Tema 2.- Fundamento físico-químico del Análisis instrumental basado en técnicas espectroscópicas



Documentos relacionados
ESPECTROSCOPIA Q.F. ALEX SILVA ARAUJO

TÉCNICAS BASADAS EN LA EMISIÓN DE RADIACIÓN

Espectroscopía Clase integradora

Qué es espectrofotometría?

Espectroscopía de Absorción Molecular

Espectroscopía. Qué es la espectroscopía? 18/10/2013

MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS

Espectrometría de luminiscencia molecular Cap.15

Métodos Espectrofotométricos. Capítulos 24 y 25 de Fundamentos de Química Analítica Skoog-West-Holler-Crouch (octava Ed.)

Espectroscopía de Absorción Atómica

FOTOLUMINISCENCIA MOLECULAR

ESPECTROSCOPIA DE FLUORESCENCIA, FOSFORESCENCIA Y QUIMIOLUMINISCENCIA MOLECULAR Q.F. ALEX SILVA ARAUJO

ESPECTROSCOPÍA LUMINISCENTE:

TÉCNICAS BASADAS EN LA ABSORCIÓN DE RADIACIÓN

Espectroscopía de Absorción Molecular

RADIACIÓN ELECTROMAGNÉTICA

CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA.

ESPECTROFOTOMETRIA. BASES FISICAS

Análisis Instrumental FCEyN

Tema 7: Técnicas de Espectroscopía atómica. Principios de espectrometría de Absorción y Emisión. Espectrometría de masas atómicas.

Tema 7.- Principios de fotoquímica

(( )) Tema 5: Técnicas espectroscópicas: Espectrofotometría. visible Infrarrojo. Ultravioleta. Espectro de emisión de los cuerpos en equilibrio

LICENCIATURA DE QUÍMICO EN ALIMENTOS. Química Analítica III. Tipo de Asignatura: Teórico-Práctico Área de Conocimiento: Básica Propedéutica

FLUORESCENCIA. TM. Franna Bacic TM. Pablo Cabrera TM. Carlos Zamorano BQ. Javiera villar

MÉTODOS ESPECTROFOTOMÉTRICOS

RADIACIÓN ELECTROMAGNÉTICA

Las Ondas y la Luz. Las Ondas

MATERIAL 09 TEMA: ESPECTROSCOPÍA DE ABSORCION MOLECULAR EN EL ULTRAVIOLETA

ESPECTROFOTOMETRÍA A INFRARROJA (IR) cm -1 < < 10 cm -1. Se distinguen 3 subregiones: REGIÓN INFRARROJA SUBREGIÓN. INTERVALO (cm -1 )

PARTE II REVISIÓN DE MÉTODOS ESPECTROSCÓPICOS Y ELABORACIÓN DE CURVA ESTÁNDTAR DE PROTEÍNA

EMISIÓN DE RADIACIÓN 24/05/2011

Esquema general de un fotómetro sencillo

INTRODUCCION (2) espectroscopía de absorción Espectroscopía de Emisión RMN Espectrometría de Masas espectrometría de fragmentación

interacción de la radiación con la atmósfera

REVISIÓN DE MÉTODOS ESPECTROSCÓPICOS Y ELABORACIÓN DE CURVA ESTÁNDAR DE PROTEÍNA

INSTRUMENTACIÓN EN ESPECTROSCOPÍA ÓPTICA

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1

Fundamentos de Espectrometría de Absorción Atómica

Espectroscopía de Emisión Atómica

TEMARIO DE LOS EXÁMENES DE ADMISIÓN PARA INGRESO AL PROGRAMA DE MAESTRÍA EN CIENCIA DE MATERIALES DE LA UNIVERSIDAD DE SONORA

5.- PROPIEDADES ÓPTICAS DE LOS MATERIALES FÍSICA DEL ESTADO SÓLIDO II

ESPECTROSCOPIA UV-VISIBLE

Práctica 5. Espectroscopia UV-Vis de compuestos de coordinación Tarea previa

La frecuencia y la longitud de onda están relacionadas por la velocidad de la luz (c= m s -1 )

q electrón m electrón = 1, , C 1, C kg

QUIMICA ORGANICA DE BIOPROCESOS. CEBI_A3_ 4: Espectroscopía (1º parte)

ANALISIS INSTRUMENTAL QUIMICA FARMACÉUTICA

Estructura de la Materia Serie 1

CAPITULO I: La Luz CAPITULO I: LA LUZ 1

RADIACIÓN SOLAR PRÁCTICA 3 COMPRENSIÓN DEL ESPECTRO ELECTROMAGNÉTICO EN LA REGIÓN DEL ESPECTRO SOLAR

PROGRAMA DE ANÁLISIS INSTRUMENTAL II

Experimento: Espectro de gases

Capítulo 2 Procesos radiativos en materiales

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón

Los fundamentos de la espectroscopia: teoría CONSTRUYENDO UNA CIENCIA MEJOR ENTRE AGILENT Y USTED

RADIACIÓN ELECTROMAGNÉTICA Y TÉCNICAS DE OBSERVACIÓN. Curso Introducción a la Astronomía 1

Fundamentos de la microscopía de fluorescencia

PRACTICO N 1: ESPECTROFOTOMETRIA

El color en al biología. Dra. Karla Josefina Santacruz Gómez

Departamento: Química Industrial y Aplicada Contenido Vigencia: Sem. A/80

UNIDAD I LA RADIACIÓN ELECTROMAGNÉTICA Y SU INTERACCIÓN CON LA MATERIA.

02/06/2014. Química Plan Común

ESPECTROMETRÍA DE FLUORESCENCIA MOLECULAR

Unidad 1: Teoría Cuántica y Estructura Atómica. 1.2 Base experimental de la teoría cuántica

Tema 3.-Espectroscopía de biomoléculas

Problema Interferencia de N ranuras.

INTRODUCCION A LA ESPECTROSCOPIA DE ABSORCION MOLECULAR UV/VIS Y DE INFRARROJO CERCANO. Cap. 13

Práctica 6 IDENTIFICACIÓN DE CONTAMINANTES MEDIANTE ESPECTROSCOPÍA INFRARROJA

Tema 14 Mecánica Cuántica

ANARMONICIDAD Y RESONANCIA EN VIBRACIONES DE MOLÉCULAS

Biofisicoquímica de Metaloproteínas

Física II. Dr. Mario Enrique Álvarez Ramos (Responsable)

ESPECTROSCOPíA INFRARROJA

I.E.S. MARTÍNEZ MONTAÑÉS DEPARTAMENTO DE FÍSICA Y QUÍMICA ÓPTICA

Espectrofotometría UV- VIS

Preguntas Muestra para Examen de Ingreso Posgrado 2014

2014_2C. Módulo IV. La interacción de la luz con la materia. lo que vemos y lo que nos permite ver Hewitt, Física conceptual. Actividades prácticas

Dr. Gabriel Planes Dra.Cecilia Pagliero Dr. Carlos Sucheti Dr. Daniel Heredia

Series espectrales del hidrógeno

Tema 7. Espectroscopia para el estudio de la materia. 1. Introducción. 1. Introducción. 1. Introducción

Slide 1 / 52. Las Ondas Electromagnéticas Problemas de Práctica

Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica

INTRODUCCIÓN A LA ESPECTROFOTOMETRÍA

ESPECTROSCOPÍA DE ABSORCIÓN MOLECULAR

ESTRUCTURA DEL SEMINARIO:

PRACTICA 3: ESPECTROSCOPIA DE FLUORESCENCIA

MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS

ESPECTROFOTOMETRÍA. 1. Naturaleza de la radiación electromagnética: 1 nm = 10-9 m

Unidad 1: Materia, estructura y Periodicidad Base experimental de la teoría cuántica y estructura atómica.

Espectroscopia ultravioleta-visible (temas complementarios)

Tema 6. Espectroscopia para el estudio de la materia

Trabajo Practico nº2

Láseres de Colorante. Óptica.

ESPECTROFOTOMETRÍA UV-VISIBLE. Mª Luisa Fernández de Córdova Universidad de Jaén

El electromagnetismo es una característica asociada las partículas cargadas eléctricamente.

ESPECTROSCOPÍA INTERACCIÓN RADIACIÓN-MATERIA. Es el laboratorio de la química cuántica

LÁSER INTRODUCCIÓN. U5-T1 Introducción - 1

ESPECTROSCOPÍA INFRARROJA

Transcripción:

Tema 2.- Fundamento físico-químico del Análisis instrumental basado en técnicas espectroscópicas Interacción de la radiación electromagnética con entidades atómicas y moleculares de interés analítico: Espectros.- Configuraciones instrumentales. Componentes básicos y diseños instrumentales para el estudio de especies químicas.- Características de uso de los instrumentos 1

Espectroscopia de átomos y moléculas TÉCNICAS ESPECTROSCÓPICAS MATERIA Átomos Moléculas Especies REM Fotones 2

Espectroscopia de átomos y moléculas A finales del siglo XIX Estudio de radiaciones absorbidas o emitidas por átomos y moléculas: configuraciones electrónicas de los átomos enlaces interacciones en dispositivos de medida 3

Los métodos espectroscópicos se clasifican de acuerdo con la región del espectro electromagnético que utilizan. Estas regiones incluyen R-X, UV, VIS, IR, MO, RF. Los primeros métodos espectroscópicos se restringían al empleo de la radiación visible, por ello se denominaron MÉTODOS ÓPTICOS. Debido a la similitud del instrumental utilizado, el término de MÉTODOS ÓPTICOS se emplea también para aquellos que emplean la radiación UV e IR a pesar de que estas no son perceptibles por el ojo humano. 4

PROPIEDADES DE LA REM La REM es una forma de energía que se transmite por el espacio (sin soporte de materia) a velocidades muy altas. Posee una doble naturaleza: Ondulatoria Difracción Refracción Reflexión Dispersión complementarios Corpuscular fotones Emisión Absorción Efecto fotoeléctrico 5

Interacción de la radiación electromagnética con átomos y moléculas: Espectros Energía de la RE E= hν v (frecuencia de la onda) = c/λ Un átomo o molécula puede: Girar vibrar en el caso de las moléculas modificar E de sus e - s externos modificar E de sus e - s internos alterar E de su núcleo El tipo de interacción depende E T = Enucleo + Eelectrones internos + Eelectrones externos + Evibración + Erotació Características intrínsecas de la entidad 6

Energía de las radiaciones y longitud de onda Microondas (λ entre 10-5 y 10-2 m) poca energía rotación o vibración de las moléculas Radiación infrarroja (IR) (λ entre 10-6 y 10-3 m) cambios en los niveles vibracionales: cambio en la posición relativa de los átomos en una molécula 7

Energía de las radiaciones y longitud de onda Radiación visible (λ 1 x10-6 y 0,3 x10-6 m; entre 1 µm y 300 nm) externos (de valencia) de los átomos y moléculas e - s Radiación ultravioleta (UV) (λ = 300 nm y 200 nm; UV cercano) externos de átomos y moléculas e - s Rayos X (λ entre 100 Å y 1 Å; 1 Å = 10-10 m) gran energía y poder penetrante de las capas internas de los átomos. e - s 8

R. Cósmicos Rγ RX UV V IR MO RF 10-12 10-11 10-8 10-6 10-3 10-1 λ(m) 800 700 Púrpura 600 Rojo Naranja Amarillo Verde 500 Azul 400 Violeta λ (nm) ULTRAVIOLETA LEJANO 10-200 nm RADIACIÓN UV-V ULTRAVIOLETA PRÓXIMO 200-400 nm VISIBLE 400-800 nm EXCITACIÓN ELECTRÓNICA 9

Interacciones y zonas espectrales 10

Energía de la radiación y tipo de interacción A menor E mayor selectividad en la interacción MOLÉCULAS interacciones electrónicas Enlaces Vibracionales modificación de la posición relativa de los átomos en la molécula rotacionales rotación de la molécula ÁTOMOS interacciones electrónicas el átomo individual no vibra respecto a otros su rotación implica una energía baja no puede medirse experimentalmente Todo ello determina: Características de los espectros Configuraciones instrumentales en espectroscopia analítica 11

Absorción y emisión molecular 12

Absorción y emisión molecular Los electrones en estos sistemas tienen los espines apareados se denomina singulete cuando se somete a un campo magnético: no se observa desdoblamiento de energía Si se trata de un radical libre, con un electrón no apareado estado doblete cuando se somete a un campo magnético: el electrón impar puede tomar dos orientaciones Cuando un electrón de una molécula es excitado a un nivel de energía superior se forman un estado singulete o triplete Estado singulete excitado el espín del electrón promocionado continúa apareado con el electrón del nivel fundamental Estado triplete excitado los espines de los dos electrones están desapareados (en paralelo) El estado triplete excitado es menos energético que el estado singulete 13

Absorción y emisión molecular Estado triplete excitado La molécula es paramagnética Estado singulete excitado La molécula es diamagnética La probabilidad de una transición singulete/triplete o a inversa es mucho menor que la singulete/singulete Tiempo de vida medio de un estado triplete excitado entre 10-4 a varios segundos Probabilidad baja Picos de absorción de varios órdenes de magnitud menos que en singulete excitado Tiempo de vida medio del estado singulete excitado 10-8 a 10-5 s 14

Absorción y emisión molecular Modos de emisión (desactivación del estado excitado): Pérdida de E electromagnética o radiante desde el nivel singulete excitado (S 1 ) al estado singulete fundamental (S 0 ) Fluorescencia. En determinadas moléculas, un estado triplete excitado se cruza con un singulete excitado. El estado triplete se pobla de electrones del singulete excitado. La transición triplete-singulete está prohibida (tarda mucho) Fosforescencia 15

Excitación y desexcitación 16

Fluorescencia y fosforescencia Fluorescencia transición de S 1 a S 0 S 1 S 0 + h ν Sin cambio en multiplicidad de spin Vida media de la fluorescencia: 10-9 10-5 seg Fosforescencia transición de T 1 a S 0 T 1 S 0 + h ν Cambio en multiplicidad de spin Vida media de la fosforescencia: 1 mseg a varios seg Longitud de onda mayor que la de la fluorescencia 17

Aspectos cinéticos en la absorción y emisión molecular La velocidad de abs. de un fotón por una molécula: es muy elevada de 10-15 a 10-14 s En emisión molecular (fluorescencia): mucho más lentos. Tiempo de vida de la molécula excitada inversamente relacionado con la probabilidad que se produzca la absorción de los fotones y por tanto con la absortividad molar (ε) Las ε: suelen estar entre 10 3 y 10 5 Corresponde un tpo. excitación de 10-7 a 10-9 s, respectivam. 18

Aspectos cinéticos en la absorción y emisión molecular Sistemas débilmente absorbentes Probabilidad del proceso de transición es más pequeña Los tiempos de vida pueden relativamente grandes, de 10-6 a 10-5 s En las transiciones triplete-singulete la velocidad promedio es aún menor La emisión fosforescente precisa tiempos entre 10-4 y 10 s, o mayores 19

Procesos de relajación molecular Pueden combinarse de varias etapas de desactivación Dos de estas etapas conllevan a la emisión de un fotón Fluorescencia Fosforescencia La molécula debe tener características estructurales determinadas El resto procesos no radiantes Todas estas etapas compiten entre sí La selección depende cinética más favorable en la población de electrones que se está desactivando 20

Procesos de relajación molecular Otros procesos luminiscentes están aún más limitados gran selectividad Quimioluminiscencia Emisión por una reacción química Triboluminiscencia Emisión de luz por la acción mecánica Bioluminiscencia Emisión de luz por un sistema vivo Ejemplo ATP-bioluminescencia higiene en alimentos Se detecta el ATP microbiano Usa luciérnagas 21

Procesos de desactivación molecular RELAJACIÓN VIBRACIONAL: En disolución la E se pierde rápidamente por colisiones moleculares Tiempo de vida 10-12 s De S 1 S 0 siempre desde el nivel más bajo de S 1 De S 2 S 1 siempre desde el nivel más bajo de S 2 El e - puede volver a cualquier nivel de S 0 22

Procesos de desactivación molecular CONVERSIÓN INTERNA: el e- se desactiva desde un nivel electrónico más elevado a un nivel vibracional superior de un estado electrónico más bajo Proceso intermolecular sin emisión E Cuando hay solapamiento en los niveles de energía dos niveles de energía muy próximos Nivel bajo de S 2 y alto de S 1 Sin emisión de radiación Cinéticamente más favorable que fluorescencia son la relajación vibracional conversión interna La fluorescencia sólo tiene lugar a λ 3 independientemente de que las radiaciones λ 1 y λ 2 sean las responsables de la excitación 23

Procesos de desactivación molecular CONVERSIÓN INTERNA: Hidrocarburos alifáticos los niveles del estado fundamental se solapan con niveles del primer estado electrónico excitado Fluorescencia cinéticamente desfavorable Predisociación Se produce conversión interna Se rompe un enlace En la disociación se rompe enlace por la excitación sin que exista conversión interna 24

Procesos de desactivación molecular CONVERSIÓN EXTERNA o amortiguación colisional Transferencia de E entre la molécula excitada y el disolvente u otros solutos Fluorescencia La radiación emitida siempre tiene mayor λ (menor frecuencia) que la de excitación Siempre: Absorción conversión transición desde el nivel más bajo del estado excitado al estado fundamental En fluorescencia influye Disolvente Favorecida por: baja temperatura elevada viscosidad Evitan la conversión externa 25

Procesos de desactivación molecular CRUZAMIENTO DE SISTEMAS Se invierte el espín de un e - excitado originándose un cambio de la multiplicidad molecular La probabilidad aumenta si los niveles vibracionales de los dos estados solapan Favorecida por la presencia en molécula: De átomos pesados yodo y el bromo efecto del átomo pesado De especies paramagnéticas en disolución, como el oxígeno molecular 26

Procesos de desactivación molecular FOSFORESCENCIA Tras cruce de sistemas hasta legar al estado triplete excitado, la desactivación puede ocurrir por: conversión interna externa fosforescencia triplete singulete mucho tiempo menos probable que singulete/singulete la emisión puede persistir durante algún tiempo después de que la irradiación se haya interrumpido 27

Espectros del fenantreno E: espectro de excitación o absorción F: Fluorescencia (mayor λ) P: Fosforescencia (mayor λ pq triplete tiene menos E) 28

Diagrama de Jablonski S 1 Conversión interna Cruzamiento entre sistemas Absorción T 1 Fluorescencia Fosforescencia S 0 29

Absorción y emisión atómica ORBITALES p Se desdoblan Niveles de diferente E Un electrón gira en su propio eje y la dirección del movimiento: la misma del movimiento orbital Repulsión orbital p de menor E opuesta al movimiento orbital Atracción ORBITALES d y f interacciones similares, pero tan débiles que resultan inapreciables El desdoblamiento de p, d y f se produce de manera análoga en los átomos que poseen un solo electrón externo Caso de Na (a) y Mg + (b) Los 3p del Mg+ tienen doble E que Para Na debido a la mayor carga nuclear el 1º 30

Espectros de emisión y absorción atómica Absorción En medio gaseoso a elevada T, absorben REM de λ característica de las transiciones electrónicas del estado 3s a estados de excitación más elevados Espectros formados principalmente por líneas de resonancia Del nivel fundamental a uno de mayor E Transiciones prohibidas: de 5s o 4s a 3s de p a d 31

Espectros de emisión y absorción atómica A T ambiente todos los átomos en estado fundamental El único electrón más externo de un átomo de Na es el 3s Emisión Excitación de ese e - por el calor de una llama, un plasma, una chispa, un arco eléctrico, etc El tiempo de vida excitado es breve, y vuelve al estado fundamental emitiendo un fotón Líneas 5890 y 5896 A son las más intensas, líneas amarillas del sodio en una llama 32

Espectros de fluorescencia atómica A veces cuando se irradian con una fuente intensa fluorescencia atómica Se detecta en un ángulo de 90º con respecto a la trayectoria de la luz Espectros del Mg Átomos de Mg irradiados con una fuente UV absorbe la radiación de 2852 A (tránsito del nivel 3s al 3p) Transiciones de estado excitado al nivel fundamental (resonancia) La fluorescencia de resonancia emitida a esa misma longitud de onda se usa con fines analíticos 33

Espectros de fluorescencia atómica Átomos de sodio Absorben a 3303 A (3s 4p) Transición no radiante a los niveles 3p muy rápida Fluorescencia del nivel 3p al fundamental (5890 y 5896 A) 34

Espectros de fluorescencia atómica Parte de los átomos de Tl, excitados en una llama, vuelven al estado fundamental en dos etapas: una es fluorescente produciendo una línea a 5.350 A a continuación se produce rápidamente una desactivación no radiante hacia el estado fundamental También se observa fluorescencia de resonancia a 3.776 A 35

Configuraciones instrumentales Fuentes de radiación Debe generar un haz de radiación con potencia suficiente para que se detecte y se mida con facilidad Su potencia de salida debe ser estable durante periodos de tiempo razonables TIPOS: Fuentes de potencia regulada Diseños de doble haz la relación de la señal de la muestra respecto a la de la fuente en ausencia de muestra sirve como parámetro analítico Fuentes continuas emiten radiación cuya intensidad varía solo de forma gradual en función de la longitud de onda Fuentes de líneas emiten un número limitado de líneas o bandas de radiación, cada una de las cuales abarca un intervalo limitado de longitudes de onda 36

Fuentes de radiación FUENTES CONTINUAS En espectroscopia de absorción y de fluorescencia Para la región ultravioleta: lámpara de deuterio Si se precisa una fuente particularmente intensa lámparas de arco rellenas de un gas, argón, xenón o mercurio, a alta presión Región visible del espectro lámpara de filamento de wolframio Las fuentes de infrarrojo sólidos inertes calentados a 1.500-2.000 K la máxima emisión radiante se produce entre 1,5 y 1,9 µm 37

Fuentes de radiación FUENTES DE LÍNEAS Se usan frecuentemente en: espectroscopia de absorción atómica espectroscopia de fluorescencia atómica y molecular espectroscopia Raman refractometria y la polarimetria Lámparas de vapor de mercurio y de sodio proporcionan relativamente pocas líneas agudas en la región ultravioleta y visible Lámparas de cátodo hueco Absorción atómica Las lámparas de descarga sin electrodos Fluorescencia 38

Fuentes de radiación 39

Selección de la longitud de onda Se requiere una radiación constituida por un grupo limitado, estrecho y continuo de longitudes de onda denominado banda La banda debe ser estrecha aumenta la sensibilidad de las medidas de absorbancia puede proporcionar una mayor selectividad con frecuencia es un requisito necesario para obtener una relación lineal entre la señal óptica y la concentración 40

Selección de la longitud de onda No existe ningún sistema de selección de la longitud de onda que de una sola λ La anchura de banda efectiva, es una medida inversa de la calidad del dispositivo la resolución es mejor cuanto más estrecha es la anchura de banda selectores de longitud de onda Filtros monocromadores Se representa el % de radiación incidente transmitida por el selector a una determinada λ 41

Filtros Tipos filtros de interferencia operan en la región ultravioleta, visible y buena parte del infrarrojo filtros de absorción se limitan a la región visible del espectro 42

Filtros de interferencia se fundamentan en las interferencias ópticas para producir bandas estrechas de radiación Consta de: un dieléctrico transparente con frecuencia fluoruro de calcio o de magnesio El espesor de la capa dieléctrica determina la λ dos películas metálicas semitransparentes dos placas de vidrio u otro material transparente Parte del haz de luz atraviesa ambas películas y otra se refleja (sufre una interferencia destructiva) 43

Filtros de interferencia Características de transmisión de los filtros de interferencia 44

Filtros de absorción Son más baratos que los filtros de interferencia Se han utilizado mucho para la selección de bandas en la región visible Absorben ciertas zonas del espectro Tipos más habituales: un vidrio coloreado una suspensión de un colorante en gelatina que se coloca entre dos placas de vidrio Los filtros de absorción tienen anchuras de banda efectivas que oscilan entre 30 y 250 nm 45

Monocromadores Permiten hacer barrido espectral variar, de forma continua y en un amplio intervalo, la λ de la radiación Los monocromadores para las radiaciones ultravioleta, visible e infrarroja son similares Todos ellos utilizan Rendijas proporciona una imagen óptica rectangular Lentes o Espejos produce un haz paralelo de radiación redes o prismas dispersa la radiación en sus longitudes de onda individuales elemento localizador forma de nuevo la imagen de la rendija de entrada y la enfoca en una superficie plana denominada plano focal una rendija de salida en el plano focal aísla la banda espectral deseada Ventanas de entrada y de salida para proteger a los componentes del polvo y de los vapores corrosivos del laboratorio 46

Monocromadores Dos tipos: redes de dispersión prismas 47

Monocromadores 48

Rendijas del monocromador 49

Rendijas y anchura de banda Las rendijas de un monocromador juegan un importante papel para determinar sus características de funcionamiento y calidad La anchura de banda se define como el tramo de ajuste del monocromador (en unidades de longitud de onda) necesario para sustituir una imagen de la rendija de entrada (correspondiente a una determinada longitud de onda) por otra La anchura de banda efectiva, es la mitad de la anchura de banda cuando las dos anchuras de rendija son iguales. Se define como la longitud del plano focal ocupada por una determinada longitud de onda (la imagen de la rendija de entrada a través de la rendija de salida). 50

Rendijas y anchura de banda La medida cuantitativa de bandas de absorción estrechas requiere el uso de anchuras de rendija estrechas Sin embargo la disminución de la anchura de rendija presenta el inconveniente de causar una reducción exponencial de la energía radiante. 51

Rendijas y anchura de banda A la concentración c: el pico abarca el 30% de T El valor medio de la potencia transmitida es entonces el 35% de T ([100% - 30%]/2), que corresponde a 0,187 unidades de absorbancia A 2c El valor medio de la potencia transmitida es 45,5%, que corresponde a 0,263 unidades de absorbancia Pero, cuando la absorbancia para la concentración c es 0,187, se espera (según la ley de Beer) que la solución 2c tenga el doble de absorbancia 0,374 (= 2 x 0,187), y no 0,263 Con una longitud de banda espectral suficientemente estrecha, encontraremos que para cada longitud de onda la intensidad versus la longitud de onda sigue la ley de Beer. 52

Anchura de las líneas en espectroscopía de absorción o emisión atómica Se produce ensanchamiento por: Ensanchamiento natural Se produce como consecuencia del Principio de Incertidumbre de Heisenberg el tiempo de vida de un electrón en un estado excitado es limitado Efecto Doppler La frecuencia aumenta en a y disminuye en b 53

Anchura de las líneas en espectroscopía de absorción o emisión atómica Ensanchamiento de presión Es el resultado de las colisiones entre las especies que absorben o emiten con otros átomos o iones presentes en el medio (ensanchamiento Lorentz) o incluso con átomos del mismo elemento (ensanchamiento Holtsmark). Efectos producidos por campos eléctricos y magnéticos La presencia de campos eléctricos (efecto Stark) o magnéticos (efecto Zeeman) origina ciertas perturbaciones en las líneas de absorción o emisión 54

Detectores: fototubos 55

Fototubo 56

spectroscopía de absorción molecular 57

Espectroscopía de emisión molecular 58

Espectrofluorímetro y fosforímetro 59

Configuración instrumental para AAS 60

Espectrocopia de absorción y emisión molecular Compartimento de muestras 61

Espectroscopía de absorción atómica. Compartimento de muestras 62

Espectroscopía de emisión atómica. 63