Ejes: sirven para soportar piezas inmóviles o rotatorias de máquinas, pero no transmiten ningún momento de giro. Por lo general sometidos a flexión.

Documentos relacionados
Puente grúa de 100/10 t de capacidad y 25 m de luz 1. Sumario

DIÁMETROS NORMALIZADOS

DISEÑO DE ÁRBOLES CONTENIDO 04/08/2011

Ejercicios y Problemas de Fatiga

TRABAJO PRÁCTICO N 12: TORSION

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS

TRABAJO FIN DE GRADO 2016 DISEÑO Y CÁLCULO DE UN REDUCTOR DE VELOCIDAD CON RELACIÓN DE TRANSMISION 16,01 Y PAR MÁXIMO A LA SALIDA DE 2388 NM

Mecánica de Sólidos. UDA 3: Torsión en Ejes de Sección Circular

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

UNIVERSIDAD TECNOLÓGICA NACIONAL-

INDICE Parte I. Principios de diseño y análisis de esfuerzos 1. La naturaleza del diseño mecánico Referencias Sitios de Internet Problemas

8. CÁLCULO DE ELEMENTOS

60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min

Mecánica de Materiales I

ESTATICA Y RESISTENCIA DE MATERIALES (QUIMICA Y MINAS)

Sistema Estructural de Masa Activa

Bujes de sujeción. Ejemplo:

DISEÑO MECÁNICO (Ingeniería Industrial, 4º curso)

Examen de TECNOLOGIA DE MAQUINAS Septiembre 11 Nombre...

CAPITULO 4 DEFINICIÓN. mayoría de así en LIGERO WOODRUFF, MEDIO AHUSADO. Página 1

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO

TEORÍA DE MECANISMOS Y MÁQUINAS. EJERCICIOS DE ENGRANAJES.

PRINCIPIOS DEL TREN DE FUERZA FUNCIONES DEL TREN DE FUERZA 19/07/2014. qué es Tren de fuerza?

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn

Consignas de reflexión a) Defina el concepto de momento torsor. b) Cómo se distribuyen las tensiones de corte en la sección transversal de la llave?

Eje de. salida. Eje de. entrada

Montacargas a cremallera de 1000 kg de carga nominal 1. Índice...1. A Cálculos...3

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

Problema: Si F = 50N aplicada en un punto a una distancia de 250 mm del eje del cubo del tornillo.

Y SISTEMASEleELE ELEMENTOS DE MÁQUINAS Y SISTEMAS

Un mecanismo es un dispositivo que transforma el producido por un elemento (fuerza de ) en un movimiento deseado de (fuerza de ) llamado elemento.

Mecánica de Sólidos - Torsión. 4- Torsión. Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil

Diseño Mecánico. Juan Manuel Rodríguez Prieto Ing. M.Sc. Ph.D.

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

1.- De las siguientes afirmaciones, marque la que considere FALSA:

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

CÁTEDRA: ESTÁTICA Y RESISTENCIA DE MATERIALES

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

6 Bujes de sujeción 7 Correas dentadas de caucho y poliuretano 8 Juntas universales Cardan y conjuntos telescópicos

Powered by TCPDF (

ANEXO N : II. Resolución de Consejo Directivo Nº 183/09 PROGRAMA ANALÍTCO

PROBLEMAS DE RESISTENCIA DE MATERIALES I GRUPOS M1 YT1 CURSO

TEMA 3: MÁQUINAS Y MECÁNICOS

TECNOLOGÍA INDUSTRIAL I

DEPARTAMENTO DE INGENIERÍA MINERA, MECÁNICA Y ENERGÉTICA

MTJZ La correa de poliuretano protege los componentes internos de la entrada de polvo y elementos extraños.

PRÁ CTICO 1 INTRODUCCIO N Á CMM 2

CATALOGO DE PRODUCTOS

MECANISMOS Y ELEMENTOS DE MÁQUINAS IMPACTO. La fatiga es el proceso de cambio estructural permanente, progresivo y

Mecánica de Sólidos. UDA 4: Fuerza Cortante y Momento Flexionante en Vigas

CTJ L 1 R 1

UT6 Cojinetes y Lubricación

Tipos de Engranajes: Crónicos, Helicoidal y Sin fin

1.4 Acoplamientos de protección o seguridad Limitadores de par mecánicos Tecnotrans

MECANISMO PARA ASISTENCIA AL CONDUCTOR DE AUTOMÓVIL EN EL GUARDADO Y RECOGIDA DE UNA SILLA DE RUEDAS

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO

Escuela Universitaria de Ingeniería Técnica Aeronáutica Expresión Gráfica en la Ingeniería INGENIERÍA GRÁFICA

Tipos de rodamientos. Rodamientos rígidos de bolas

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

TECNOLOGIA DE MAQUINAS

- Variadores de Velocidad

Escuela Universitaria de Ingeniería Técnica Aeronáutica Expresión Gráfica en la Ingeniería INGENIERÍA GRÁFICA

Mecanismos 2. Rotación en rotación. Poleas y engranajes Transmisión por cadena.

PROBLEMAS DE AMPLIACIÓN DE RESISTENCIA DE MATERIALES MÓDULO 4. TEMAS 8 y 9 CURSO

Tornillos de fijación

Examen de TECNOLOGIA DE MAQUINAS Febrero 95 Nombre...

Tema 9: SOLICITACIONES COMBINADAS

INSTITUTO POLITÉCNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE INGENIERÍA CAMPUS GUANAJUATO

Prob 2. A Una pieza plana de acero se encuentra sometida al estado tensional homogéneo dado por:

Es un conjunto de ruedas dentadas que sirve para transmitir un movimiento circular entre dos ejes.

Descripción del producto

FIM /5/06 10:29 Pá 1 gina483 1transmisiones ` Ìi`ÊÜ Ì ÊÌ iê`i ÊÛiÀÃ Ê vê v ÝÊ*À Ê* Ê ` Ì ÀÊ / ÊÀi ÛiÊÌ ÃÊ Ì Vi]ÊÛ Ã Ì\Ê ÜÜÜ Vi V ÉÕ V Ì

FIM /5/06 10:29 Página transmisiones

PROBLEMA 1. Se pide: 1. Calcular para una confiabilidad del 95 % el valor máximo que puede tomar F para que la pieza tenga vida infinita.

Tipos de engranajes. a. Ejes paralelos. b. Ejes concurrent es. c. Ejes que se cruzan Tornillo sin fincorona. Cilíndricohelicoidal.

LOS MECANISMOS. (Tomado de slideshare.net Junio )

MTJ / MRJ. CARACTERÍSTICAS

150 Bosch Rexroth AG Rodamientos lineales R310ES 3100 ( ) Polígono Indutrial O Rebullón s/n Mos - España -

MECANISMOS Y HERRAMIENTAS MARIA ANGELIKA OCHOA HUERTAS JENNIFER JULIETH FANDIÑO MORENO TECNOLOGIA E INFORMATICA SAN JOSEMARIA ESCRIBA DE BALAGUER

Indice de transmisión

QUÉ SON LOS MECANISMOS?

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO FACULTAD DE INGENIERIA MECANICA DISEÑO DE ELEMENTOS DE MAQUINAS REDUCTOR DE VELOCIDAD PRESENTA:

15.5. Torsión uniforme en barras prismáticas de sección de

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS E INGENIERÍA

Resistencia de los Materiales

Fuerza es todo aquello capaz de deformar un cuerpo o de alterar su estado de movimiento o reposo

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLIGÍA COMPLEJO ACADEMICO EL SABINO

Clase11: Grafica en Ingeniería.

TRABAJO FIN DE GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

El esfuerzo axil. Contenidos

TEORÍCO-PRÁCTICAS (4 puntos cada pregunta)

Ejes macizos y ejes huecos

II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL

8.5 SISTEMA PARA EL ÁNGULO DE INCLINACIÓN

Tutorial KISSsoft: Modelado de árboles. Arranque del editor de árboles

CURSO: MECÁNICA DE SÓLIDOS II

Transcripción:

EJES Y ÁRBOLES Estado de Carga Pasos a seguir en el diseño de un árbol de transmisión Materiales Disposiciones Constructivas Cálculo del Diámetro Chavetas Velocidad Crítica de Ejes Cuestiones 1

Ejes: sirven para soportar piezas inmóviles o rotatorias de máquinas, pero no transmiten ningún momento de giro. Por lo general sometidos a flexión. Árboles: siempre rotatorios, sirven para transmitir un momento de giro. Están sometidos a torsión y flexión. Tipos: Acodados o Cigüeñales Rectos: macizos o huecos Cilíndricos de Sección Variable 2

3

Eje no Giratorio Árbol Biapoyado 4

Estado de Carga Árboles de transmisión giratorios, principalmente: torsión debida al par transmitido flexión debida a cargas transversales en engranajes, poleas para cables o transmisiones por correa y cadena. aún cuando los esfuerzos radiales sean de valor constante, por ser el eje giratorio éste se verá sometido a cargas alternativas (menor valor de adm ) 5

Estado de Carga Si Eje no giratorio (no transmite ningún par) y las poleas o engranajes si giran con respecto a él (con cargas ). Se calculan estáticamente como un eje o viga de sección circular con fuerzas radiales (momentos flectores y tensión normal) También hay que considerar: el esfuerzo cortante debido a estas fuerzas radiales esfuerzos axiales en la mayoría de los casos los esfuerzos cortantes debidos a las fuerzas transversales y las tensiones normales debidas a las fuerzas axiales no son tenidos en cuenta, salvo en ejes cortos no giratorios (pasadores, bulones, apoyos, etc.) 6

Pasos a seguir en el diseño de un árbol de transmisión 1.- Velocidad de giro del árbol. 2.- Potencia o par a transmitir. 3.- Geometría de los componentes 8. Diagramas de cortantes y flectores. 9. Seleccionar el Material 4.- Posición de los apoyos 5.- Geometría del árbol (chaveteros, ajustes a presión, árboles estriados, etc.). 6.- Distribución de torsores 7.- Fuerzas ejercidas sobre el árbol por los elementos de transmisión de potencia, (engranajes, poleas, ruedas dentadas para cadenas, etc.) y fuerzas de reacción sobre los apoyos en cada plano. 10. Cálculo a Resistencia. 11. Analizar cada punto crítico del árbol para obtener el mínimo diámetro aceptable del árbol para garantizar un coeficiente de seguridad frente al estado de cargas en ese punto. 12. Especificar las dimensiones finales 13. Detalles de diseño 7

Materiales Hasta Ø 150 mm, de redondo de acero. Cargas Bajas: aceros de construcción St 42-2, St 50, St 60 o St 70 Grandes Exigencias: aceros al Carbono como F - 1120, F - 1130 o F - 1140, o aceros aleados y aceros de cementación, para. Para diámetros mayores y árboles fuertemente escalonados, forjados. Cada vez más, en mecanismos sometidos a bajas cargas, se emplean materiales sintéticos y todo tipo de plásticos. La elección depende de: r.p.m. ; σ R ; resistencia al desgaste, apoyos y escalonamientos, material disponible, herramientas, etc. 8

Denominación, composición y características mecánicas de los aceros comúnmente empleados en la fabricación de ejes y árboles Tipos de Aceros Aceros de construcción DIN UNE AISI % C % Otros Resistencia a la flexión alternativa / pulsatoria [N/mm 2 ] bw bsch Resistencia a la torsión alternativa / pulsatoria [N/mm 2 ] tw tsch Límite elástico [N/mm 2 ] Carga de Rotura [N/mm 2 ] Dureza Vickers mínima - HV (endurecib le hasta) St 42-2 St 50-2 St 60-2 St 70-2 Fe430 BFN Fe490-2FN Fe590-2FN Fe690-2FN 1020 A570Gr.50 A572Gr.65-0,25 0,30 220 260 300 340 360 420 470 520 150 180 210 240 180 210 230 260 250 290 330 360 420-500 500-600 600-720 700-850 115 (450) 135 (530) 165 (720) 190 Aceros al carbono C 22,Ck 22 C 35,Ck 35 C 45,Ck 45 F-1120 F-1130 F-1140 Aceros aleados de gran resistencia 1020 1035 1045 25CrMo4 F-1256 4130 0,50 00,2 2 0,35 0,45 00,2 5 1,1 Cr 0,2 Mo Aceros moldeados de baja aleación resistentes a la abrasión 34Cr4 F-8221 5132 280 330 370 490 550 630 190 230 260 250 300 340 290 360 390 500-650 590-740 670-820 150 140 (530) 170 (720) 430 730 300 450 540 800-950 186 (610) 00,3 4 1,1 Cr 480 810 330 550 640 900-1100 229 (670) Aceros de cementación C 15,Ck 15 16MnCr5 F-1511 F-1516 1015 5115 00,1 5 0,16 0,95 Cr 260 390 420 670 180 270 210 430 290 590 500-650 800-1100 140 (840) 210 (840) 9

10

11

12

Disposiciones Constructivas 13

Disposiciones Constructivas 14

Árboles sin Voladizos 15

Ejes - Piñón 2,5 m engranajes cilíndricos s 1,6 m t engranajes cónicos 16

Ejes Piñón - biapoyados, sin voladizos 17

Ejes Huecos 18

Operaciones sobre Ejes Huecos Montaje Desmontaje Fijación 19

SOPORTES DIN 15058 Ø < 100 mm un soporte de eje Ø > 100 mm dos soportes Los tornillos de sujeción no deben ser sometidos a esfuerzo por la presión del eje. 20

margen Diámetro d del eje diámetro preferente a b (1) C1 C2 d1 (2) f g h Tornillos rosca según rosca normal sujeción DIN 13 rosca fina Peso Kg. aprox. más de 15 hasta 25 18 20 22 25 20 5 60 36 9 16 17 18 3 4 4,5 10 M8 M8x1 0,042 más de 25 hasta 40 28 (30) 32 (35) 36 40 25 6 80 50 11 22 23 24 4,5 5,5 6 12 M10 M10x1 0,085 Más de 40 hasta 63 45 50 (55) 56 (60) 63 30 8 100 70 13 31 33 35 36 37 6.5 7 7.5 8 9 9.5 16 M12 M12x1.5 0.190 Dimensiones para los soportes de ejes 21

Dimensiones Estandarizadas para Extremos de Ejes Cilíndrico-Rectos d l r c 20 36 1.6 1.0 22 36 1.6 1.0 25 42 1.6 1.0 28 42 1.6 1.0 32 58 2.0 1.6 36 58 2.0 1.6 40 82 2.0 1.6 45 82 2.0 1.6 50 82 2.5 2.0 55 82 2.5 2.0 60 105 2.5 2.0 70 105 2.5 2.0 80 130 3.0 2.5 90 130 3.0 2.5 22

Un rodamiento fijo y el otro libre 23

24

Rodamientos Oscilantes 25

26

Agujeros y Ranuras de Engrase 27

Cálculo del Diámetro Diámetros Normalizados Ejes y Árboles (UNE 10018) Ejes a Flexión Árboles de Modo Aproximado Torsión de Ejes Circulares 28

Diámetros Normalizados Ejes y Árboles (UNE 10018) Serie de Diámetros 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 125, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 420, 440, 460, 480, 500 Para Ø > 100 mm, si es preciso utilizar valores distintos, se elegirán de forma que terminen en 2, 5 y 8 mm. Longitud 25 mm Ø 45mm: L máx : 5.000 mm 50 mm Ø 55mm: L máx : 6.000 mm Ø 60mm: L máx 6.950 mm 29

Ejes a Flexión badm = 80 a 120 N/mm2 para ejes en reposo de St 50; o bien badm = bsch /(4..5) badm = 60 N/mm2 para ejes giratorios de St 50; o bien badm = bw /(4..6) σ = b M b 3 π d 32 σ b adm d=2,17 3 M b b 30

Árboles de Modo Aproximado adm = 14...18 N/mm 2 prescindiendo de la flexión, St 50; o bien adm = tsch /(12...14) adm = 35.45 N/mm2 para torsión pura en acero St 50; o bien adm = tsch /(4...5) Mt τ t= τ 3 dm d=1,72 π d 16 3 M t t 31

Torsión de Ejes Circulares Las secciones transversales perpendiculares al eje antes de la aplicación de la carga, permanecen planas y perpendiculares al eje después de que los torsores han sido aplicados. El diámetro no cambia y las líneas radiales permanecen recatas y radiales después de la torcedura. 32

r 1 = l Ley de Hooke = G φ, G y l son constantes, luego ζ varía con el radio Gr l 1 Mt r r da r da I o r 2 1 o 1 r1 r1 M t l = I G 33

Árboles a Flexión y a Torsión 1 árboles macizos 2 2 a ' Mb ' 1 M v= M b M T d=2,17 3 b ; b árboles huecos 4 2 b 1 di d d 1, 065 para i 0.5 d a 1,7 para t alternativa b pulsatoria a 1,2 para t pulsatoria b alternativa badm = 40 a 60 N/mm2 para árboles de St 50; o bien badm = bw /(4..5) badm = 100 a 150 N/mm2 para árboles de engranajes de acero de bonificación 34

CHAVETAS 35

Chaveteros Las longitudes recomendadas son: 6, 8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 45, 50, 56 36

Chavetas CORTADURA: F T 2 T τ = = = A (D/2) (b L) D b L s S y τ d = 0,5 N 2 T L min CORTADURA = τ d D b APLASTAMIENTO: F T 4 T σ = = = A D h c ( ) L ( ) D L h 2 2 σ = d S y N L = min APLASTAMIENTO 4 T σ D h d 37

Chavetas Paralelas. Datos de Aplicación ( UNE 1710 ) 38

Sección b x h Ancho b Tolerancia Nominal h9 Altura h Tolerancia Nominal ( 1 ) Chaflán b 1 Longitud l( 2 ) Mínimo Máximo de a 2 x 2 2 0 2 0 0,16 0,25 6 20 3 x 3 3-0,025 3-0,025 0,16 0,25 6 36 4 x 4 4 0 4 0 0,16 0,25 8 45 5 x 5 5-0,030 5-0,030 0,25 0,40 10 56 6 x 6 6 6 0,25 0,40 14 70 8 x 7 8 0 7 0,25 0,40 18 90 10 x 8 10-0,036 8 0 0,40 0,6 22 120 12 x 8 12 8-0,090 0,40 0,6 28 140 14 x 9 14 0 9 0,40 0,6 36 160 16 x 10 16-0,043 10 0,40 0,6 45 180 18 x 11 18 11 0,40 0,6 50 200 20 x 12 20 12 0,60 0,8 56 220 22 x 14 22 0 14 0 0,60 0,8 63 250 39

Sección b x h Nominal Ancho b Tolerancia h9 Nominal Altura h Tolerancia ( 1 ) Chaflán b 1 Longitud l( 2 ) Mínimo Máximo de a 25 x 14 25-0,052 14-0,110 0,60 0,8 70 280 28 x 16 28 16 0,60 0,8 80 320 32 x 18 32 18 0,60 0,8 90 360 36 x 20 36 0 20 1,00 1,2 100 400 40 x 22 40-0,062 22 0 1,00 1,2 - - 45 x 25 45 25-0,130 1,00 1,2 - - 50 x 28 50 28 1,00 1,2 - - 56 x 32 56 32 1,6 2,00 - - 63 x 32 63 0 32 1,6 2,00 - - 70 x 36 70-0,074 36 0 1,6 2,00 - - 80 x 40 80 40-0,160 2,5 3,00 - - 90 x 45 90 0 45 2,5 3,00 - - 100 x 50 100-0,087 50 2,5 3,00 - - 40

Velocidad Crítica de Ejes Aun sin la presencia de cargas externas, el eje se deforma durante la rotación La deformación, considerada como una función de la velocidad, presenta sus valores máximos en las llamadas velocidades críticas La magnitud de la deformación depende de la rigidez del eje y de sus soportes, de la masa total del eje y de las partes que se le adicionan, del desequilibrio de la masa con respecto al eje de rotación y del amortiguamiento del sistema. Sólo la más baja (primera) y ocasionalmente la segunda tienen importancia. Las otras son tan altas que están muy alejadas de las velocidades de operación. 41

Distintas deformadas según disposición 42

Primera Velocidad Crítica Eje de masa despreciables que lleva una sola masa (m) n = c k m rad s -1 n = c g rad s -1 k es la constante del resorte del eje (fuerza requerida para producir una deformación unitaria en el punto de localización de la masa).también puede expresarse como. δ es la deformación estática, (deformación producida por una fuerza mg, en el punto de localización de la masa), y g es la constante de gravitación. -1 g 981 cm s n 1 c= = 300 r.p.m. cm cm 43

Primera Velocidad Crítica Eje de masa despreciable con varias masas concentradas unidas a él: Ecuación de Rayleigh-Ritz n = c j g W 1 j 1 n W n 2 n n rad s -1 Wn peso de la masa enésima δ n deformación estática de la masa enésima j número de masas 44

Primera Velocidad Crítica Eje de masa despreciable con varias masas concentradas unidas a él: Ecuación de Dunkerley 1 1 1 1 = + + +... n n n n 2 2 2 2 c 1 2 3 n c primera veloc. crit. del sistema de masas múltiples n i veloc. crít. si sistema de masa i aislado 45

Velocidades Críticas más Altas Sistema con dos masas: 1 1 - a 11 m 1+a 22 m 4 2 + a 2 11 a22 - a 12 a 21 m1m 2 = 0 w w w 1 primera veloc. crit. w 2 segunda veloc. crit. a ii coeficientes de influencia a 12 deformación en el punto de localización de la masa nº 1 producida por una carga unitaria localizada en el punto de la masa nº 2 a 11 es la deformación producida por una carga unitaria en el punto nº 1, etc. 46

Velocidades Críticas más Altas Sistema con masas múltiples: a m - 1 2 a m a m 11 1 12 2 13 3 w a m a m - 1 2 a m 21 1 22 2 23 3 a 31 m1 a 32 m 1 2 a 33 m3-2 w w 0 47

Deformadas de Vigas Cargadas Transversalmente O Y dø Ø A m ds Deformada de una viga sometida a flexión B m1 x dx 2 dy E I Z = - M 2 d x flector en el punto Generalmente se desprecia el efecto del esfuerzo cortante 48

Obtener la ecuación de la elástica en una viga apoyada en sus extremos, sometida a una carga transversal, puntual, según se representa en la figura siguiente. 2 P dy P M= x E I = - 2 d x 2 x Multiplicando ambos miembros por dx e integrando 2 Z 2 por simetría, la pendiente para x = L/2 ha de ser nula 2 2 dy P x P L E I = - + x+ C dx 4 16 z 2 dy P x E I = - C dx 4 Z 1 P L 2 C= 1 16 la flecha en el apoyo es cero, es decir, para x = 0, y = 0 C 2 = 0 P x L x L P L y = - - y x= = - 2 3 2 3 máx E Iz 12 16 E Iz 48 49

Diámetros de alma 7/8/13/16/19 mm. 7 y 8 mm: Largo 1,2 y 1,3 m con cabezal de mandril de 10 mm. o boquillas. 6 mm: Largo 2,2 m para trabajos continuos con piedras o paños de 7". 9 mm: Largo 2,3 m. para trabajos continuos con piedras de más de 8". 50

Máquina de eje flexible (7 velocidades): Máquina portátil especialmente concebida para la industria de moldes, matrices, modelos de madera y metálicos, fundición de metales y plásticos. Rectificados interiores, industrias de calderería y acero inoxidable. De gran utilidad para fabricantes de mostradores, frigoríficos, fregaderos, etc.industria química y otras. Vibrador de Hormigón 51

Cuestiones Indicar: 1. Cuál es un eje en voladizo? 2. Árbol Giratorio 3. Sometido a Flexión y Torsión 52

Indicar: 1. Disposiciones Imposibles 2. Eje con un solo voladizo 3. En cuál los rodamientos han de colocarse por lados opuestos 53

El árbol de transmisión de la figura gira a 450 rpm. Ambos engranajes actúan como motrices respecto de la rueda que engrana con cada uno de ellos, transmitiendo los esfuerzos proporcionales a la potencia indicada para cada uno. Representar las fuerzas y momentos que solicitan el eje debido al acoplamiento y engranajes sobre un modelo 3D. 54

Representar el diagrama de momentos torsores para el eje de la figura anterior, indicando los valores numéricos que le definen. 55

A continuación se representan seis árboles de transmisión, mostrando distintas situaciones de cargas: estáticas, alternativas de flexión, axiales y cargas de torsión. Indicar para cada una la descripción del estado de carga que soporta el eje 56

57

58

59