Sistemas de Primer y Segundo Orden



Documentos relacionados
2.2 Transformada de Laplace y Transformada Definiciones Transformada de Laplace

Matlab para Análisis Dinámico de Sistemas

6. Análisis en el dominio de la frecuencia. Teoría de Control

Análisis de Sistemas Lineales: segunda parte

ESTUDIO DE LA ESTABILIDAD EN EL DOMINIO FRECUENCIAL

Control Automático TAREA PROGRAMADA DISEÑO DE UN COMPESADOR DE FILTRO DE MUESCA

Circuito RL, Respuesta a la frecuencia.

Electrónica Analógica Respuesta en frecuencia. Transformada de Laplace

TECNOLOGÍAS DE PRODUCCIÓN. (Función de Producción Cobb-Douglas) (

Las Funciones Analíticas. f (z 0 + h) f (z 0 ) lim. h=z z 0. = lim

EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO

Tema 3. Secuencias y transformada z

Controladores PID. Virginia Mazzone. Regulador centrífugo de Watt

Departamento de Matemáticas

Test de ejercicios de auto-evaluación del módulo 2 Lecciones 3 y 4

Tema 1: Preliminares

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO CENTRO UNIVERSITARIO UAEM ATLACOMULCO REPORTE DE INVESTIGACION

Circuito RC, Respuesta a la frecuencia.

Introducción. Culminación de todos los anteriores capítulos. Tipos de compensación. Acción de control. Tipos de acción:

CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas

Determinar el comportamiento transitorio y estacionario del sistema. Especificar e identificar las condiciones de operación

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14

0.1. Sintonización de Controladores

E.T.S.I. INDUSTRIAL DE BEJAR UNIVERSIDAD DE SALAMANCA CAPITULO

CÁLCULO PARA LA INGENIERÍA 1

Diseño de sistemas de control. Teoría de control

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA

Aritmética finita y análisis de error

No hay resorte que oscile cien años...

Determinación experimental de la respuesta en frecuencia

FUNCIONES Y GRÁFICAS.

PRÁCTICA DE GABINETE DE COMPUTACIÓN Nº 2

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s

Métodos Numéricos Grado en Ingeniería Informática Univ. Tema de Las 7 Interpolación Palmas de G.C. de funciones 1 / 42II

Introducción a los sistemas de control

Funciones trigonométricas básicas. Propiedades básicas de las funciones trigonométricas: Seno, Coseno, Tangente, Cotangente, Secante y Cosecante.

Características de funciones que son inversas de otras

EXAMEN DE INGENIERÍA DE SISTEMAS Y AUTOMÁTICA 02/09/2008

Automá ca. Ejercicios Capítulo7.2.AnálisisFrecuencial(Parte2)

Ortogonalidad y Series de Fourier

1. Dominio, simetría, puntos de corte y periodicidad

M a t e m á t i c a s I I 1

1 Introducción 5. 4 Lugar de las raíces Reglas generales para la construcción de los lugares geométrico de la raíz. 28

LÍMITES Y CONTINUIDAD DE FUNCIONES

a. Dibujar los paralelogramos completos, señalar los vértices con letras.

UNIVERSIDAD DE COSTA RICA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA ELÉCTRICA LABORATORIO DE MÁQUINAS ELÉCTRICAS I

Sistema de Control de un péndulo Simple

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

Tecnología de las Comunicaciones

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.

a) Buscar dominio, crecimiento, decrecimiento y máximos absolutos. b) Buscar el área delimitada por la función y el eje '0X'.

Series y Transformada de Fourier

Transformaciones canónicas

Funciones polinomiales de grados 3 y 4

342 SOBRE FORMAS TERNARIAS DE SEGUNDO GRADO.

Estudio de ceros de ecuaciones funcionales

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

Herramientas digitales de auto-aprendizaje para Matemáticas

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( )

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

El concepto de integral con aplicaciones sencillas

SISTEMAS DE ECUACIONES LINEALES

RESOLUCION DE ESTRUCTURAS POR EL METODO DE LAS DEFORMACIONES

Límite de una función

Apuntes sobre algunos teoremas fundamentales de análisis complejo, con 20 ejemplos resueltos ( )

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

TEMA 1.- SISTEMAS AUTOMÁTICOS Y DE CONTROL.

2. SISTEMAS LINEALES DE PRIMER ORDEN (I)

Como ya se sabe, existen algunas ecuaciones de segundo grado que no tienen ninguna solución real. Tal es el caso de la ecuación x2 + 1 = 0.

Notas en Eonomía de la Información *

Función de transferencia

1. Números Reales 1.1 Clasificación y propiedades

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Un filtro general de respuesta al impulso finita con n etapas, cada una con un retardo independiente d i y ganancia a i.

TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO

1. Ecuaciones no lineales

f(x)=a n x n +a n-1 x n-1 +a n-2 x n a 2 x 2 +a 1 x 1 +a 0

FORMATO BINARIO DE NÚMEROS NEGATIVOS

OSCILACIONES ARMÓNICAS

Transformadores de Pulso

Repaso de Modelos Matemáticos de Sistemas Dinámicos

APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO

Transformada de Laplace: Análisis de circuitos en el dominio S

CALCULO 11-M-1 Primera Parte

Unidad 6 Cálculo de máximos y mínimos

TEMA 14: ANÁLISIS DE LOS ESTADOS FINANCIEROS DE LA EMPRESA

Capítulo I. Convertidores de CA-CD y CD-CA

1. Lección 10 - Operaciones Financieras - Introducción a los préstamos

SOLUCIONES AL BOLETÍN DE EJERCICIOS Nº 3

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:

Definición de vectores

Cursada Primer Semestre 2015 Guía de Trabajos Prácticos Nro. 2

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim

COORDENADAS CURVILINEAS

1. Derivadas parciales

Profr. Efraín Soto Apolinar. Factorización

Transcripción:

Sistemas de Primer y Segundo Orden Oscar Duarte Facultad de Ingeniería Universidad Nacional de Colombia p./66

Sistema Continuo. er Orden Un sistema continuo de primer orden, cuya función de transferencia es F (s) = s + a Se estimula con un paso unitario µ(t), (C.I. = 0), la respuesta y(t) es: Y (s) = F (s)u(s) = (s + a) s = /a s + /a s + a y(t) = a ( e at )µ(t) p.2/66

Sistema Continuo. er Orden 2 y(t) 2 3 4 t Figura : Respuesta al paso de un sistema continuo de primer orden, a =, polo en s = y(t) = a ( e at )µ(t) p.3/66

Sistema Continuo. er Orden y(t) 2 3 4 t Figura 2: Respuesta al paso de un sistema continuo de primer orden, a =, polo en s = y(t) = a ( e at )µ(t) p.4/66

Sistema Continuo. er Orden y(t) 2 3 4 t Figura 3: Respuesta al paso de un sistema continuo de primer orden, a = 2, polo en s = 2 y(t) = a ( e at )µ(t) p.5/66

Sistema Continuo. er Orden y(t) 2 3 4 t Figura 4: Respuesta al paso de un sistema continuo de primer orden, a = 3, polo en s = 3 y(t) = a ( e at )µ(t) p.6/66

Sistema Continuo. er Orden Región de Estabilidad Región de Inestabilidad 0 Figura 5: Regiones de estabilidad e inestabilidad para un sistema continuo de primer orden y(t) = a ( e at )µ(t) p.7/66

Tiempo de Asentamiento tiempo de asentamiento o tiempo de estabilización: tiempo a partir del cual la respuesta natural (su valor absoluto) no supera un porcentaje de su valor máximo, por ejemplo el 5 %. Para el caso del sistema continuo de primer orden, este tiempo t as que satisface: y(t) = a ( e at )µ(t) e at as = 0.05 t as = ln 0.05 a t as = 3/a p.8/66

Tiempo de Asentamiento /a 67 % y(t) y = t /a t Figura 6: Respuesta al paso de un sistema continuo de primer orden, polo en a y(t) = a ( e at )µ(t) p.9/66

Tiempo de Asentamiento t as 3/a a 0 Figura 7: Región de tiempo de asentamiento máximo para un sistema continuo de primer orden p.0/66

Sistema Discreto. er Orden Un sistema discreto de primer orden, cuya función de transferencia es F (s) = z + a Se estimula con un paso unitario µ(k), (C.I. = 0) Y (z) = F (z)u(z) = (z + a) z (z ) = Y (z) = z/( + a) (z ) z/( + a) z + a y(k) = ( + a) ( ( a)k )µ(k) p./66

Sistema Discreto. er Orden 3 2 y(t) 2 3 4 t Figura 8: Respuesta al paso de un sistema discreto de primer orden, a =.5, polo en s =.5 p.2/66

Sistema Discreto. er Orden 2 y(t) 2 3 4 t Figura 9: Respuesta al paso de un sistema discreto de primer orden, a =.5, polo en s =.5 p.3/66

Sistema Discreto. er Orden 2 y(t) 2 3 4 t Figura 0: Respuesta al paso de un sistema discreto de primer orden, a =.5, polo en s =.5 p.4/66

Sistema Discreto. er Orden 2 2 y(t) 2 3 4 t Figura : Respuesta al paso de un sistema discreto de primer orden, a =.5, polo en s =.5 p.5/66

Sistema Discreto. er Orden Inestabilidad Estabilidad Inestabilidad 0 Alternante No Alternante 0 Figura 2: Regiones de estabilidad e inestabilidad para un sistema discreto de primer orden p.6/66

Tiempo de Asentamiento tiempo de asentamiento o tiempo de estabilización: tiempo a partir del cual la respuesta natural (su valor absoluto) no supera un porcentaje de su valor máximo, por ejemplo el 5 %. Para el caso del sistema discreto de primer orden, este tiempo t as que satisface: y(k) = ( + a) ( ( a)k )µ(k) ( a ) k as = 0.05 k as = ln 0.05 ln( a ) k as = 3 ln( a ) p.7/66

Tiempo de Asentamiento k as 3/ ln a a a 0 Figura 3: Regiones de tiempo de asentamiento máximo para un sistema discreto de primer orden p.8/66

Sistema Continuo. 2 o Orden Un sistema continuo de segundo orden, cuya función de transferencia es F (s) = ω n s 2 + 2ξω n s + ω 2 n Los polos de la función de transferencia serán: p,2 = 2ξω n ± 4ξ 2 ω 2 n ω2 n 2 = ω n ( ξ ± ) ξ 2 Si ξ <, el radical es negativo, y los polos resultan ser complejos conjugados: p,2 = ξω n ± jω n ξ 2 p.9/66

Sistema Continuo. 2 o Orden Im(s) jω n ξ 2 ω n φ Re(s) ξω n ω n jω n ξ 2 Figura 4: Ubicación de los polos de un sistema continuo de segundo orden, con polos complejos p.20/66

Sistema Continuo. 2 o Orden F (s) = s 2 + 2ξω n s + ωn 2 La distancia de los polos al origen (la magnitud del complejo) es justamente ω n : ω n d = (ξω n ) 2 + ω 2 n( ξ 2 ) = ω n Además, el coseno del ángulo φ formado con el semieje real negativo, es justamente ξ: cos φ = ξω n ω n = ξ p.2/66

Sistema Continuo. 2 o Orden Se estimula el sistema con un paso unitario µ(t), (C.I. = 0), la respuesta y(t) es: Y (s) = F (s)u(s) = ω n (s 2 + 2ξωs + ω 2 n) s y(t) = [ ξ 2 e ξω nt sin ( ω n ξ2 t + φ) ] µ(t) φ = cos ξ p.22/66

Sistema Continuo. 2 o Orden 2 y(t) : ξ = 0. : ξ = 0.5 : ξ = 0.9 2 3 4 5 6 7 8 9 t Figura 5: Respuesta al paso de un sistema continuo de segundo orden, w n = p.23/66

Sistema Continuo. 2 o Orden 2 y(t) : ω n = : ω n = 0.5 : ω n = 2 2 3 4 5 6 7 8 9 t Figura 6: Respuesta al paso de un sistema continuo de segundo orden, ξ = 0.5 p.24/66

Sistema Continuo. 2 o Orden y max y(t) y final t c t Figura 7: Respuesta al paso de un sistema continuo de segundo orden p.25/66

Sistema Continuo. 2 o Orden y(t) = [ ξ 2 e ξω nt sin ( ω n ξ2 t + φ) ] µ(t) φ = cos ξ Establidad Tiempo de Asentamiento Frecuencia de Oscilación Sobrepico p.26/66

Sistema Continuo. 2 o Orden Im(s) Estabilidad Inestabilidad Re(s) Figura 8: Región de Estabilidad para un sistema continuo de segundo orden p.27/66

Tiempo de Asentamiento Tiempo a partir del cual la respuesta natural (su valor absoluto) no supera un porcentaje de su valor máximo, por ejemplo el 5 % y(t) = [ ξ 2 e ξω nt sin ( ω n ξ2 t + φ) ] µ(t) e ξω nt as = 0.05 t ξωn s = ln 0.05 ξω n t as = 3/ξω n p.28/66

Tiempo de Asentamiento Im(s) t as 3 a a t as > 3 a Re(s) Figura 9: Región de Tiempo máximo de asentamiento para un sistema continuo de segundo orden p.29/66

Frecuencia de Oscilación y(t) = [ ξ 2 e ξω nt sin ( ω n ξ2 t + φ) ] µ(t) F (s) = ω n s 2 + 2ξω n s + ω 2 n p,2 = ξω n ± jω n ξ 2 La Frecuencia de Oscilación es igual a la magnitud de la parte imaginaria de los polos de la Función de Transferencia p.30/66

Frecuencia de Oscilación w > w Im(s) jw w w Re(s) w > w jw Figura 20: Región de Frecuencia máxima de oscilación para un sistema continuo de segundo orden p.3/66

Sobrepico y(t) = [ ξ 2 e ξω nt sin ( ω n ξ2 t + φ) ] µ(t) sp = y max y final y final 00 % y max : es el valor máximo de y(t) y final el valor final(estacionario) de y(t). Para calcular el sobrepico máximo, primero derivamos y(t) e igualamos a cero para obtener los instantes t c en los que suceden los máximos y mínimos de y(t): p.32/66

Sobrepico 0 = dy dt = ξ 2 ( ξω ) ne ξωnt sin ω n ξ2 t + φ + ( ) = 0 ω n ξ2 e ξωnt cos ω n ξ2 t + φ ( ) ξω n sin ω n ξ2 t + φ = ( ) ω n ξ2 cos ω n ξ2 t + φ p.33/66

Sobrepico ξ 2 ξ = tan ( ) ω n ξ2 t + φ ( ) ξ ω n ξ2 t + φ = tan 2 ξ Para obtener el valor de la arcotangente en la ecuación anterior, obsérvese en el plano complejo la ubicación de los polos. El valor de tan φ: tan φ = ω n ξ 2 ξω n = ξ 2 ξ p.34/66

Sobrepico La función tan (x) es periódica, de periodo π, por lo tanto ( ) ξ ω n ξ2 t + φ = tan 2 ξ t = nπ ω n ξ 2 n = 0,, 2, = φ + nπ El sobrepico máximo sucede en t c, que corresponde a n = : π t c = ω n ξ 2 p.35/66

Sobrepico El valor de y(t) en t c es el valor máximo de y(t), es decir y max = y(t c ) y max = ξ 2 e ξω n ωn π ξ 2 sin ( y max = ω n ξ 2 ) π ω + φ n ξ 2 e ξπ ξ 2 sin(π + φ) ξ 2 p.36/66

Sobrepico Dado que sin(π + x) = sin(x), podemos escribir y max = + e ξπ ξ 2 sin(φ) ξ 2 ξπ ξ y max = + e 2 π cot φ = + e El valor final de y(t) es, por lo tanto ξπ ξ sp = e 2 00 % = e π cot φ 00 % p.37/66

Sobrepico 00 sp( %) 80 60 40 20 0 0 0.2 0.4 0.6 0.8.0 ξ Figura 2: Sobrepico en función de ξ p.38/66

Sobrepico 00 sp( %) 80 60 40 20 0 0 8 36 54 72 90 φ Figura 22: Sobrepico en función de φ p.39/66

Sobrepico Im(s) sp e πcotφ φ φ sp > e πcotφ Re(s) Figura 23: Región de Sobrepico máximo para un sistema continuo de segundo orden p.40/66

Región de diseño Im(s) jw φ a Re(s) jw Figura 24: Región de Diseño para un sistema continuo de segundo orden p.4/66

Región de diseño el sistema es estable el tiempo de asentamiento es menor o igual que 3/a la frecuencia máxima de oscilación de la respuesta natural es w al estimularlo con un escalón unitario el sobrepico máximo es menor que e π cot φ 00 % p.42/66

Sistema Discreto. 2 o Orden Un sistema continuo de segundo orden, cuya función de transferencia es F (z) = 2b cos a + b2 z 2 2bz cos a + b 2 Los polos de la función de transferencia serán: p,2 = b p,2 = 2b cos a ± 4b 2 cos 2 a 4b 2 2 ( p,2 = b cos a ± ) cos 2 a ( cos a ± j ) cos 2 a = b (cos a ± j sin a) p.43/66

Sistema Discreto. 2 o Orden jb sin a Im(z) b a a b Re(z) b cos a b sin a Figura 25: Ubicación de los polos de un sistema discreto de segundo orden, con polos complejos p.44/66

Sistema Discreto. 2 o Orden Se estimula el sistema con un paso unitario µ(k), (C.I. = 0), la respuesta y(k) es: ( ) ( ) 2b cos a + b 2 z Y (z) = z 2 2bz cos a + b 2 z Y (z) = A z z + Bz + C z 2 2bz cos a + b 2 sumando e igualando coeficientes se obtiene A = B = C = + 2b cos a Y (z) = z z z2 + ( 2bz cos a) z 2 2bz cos a + b 2 p.45/66

Sistema Discreto. 2 o Orden Y (z) = y(k) = z z ( b k cos ak z2 bz cos a z( 2z cos a) z 2 2bz cos a + b2 z 2 2bz cos a + b 2 ) ( b cos a) b sin a b k sin ak y(k) = ( Cb k sin (ak + φ) ) µ(k) + b2 2b cos a C = = b sin a sin φ ( ) b sin a φ = tan b cos a µ(k) p.46/66

Sistema Discreto. 2 o Orden 2 y(k) 2 3 4 5 6 7 8 9 k Figura 26: Respuesta al paso de un sistema discreto de segundo orden, a =.2, b = 0.8 p.47/66

Sistema Discreto. 2 o Orden 0 y(k) 5 5 0 2 3 4 5 6 7 8 9 k Figura 27: Respuesta al paso de un sistema discreto de segundo orden, a = 3, b = 0.7 p.48/66

Sistema Discreto. 2 o Orden Para estudiar la secuencia y(k) podría suponerse el sistema continuo que genera. Los resultados no son exactos, pero dan una cota máxima; y(k) = ( Cb k sin (ak + φ) ) µ(k) + b2 2b cos a C = = b sin a sin φ ( ) b sin a φ = tan b cos a y(t) = ( Cb t sin (at + φ) ) µ(k) p.49/66

Estabilidad j Im(z) Inestabilidad Estabilidad Re(z) j Figura 28: Región de Estabilidad para un sistema discreto de segundo orden p.50/66

Tiempo de Asentamiento Tiempo a partir del cual la respuesta natural (su valor absoluto) no supera el 5 % de su valor máximo y(k) = ( Cb k sin (ak + φ) ) µ(k) b k as = 0.05 ln b k as = ln 0.05 k as ln b = ln 0.05 b es la magnitud de los polos. p.5/66

Tiempo de Asentamiento jb Im(z) b t as < 3 ln b b Re(z) jb Figura 29: Región de tiempo de asentamiento máximo para un sistema discreto de segundo orden p.52/66

Frecuencia de Oscilación Im(z) a a frec a Re(z) Figura 30: Región de Frecuencia máxima de oscilación para un sistema discreto de segundo orden p.53/66

Sobrepico y(t) = y(k) = ( Cb k sin (ak + φ) ) µ(k) ( Ce ξωnt sin (ω n ( ) ξ 2 )t + φ) µ(k) Si reescribimos b k como ( e ln b) k = e k ln b, podemos asimilar los coeficientes de los exponentes y las sinusoides: ξω n = ln b ω n ξ2 = a ln b a = ξ ξ 2 = cot φ b = e a cot φ = e aξ ξ 2 p.54/66

Sobrepico j Im(z) : ξ = 0. : ξ = 0.5 : ξ = 0.9 Re(z) j Figura 3: Curvas de Amortiguamiento fijo para un sistema discreto de segundo orden p.55/66

Sobrepico j Im(z) Re(z) j Figura 32: Región de Amortiguamiento mínimo para un sistema discreto de segundo orden p.56/66

Región de Diseño j Im(z) Re(z) j Figura 33: Región de Diseño para un sistema discreto de segundo orden p.57/66

Efecto de los ceros F (s) = La respuesta al escalón es: (b 2 +ω 2 ) a (s + a) (s + b) 2 + ω 2 y(t) = + (b2 + ω a 2 )[(a b) 2 + ω 2 ]e bt sin (ωt + φ) ( w ) ( ) w φ = tan + tan b a b p.58/66

Efecto de los ceros y(t) : a == 0.5 : a = : a = 2 3 4 t Figura 34: Respuesta al paso de un sistema continuo de segundo orden, con cero real b = ω = p.59/66

Sistemas de Fase Mínima Los sistemas que no poseen ceros en el semiplano derecho, se conocen como sistemas de fase mínima, o simplemente minifase La presencia de subpicos ante una entrada escalón es fácil de demostrar para un sistema de segundo orden con polos reales y un cero real, tal como F (s) = (s + a) (s + b)(s + c) p.60/66

Sistemas de Fase Mínima La respuesta al escalón es: ( a (a b) y(t) = + bc (c b)( b) e bt + dy dt ) (a c) (c b)(c) e ct = a b t=0 c b = a c c b = c b c b = µ(t) La derivada siempre es positiva, por lo tanto, para valores cercanos a t = 0, y(t) será siempre positiva. Por otra parte, la respuesta de estado estacionario de y(t) será a/bc; para sistemas estables, tanto b como c son positivos, y por lo tanto el signo de la respuesta estacionaria es el mismo signo de a. p.6/66

Polos Dominantes F (s) = 6.75s3 + 02.5s 2 + 38.75s + 750 (s + 0)(s + 5)(s 2 + 2s + 5) Al estimular ese sistema con un escalón unitario la respuesta será Y (s) = F (s) s = 6.75s3 + 02.5s 2 + 38.75s + 750 s(s + 0)(s + 5)(s 2 + 2s + 5) Y (s) = s 0.25 (s + 0) 0.25 (s + 5) 0.5(s + ) (s 2 + 2s + 5) y(t) = ( 0.25e 0t 0.25e 5t 0.5e t cos 2t ) µ(t) p.62/66

Polos Dominantes y(t) 2 3 4 t Figura 35: Respuesta al paso de un sistema continuo de orden 4 p.63/66

Polos Dominantes y(t) : 0.25e 0t : 0.25e 5t : 0.5e t cos 2t 2 3 4 t Figura 36: Componentes de la respuesta natural de un sistema continuo de orden 4 p.64/66

Polos Dominantes y(t) : y(t) : y aprox (t) 2 3 4 t Figura 37: Respuesta exacta y aproximada en un sistema con polos dominantes p.65/66

Polos Dominantes Un sistema continuo (discreto) estable tiene ( o 2) polos dominantes si la parte real (la magnitud) de dichos polos es suficientemente mayor que la de los demás polos del sistema, como para que el aporte de éstos últimos se desvanezca mucho antes de que haya desaparecido el aporte debido a los polos dominantes. En estos casos, las regiones de diseño, que fueron desarrolladas para sistemas de segundo orden, pueden ser una herramienta muy útil para analizar el sistema, aunque éste sea de un orden superior. p.66/66