Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética.

Documentos relacionados
INTERACCIÓN ELÉCTRICA

CAMPO ELÉCTRICO ÍNDICE

Introducción histórica

Campo Eléctrico en el vacío

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento.

Módulo 1: Electrostática Campo eléctrico

Introducción. Flujo Eléctrico.

Interacciones Eléctricas La Ley de Coulomb

Última modificación: 1 de agosto de

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico

2 o Bachillerato. Conceptos básicos

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES.

Electricidad y Magnetismo. Ley de Coulomb.

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

JMLC - Chena IES Aguilar y Cano - Estepa. Introducción

4. LA ENERGÍA POTENCIAL

Capítulo 16. Electricidad

Departamento de Física y Química

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática

CAMPO ELECTRICO. Campo Eléctrico. Introducción.

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III

Departamento de Física Aplicada III

Essential University Physics

Problemas de Física 2º Bachillerato PAU Campo eléctrico 25/01/2016

Campos Electromagnéticos Estáticos

PRINCIPIOS DE LA DINÁMICA

Flujo Eléctrico. Hemos aprendido a calcular el E establecido por un sistema de cargas puntuales o una distribución de carga uniforme o continua.

Conceptos eléctricos. Conceptos eléctricos

Módulo 1: Electrostática Fuerza eléctrica

FUERZAS ENTRE CARGAS EN REPOSO: COULOMB V/S NEWTON

EJERCICIOS CONCEPTUALES

II. ELECTROSTÁTICA. Carga eléctrica:

ESCALARES Y VECTORES

Los antiguos griegos ya sabían que el ámbar frotado con lana adquiría la propiedad de atraer cuerpos ligeros.

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.

Ley de Gauss. Ley de Gauss

Dinámica de los sistemas de partículas

W =F t. 0 Trabajo y energía. W = F r= F r cos. Donde F cos es la componente de la fuerza en la dirección del desplazamiento F t.

Electricidad y Magnetismo. Dr. Arturo Redondo Galván 1

Departamento de Electrónica y Sistemas PARTE II) ELECTROSTÁTICA. CAMPO ELÉCTRICO

PROBLEMAS ELECTROMAGNETISMO


INTERACCIÓN MAGNÉTICA

1 Medidas e incertidumbre

FUERZAS CENTRALES. Física 2º Bachillerato

Tema 5: Electromagnetismo

FLUJO DE UN CAMPO VECTORIAL. TEOREMA DE GAUSS.

Figura Sobre la definición de flujo ΔΦ.

FÍSICA. 3- Un electrón y un protón están separados 10 cm cuál es la magnitud y la dirección de la fuerza sobre el electrón?

1 Flujo del campo eléctrico. Ley de Gauss

Enlaces Primarios o fuertes Secundarios o débiles

Campo y potencial eléctrico de una carga puntual

Ley de Gauss. Líneas de fuerza

Javier Junquera. Movimiento de rotación

/Ejercicios de Campo Eléctrico

La masa, ni se crea ni se destruye, seguro?

v m 2 d 4 m d 4 FA FCP m k

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

Problemas de Potencial Eléctrico. Boletín 2 Tema 2

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO

Actividades del final de la unidad

TEMARIO PRUEBA DE SÍNTESIS FISICA NIVEL SEPTIMO

GUIA DE ESTUDIO FÍSICA 4 COMÚN PREPARACIÓN PRUEBA COEFICIENTE DOS Nombre: Curso: Fecha:

Tema 3.-Fuerzas eléctricas

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA

Campo Eléctrico. Fig. 1. Problema número 1.

LEY DE COULOMB E INTENSIDAD DE CAMPO ELECTRICO

Efecto del dieléctrico en un capacitor

Tema 4: Campos magnéticos.

s sufre, por ese campo magnético, una fuerza

Tema 1. Imanes. Campo, inducción y flujo magnético

5. Ley de Gauss. Flujo del campo electrostático: ley de Gauss. Aplicaciones: simetría plana, cilíndrica y esférica.

Problemas de Campo eléctrico 2º de bachillerato. Física

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Magnetismo

Momento angular o cinético

PROBLEMARIO DE FÍSICA III

FISICA III. Departamento de Física y Química Escuela de Formación Básica GUÍA DE PROBLEMAS 1 - INTERACCIÓN ELÉCTRICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN

Ley de Coulomb. Introducción

TEMA: CAMPO ELÉCTRICO

Tema 1: ELECTROSTÁTICA EN EL VACÍO. 2.- Ley de Coulomb. Campo de una carga puntual.

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009

TEMA 8:ELECTROSTATICA

ELECTRODINAMICA. Nombre: Curso:

Física. José Luis Trenzado Diepa. Introducción

[a] Se cumple que la fuerza ejercida sobre el bloque es proporcional, y de sentido contrario, a la

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton.

Potencial eléctrico. du = - F dl

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

El campo eléctrico. es un campo de fuerzas

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum

La materia está constituida por átomos y éstos a su vez, de otras partículas más simples, que son esencialmente: electrones, protones y neutrones.

III A - CAMPO ELÉCTRICO

Transcripción:

1 Carga eléctrica Campo léctrico xceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. Un culombio es la cantidad de carga que atraviesa una sección de un conductor en un segundo cuando la intensidad de la corriente es de un amperio. Propiedades 1º. La carga eléctrica está cuantificada y su unidad más elemental es la carga del electrón: q e = 1.6 10-19 ; 1C = 6.25 10 28 electrones. 2º. Las cargas son acumulativas. 3º. xisten dos tipos de carga, positiva y negativa. 4º. Se conserva en cualquier proceso que tenga lugar en un sistema aislado. 5º. La carga de un electrón es igual a la carga de un protón, cambiada de signo. Se denomina conductores a los cuerpos que dejan pasar fácilmente la electricidad a través de ellos y aislantes o dieléctricos a los que no la dejan pasar. Ley de Coulomb La fuerza de atracción o repulsión entre dos cargas eléctricas es directamente proporcional al producto de las cargas e inversamente proporcional al cuadrado de la distancia que las separa s válida para cargas puntuales o puntiformes (su tamaño es mucho menor que la distancia entre ellas): Siendo el signo positivo si la fuerza es repulsiva y negativo si es atractiva. K es una constante que depende del medio: es la constante dieléctrica o permitividad del medio: Inversamente proporcional al cuadrado de la distancia. Fuerza central (conservativa). Depende del medio, a diferencia de la interacción gravitatoria.

á á 2 Física _ 2º Bachillerato Comparación entre la Ley de Newton y la de Coulomb Analogías Su expresión matemática es análoga. Fuerzas proporcionales a la magnitud física que interacciona: la masa en las fuerzas gravitatorias, la carga en las eléctricas Las fuerzas son inversamente proporcionales al cuadrado de la distancia Son fuerzas centrales (actúan en la dirección de la recta que une las masas o las cargas) Diferencias Fuerza Gravitatoria Asociada a la masa s de atracción (sólo hay un tipo de masa) G no depende del medio G es muy pequeño Fuerza léctrica Asociada a la carga Puede ser de atracción o de repulsión K depende del medio en el que están las cargas l valor de G es muy pequeño frente a K: la interacción gravitatoria es mucho más débil que la eléctrica Principio de Superposición aplicado a Fuerzas léctricas F 3 4 F 2 4 q1 q 4 F 1 4 q 3 q 2 Campo eléctrico Región del espacio cuyas propiedades se ven alteradas por la presencia de una carga. fecto del campo sobre una partícula testigo: Fuerza que actúa sobre la partícula situada en un punto, desde un punto de vista dinámico. nergía Potencial de la partícula, asociada a su posición relativa en el campo, dentro de un enfoque energético de la interacción. Magnitudes que definen el campo: Intensidad del campo en cada punto, lo define desde un punto de vista dinámico. Potencial del campo en cada punto, dentro de un enfoque energético de la interacción. Desde un punto de vista Dinámico Intensidad de campo en un punto Fuerza a la que estaría sometida la unidad de carga () colocada en dicho punto. Definida en cada punto del campo: l definido en función de la intensidad es un campo vectorial. l sentido de coincide con el sentido del movimiento que adquiriría una carga () colocada en dicho punto:

3 Principio de Superposición Campo léctrico Densidad de Carga Volumétrica Superficial Lineal Líneas de fuerza Son líneas imaginarias y son la trayectoria que seguiría la unidad de carga positiva dejada en libertad dentro del campo eléctrico. Las líneas de fuerza salen de las cargas positivas (fuentes) y entran en las cargas negativas (sumideros). Si no existen alguna de ellas las líneas de campo empiezan o terminan en el infinito. l número de líneas que entran o salen de una carga puntual es proporcional al valor de la carga. n cada punto del campo, el número de líneas por unidad de superficie perpendicular a ellas es proporcional a la intensidad de campo. Dos líneas de fuerza nunca pueden cortarse. n un campo uniforme, suponemos líneas paralelas: - - es el nº de líneas de fuerza que atraviesan la unidad de superficie colocada perpendicularmente a dichas líneas Desde un punto de vista nergético La interacción descrita por la ley de Coulomb es conservativa. Trabajo y nergía Potencial l trabajo necesario para llevar un cuerpo desde la posición 1 a la posición 2 es: Si es positivo lo realiza el campo eléctrico, si es negativo se realiza en contra del campo eléctrico. Para hallar la P en un punto se le da al otro punto P = 0. ste valor nulo se toma en el : Por lo tanto, la P en un punto es el trabajo que se realiza para llevar q 2 desde r 1 al, o viceversa.

á á 4 Física _ 2º Bachillerato Cargas de Distinto Signo Cargas de Igual Signo Sistema de más de 2 partículas Potencial del Campo léctrico l potencial de campo en un punto es la P que corresponde a la unidad de carga positiva colocada en ese punto: l campo definido en función del potencial es un campo escalar. Potencial en un punto debido a un Sistema de Cargas Puntuales Mide el trabajo necesario para ensamblar el sistema en estas posiciones, acercando las cargas desde el infinito (energía reticular): Diferencia de Potencial s el trabajo que debe realizarse contra el campo para desplazar la unidad de carga desde A hasta B, suponiendo que su energía cinética permanece cte: Para hallar el potencial en un punto se le da al otro punto V = 0. ste valor nulo se toma en el : Por lo tanto, el potencial en un punto es el trabajo que se realiza para llevar la unidad de carga () al infinito: Cuando la carga se desplaza por una superficie equipotencial (todos sus puntos tienen el mimo potencial), el campo eléctrico no realiza trabajo. Diferencia de Potencial en un Campo léctrico Uniforme Relación entre Intensidad y Potencial Podemos conocer el valor de un campo eléctrico uniforme derivando la expresión del potencial con respecto a la cual varía y anteponiendo el signo (-):

5 Movimiento de Partículas Cargadas en un Campo léctrico Uniforme Campo léctrico n la Dirección del Campo Q v 0 Si la carga es (-), su velocidad irá disminuyendo hasta invertir su movimiento. A igualdad de velocidad inicial y carga, alcanzan mayor velocidad las partículas más ligeras. n Dirección Perpendicular - - - - = j V 0 i x y Movimiento: Dirección de la trayectoria (parábola): Las partículas que sufren mayor desviación son las más ligeras Cálculo del campo eléctrico mediante el Teorema de Gauss Flujo del campo eléctrico s una medida del número de líneas de fuerza que atraviesan una superficie dada. S Toda superficie puede representarse mediante un vector, perpendicular a ella, con módulo su área: S S l nº de líneas que atraviesan una superficie depende de la orientación relativa de la superficie respecto al campo. Si el campo es perpendicular a la superficie (y por tanto ) el flujo es máximo y si son paralelos ( ) es nulo. stos resultados coinciden con la definición de producto escalar: sta explicación es valida si es uniforme. Si no es así, hay que dividir la superficie en elementos diferenciales con carácter infinitesimal de forma que se pueda considerar constante. Se define así, un flujo elemental:

á á 6 Siendo el flujo total a través de toda la superficie: Física _ 2º Bachillerato Teorema de Gauss Relaciona el a través de una superficie cerrada con la carga contenida en su interior: r Q ds n el caso de una esfera de radio r en cuyo centro existe una carga () Q, las líneas de fuerza son radiales y por tanto y tendrán la misma dirección y sentido en cada punto de la esfera: l resultado es independiente del radio, es decir, es el mismo sea cual sea el tamaño de la esfera: S 3 S 2 S 1 l nº de líneas que atraviesan la esfera es el mismo que el que atraviesa la superficie irregular. l del campo eléctrico a través de una superficie cerrada es independiente de la forma de la superficie e igual a la carga neta contenida dividida por Campo creado en el exterior de una esfera uniformemente cargada P ds r Aplicando Gauss: s el mismo que el que se obtendría si toda la carga de la esfera estuviese concentrada en su centro y se comportara como una carga puntual.

7 Campo originado por una placa uniformemente cargada Campo léctrico Aplicando Gauss: Igualando: s independiente de la distancia a la placa y sólo depende de la densidad superficial de carga y del medio. Por tanto, el campo debido a una placa plana uniformemente cargada es cte. Protección frente a campos externos s posible aislarnos de un campo eléctrico si nos encerramos en el interior de una superficie conductora (efecto de Jaula de Faraday): todo exceso de carga en un conductor aislado en equilibrio electrostático se reparte por su superficie, esto es debido a que la carga neta en el interior de un conductor en equilibrio electrostático es nula: