus primeros estudios los realizó con pulmones de rana, descubrió que las arterias y las venas se hallaban unidos mediante los capilares.

Robert Hooke (1665) Observó el corcho constituido por pequeñas celdillas con aire, que llamó células

Microscopio Simple Antony van Leeuwenhoek (1632 1723) Logró aumentos de 270 X sin perjuicio de la nitidez

Otto Muller (1773) Describió los bacilos y espirilos

Joseph Jackson Lister (1820) Microscopio acromático Aberración cromática Lente acromático La distancia focal es distinta para los diferentes colores

RESOLUCIÓN Es la propiedad de un sistema óptico de hacer visibles como independientes dos puntos muy cercanos entre sí LR= 1/PR Ojo humano = 0,1 mm Microscopio óptico = 0,2 mm Microscopio electrónico = 0,2 nm micrómetro (µm): 10-6 metros nanómetro (nm): 10-9 metros angstrom (Å): 10-10 metros LR = 0,61. l AN

RESOLUCIÓN Índice de refracción LR = 0,61. l N. AN Sen m

RESOLUCIÓN LR = 0,61. l AN Las partículas también se comportan como ondas (De Broglie 1926) Microscopio electrónico l electrón = 0,005 nm LR = 0,2-0,5nm LR = 0,17 µm Magnificación : Objetivo X Ocular

Objetivo 10X AN 0.15 Ocular 20 X l = 550 nm Magnificación: 200 X Resolución: L= 2.2 μ Objetivo 40X AN 0.65 Ocular 5 X Magnificación: 200 X Resolución: L= 0.5 μ

Aberraciones Geométricas esférica astigmatismo en coma curvatura de campo Alteración de la forma Cromáticas Distorsiones en los colores. Tipos de objetivos Plan: Corrige aberraciones geométricas. Combinable con otras lentes Achromat: Corrige aberración esférica y cromática para rojo y azul. Fluorite (semi-apochromats): Corrige aberración esférica y cromática para rojo y azul. Permite mayores aperturas numéricas y resultando en imágenes más luminosas. Apochromatic: Eliminan las aberraciones cromáticas en los tres colores (RGB), y corrigen las esféricas. Tienen aperturas numéricas superiores a los anteriores. Es la mejor elección para foto micrografía.

MICROSCOPIOS Campo Oscuro Luz visible Contraste de Fase Interferencia Luz polarizada Luz ultravioleta Campo Ultravioleta Fluorescencia Confocal Multifotón Electrónicos Transmisión (TEM) Barrido (SEM) sonda de Barrido (SPM) Efecto túnel (STM) Fuerza atómica (AFM) Contacto No contacto intermitente

Campo Oscuro Bloquea los rayos centrales de luz dejando pasar los oblicuos. Luz reflejada y difractada por la muestra.

VENTAJAS *Permite ver partículas dispersas en un medio homogéneo. * Hace posible la observación del movimiento Browniano de las partículas. * Se puede utilizar para la observación de preparaciones sin colorear. * Visualiza los bordes destacados de las muestras. * Técnica valiosa para observar microorganismos de tipo Treponema pallidum, espiroquetas con diámetros superior a 0.2 um DESVENTAJAS * Inadecuada preparación de la muestra. * Difícil acceso al microscopio que posea el condensador especial por su alto costo. * No deja visualizar estructuras celulares especificas, solo bordes de células partículas.

Contraste de Fases microscopio basado en cálculos matemáticos Uso: células vivas, tejidos vivos, cortes no coloreados = espesores = índice refracción = Fase La fase de un haz de luz es imperceptible a la vista El microscopio lo transforma en diferencias visibles de intensidad Luz difractada Fritz Zernike 1934 Premio Nobel de Física 1953

Ventajas Permiten observar las células en acción y estudiar los movimientos implicados en procesos como la mitosis o la migración celular. Se usa para medir índice de refracción y concentración de sólidos de las estructuras celulares. Es útil para determinar masa seca y espesor de las estructuras celulares. Fondo claro Contraste de Fase Células en cultivo Células en cultivo Desventajas: produce halos y es difícil obtener una alta resolución. La fuente luminosa debe ser muy intensa

Interferencia Produce imágenes claras y sin halos, con aspecto tridimensional y permite observar estructuras incoloras como si fuesen coloreadas Es costoso e incómodo.

(7) Imagen intermedia De luz polarizada Birrefringencia aparece un rayo regular rápido que vibra en una dirección y otro paralelo llamado irregular con velocidad de propagación más lenta y que vibra ortogonalmente con respecto al primero (6)Lente (5) Analizador rotado 90º en relación a (1) materiales isótropos índice de refracción constante materiales anisótropos distintos índices de refracción (4) Objetivo (3) Espécimen iluminado con luz polarizada lineal. (2) Condensador (1) Filtro polarizador Es útil para examinar estructuras birrefringentes (fibras musculares, fibras proteicas del tejido conectivo, gotas lipídicas y fotorreceptores retinianos).

Microscopio invertido Las muestras se pueden colocar en diferentes recipientes con espesores y características ópticas variables. Permite observar organismos o tejidos en cultivo sin una preparación previa disminuyendo las condiciones de estrés. Cámara de video: actividades dinámicas de las células

Microscopio invertido Alga Cultivo celular Fondo claro Contraste de fase Desventajas: costo y limitada magnificación

Microscopio con procesador de imágenes

Fluorescencia Fluorescencia primaria (autofluorescencia) Fluorescencia secundaria (fluorocromo) Isotiacianato de fluoresceína (FITC) 490 520 nm Tetrametil Rodamina 540 570 nm Naranja de Acridina 480 510 nm Diaminofenilindol (DAPI) 372 456 nm Ioduro de propidio 493 630 nm

Fluorescencia

Fluorescencia Fibroblastos cultivados:golgi: amarillo (anti-galactosiltransferasa) Microtúbulos: verde (anti-tubulina) Células de cerebro en cultivo Neuronas: neurofilamentos (amarillo) Astrocitos: PFAG (rojo)

Microscopio confocal Escaneo de láser (LSCM) TIPOS Escaneo de platina (SSCM) Escaneo de disco (DSCM)

Citoqueratina Desmoplaquina Fibroblasto Actina: rojo Vimentina: verde

Microscopio confocal Cortes ópticos a distinta profundidad Reconstrucción tridimensional

VENTAJAS Imágenes siempre en foco Secciones ópticas Imágenes 3D Muestras vivas Colocalización molecular DESVENTAJAS Intensidades de excitación superiores ( láser). Mayor tiempo de exposición. Anticuerpos menos diluidos. Tubulina verde Actina roja

Microscopio electrónico 1924 D`Broglie carácter ondulatorio de los electrones 1926 Busch presenta el diseño de una lente electromagnética Lente electromagnética Ernst Ruska y Max Knoll 1933: Diseño y construcción del primer ME. 1986: Premio Nobel de Física

λ

Fuente de alto voltaje Columna vacío Cátodo Ánodo Lente condensadora Objeto Imagen intermedia Lente objetivo Lente proyectora Imagen final Pantalla fluorescente

Microscopio Electrónico de Transmisión (MET) Permite el estudio de la ultraestructura de materiales orgánicos o inorgánicos. APLICACIÓN Determinación de estructura cristalina y tamaño de partícula en minerales, metales, etc. Identificación de bordes de grano e interfaces en metales. Estudio de fases y zonas cristalinas en polímeros. Cambios estructurales de materiales sometidos a diferentes tratamientos térmicos. Realización de estudios de histoquímica para identificar compuestos específicos. Estudios de ultraestructura de tejidos vegetales y animales. Reconocimiento de virus. Estudios de citoquímica. Estudios de estructuras moleculares Platino

3 mm Portaespecimen

1965: primer microscopio electrónico de barrido comercial.

MICROSCOPIO ELECTRONICO DE BARRIDO - SEM Los convierte en una señal electrónica que es proyectada en un tubo de rayos catódicos (CRT)

Microscopio electrónico de barrido

APLICACIONES DE MEB (SEM) Sus análisis proporcionan datos como textura, tamaño y forma de la muestra. Estudio de materiales Caracterización micro estructural de materiales. Composición de superficies y tamaño de grano. Valoración del deterioro de materiales, fatiga, corrosión, fragilización etc. Estudio químico y estructural de obras de arte, alteración de monumentos, identificación de pigmentos (restauración, autentificación) Otros campos: Geología Odontología Paleontología y Arqueología: Peritajes Medicina Forense Botánica, Biomedicina y Medicina Electrónica

OPTICO TEM SEM Long. de onda) Aumentos Lím.resolución Espesor muestra 400-700 nm 20-1500 X 0,2um 5-7um 0,005 nm 2000-600.000X 0,2-0,5nm 50-70nm 0,005nm 50-50.000X 10 nm 1 cm

La microscopia SPM (microscopia de proximidad) sonda de barrido Una sonda puntiaguda barre la superficie de una muestra, monitorizándose la interacciones que ocurren entre la punta y la muestra. - Una punta. - Un sistema de nanodesplazamiento. - Una muestra. - Un dispositivo de acercamiento punta/muestra. - Una electrónica y/o informática de control. Las características generales : - Desplazamientos de hasta 150 μm en el plano, y 10-15 μm en altura. - Resolución de hasta 0.01 Å, resolución teórica de las cerámicas piezoeléctricas. - Permiten trabajar en medios muy variables: al aire, en atmósfera controlada, en vacío y ultra-alto vacío, altas/bajas temperaturas, líquidos

MICROSCOPIO DE FUERZA ATÓMICA (AFM) De contacto La fuerza origina la flexión del brazo adaptándose a la superficie de la muestra. Un láser incide sobre el dorso del brazo y se refleja sobre un fotodetector obteniendo una imagen gráfica de la superficie De no contacto Se excita cerca de su frecuencia de resonancia de modo que vibre cerca de la superficie de la muestra a frecuencias de 100 a 400 khz y conforme se acerca la punta a la superficie se detectan cambios en la frecuencia de resonancia La sensibilidad de la técnica proviene de la frecuencia de resonancia del cantilever. De contacto intermitente La punta está en intermitente contacto con la superficie a la vez que la barre. La variación de la amplitud de oscilación de la punta, debida a la amortiguación sobre la superficie es lo que se utiliza como señal de control. Evita las fuerzas de laterales y de fricción que ocurren en la AFM.

De contacto -Ventajas: amplia gama de muestras a analizar; (medidas in situ en una celda líquida o en la celda electroquímica) Alta resolución - Desventajas: la punta está en contacto con la superficie; problemas de destrucción de la punta o modificación de la superficie, arrastre de partículas. De no contacto Ventajas: no existe modificación ni contaminación de la muestra; se pueden medir diferentes gradientes de fuerza (magnética, electrostática, etc.). Desventajas: resoluciones altas requieren que la punta se sitúe muy cerca de la superficie De contacto intermitente Ventajas: medida muy estable; fuerza de presión muy débil; resolución elevada Desventajas: no puede trabajar en medio líquido; no se llega a resolución atómica; barridos más lentos.

MICROSCOPIO DE EFECTO TUNEL (STM) Heinrich Rohrer y Gerd Binnig (1981) Premio Nobel de Física 1986 (junto con Ruska) No utiliza luz, ni haz de electrones, ni ópticas (Scanning Tunneling Microscope ) Fuente: Nube de electrones de la superficie de la muestra Sonda: punta que se desplaza de manera constante sobre sup De W (pulidas electroquímicamente), Pd, Pt-Ir. Ventaja : resolución a escala atómica. Para conseguir este tipo de resolución se ha de trabajar sobre muy buenos conductores (Pt, Au, Cu, Ag). Limitaciónes: imposibilidad de trabajar con muestras aislantes. Trabajar in-situ, al vacío o a baja temperatura. punta de wolframio Es un instrumento fundamental en el campo de la nanotecnología y la nanociencia.

Microscopio de Efecto Túnel Microscopio de Fuerza Atómica Cromosomas Fibras colágenas ADN

Toda interacción que se pueda medir entre la punta y la muestra puede dar lugar a una forma de microscopia SPM. Otros tipos de microscopia SPM son: Lateral Force Microscopy (LFM), Force Modulation Microscopy, Magnetic Force Microscopy (MFM), Electric Force Microscopy (EFM), Surface Potential Force Microscopy, Phase Imaging, Force Volume, Electrochemical STM & AFM (ECM), Scanning Thermal Microscopy (SThM), etc

PENSEMOS Con qué microscopio se obtuvieron las siguientes fotografías? A B C D E F 1- Confocal 2- Luz polarizada 3- Interferencia 4-TEM 5-SEM 6- Fluorescencia