Contenido del capítulo Sistema de conducción Circulación coronaria Inervación del corazón

Documentos relacionados
Sistema Cardiovascular. Profesor Juan Manuel Moreno Departamento de Fisiología, Facultad de Medicina

CURSO DE SEMIOLOGÍA CARDIOVASCULAR ANATOMÍA CARDÍACA

Cavidad torácica, mediastino medio, entre las 2 regiones pulmonares. Forma Pirámide triangular.

ANATOMÍA I (MEDICINA)

Corazón. Músculo hueco que circunscribe 4 cavidades por donde circula sangre.

Tema 24 Sistema cardiovascular. Ciclo cardiaco. Sístole y diástole. Fases.

1. Generalidades Anatomohistológicas

UD. 5: APARATO CIRCULATORIO. 1.- APARATO CIRCULATORIO SANGUÍNEO. Aparato circulatorio sanguíneo Sistema linfático. Aparato circulatorio

Anatomía y fisiología del Sistema Circulatorio

Área Morfología. Bioq. María Eugenia Biancardi

FISIOLOGÍA HUMANA BLOQUE 3. SISTEMA CARDIOVASCULAR. Tema 9. Función Cardiaca: el Corazón como Bomba

Tema 1. Electrocardiograma

Actividad eléctrica del miocardio. Automatismo y conducción en el corazón de mamífero. Material de uso interno

Tema 5: Anatomía y fisiología del aparato circulatorio

Electrocardiografía en pequeños animales-ii Refuerzo curso Arritmias Cardíacas y Tratamiento en urgencias

El corazón como bomba

El Corazón. Aurícula Derecha

Y EL APARATO CIRCULATORIO

Corazón y Aparato Circulatorio Recuerdo anatómico

Excitación rítmica del corazón

Sistema Respiratorio

Fisiología sistema cardiaco

Fisiología y envejecimiento Sistema cardiovascular. Tema 8

Aparato cardiovascular. TISSERA, Laura

Anatomía y fisiología del Sistema Circulatorio

SISTEMA CIRCULATORIO II

TRASTORNOS DE LA CONDUCCIÓN

BIÓLOGO INTERNO RESIDENTE FORMACIÓN SANITARIA ESPECIALIZADA

CUESTIONARIO ANATOMÍA SEMANA 16

Su corazón y cómo funciona

Contenido del capítulo - Potencial transmembrana - Propiedades electrofisológicas de las células

Ana Arancón Beatriz Pardo Laura Tesoro María Jiménez Susana Molina

Fisiología del Corazón. Cátedra de Fisiología Humana Carrera de Bioquímica UNNE 2012

Med. Vet. Gambini, Andrés Lic. La Rosa, Isabel

Facultad de Ciencias de la Salud. El Ciclo Cardiaco

CORAZÓN MORFOLOGIA PLAN 2006 AREA MORFOLOGIA

TEMA 9 ACTIVIDAD ELÉCTRICA DEL CORAZÓN. ORIGEN Y PROPAGACIÓN DEL IMPULSO CARDIACO.

Salud y Fisiología Humanas I 2ª Parte: El sistema de transporte. Tema 2 de Biología NS Diploma BI Curso

TEMA 8 FISIOLOGÍA CARDIOVASCULAR EL CIRCUITO DE LA CIRCULACIÓN SANGUÍNEA. HEMODINÁMICA

Lic. Javier Céspedes Mata, M.E.

ECG NORMAL. Estefanía Zambrano-Leòn Residente CM. POBA.

Dr. Christian Toro Dra. Miriam Guerra Arroyo

Electrocardiograma. Dra. Josefina Ugarte

Guía de estudio de la anatomía cardiaca. Disección del corazón porcino. Zoila E. Castañeda 1, Ananías García 1, Jorge Longo 1, Carlos Florido 2.

SISTEMA CIRCULATORIO Y LINFÁTICO. SANGRE

Generalidades ECG normal

ELECTROCARDIOGRAMA. v ONDA P. v ARRITMIAS SUPRAVENTRICULARES SARAY RODRÍGUEZ GARCIA R1 MEDICINA INTERNA

CICLO CARDÍACO MARÍA ANTONIA BERNAL ÁVILA CELENE CORRAL RICO

Endocardiosis Mitral Fisiopatología y Diagnóstico

Arterias coronarias arteria coroni arteriosi

Created by Simpo PDF Creator Pro (unregistered version) MUSCULO CARDIACO TEMA 9: GUYTON MUSCULO CARDIACO

El Corazón. Índice: - Qué es el corazón? -Origen embrionario -Fisiología del músculo cardíaco -Excitación cardíaca -Enfermedades del corazón

Electrocardiograma Normal

Diplomado Ecocardiografía Fetal Evaluación Formativa I e-fetalmedicine

FISIOLOGÍA CARDIOVASCULAR

Servicio de Hemodinámia Hospital Centenario Rosario

EXCITACIÓN N Y CONDUCCION RITMICA DEL CORAZON

Válvulas. Permiten el flujo sanguíneo neo en forma unidireccional en determinado momento del ciclo cardíaco

2-modulo 2 urgencias cardiología

Tema : Sistema cardiovascular

TEMA 19. CICLO CARDÍACO

Estudio Anatomo-fisiológico del corazón

BIÓLOGO INTERNO RESIDENTE FORMACIÓN SANITARIA ESPECIALIZADA

Nutrición: Aparato circulatorio

Generalidades del electrocardiograma normal

FUNCIONES DEL AP. CIRCULATORIO Sirve para llevar los nutrientes y el oxígeno a las células y para recoger los desechos metabólicos que se han de elimi

Electrocardiograma Normal Conceptos Generales

Sistema Cardiovascular Corazón. Profesor: Hernán Freixas Anais

Fundamentos de Electrocardiografía. En Atención Médica Prehospitalaria

Frecuencia Cardíaca y. Dr. Oscar Zúñiga. Ruidos Cardíacos

Licenciatura en Nutrición Primer año Anatomía Módulo 12

El Aparato Circulatorio

Fisiología del Corazón

FISIOLOGÍA CARDIOVASCULAR

Todas estas son características del potencial de acción de las células marcapaso del nódulo sinusal, EXCEPTO.

PULSO DEFINICIÓN: ENFERMERIA FUNDAMENTAL. La circulación depende de: Corazón. Vasos sanguíneos. Mecánica respiratoria. Musculatura esquelética

1. Sobre el desarrollo del corazón escribe en el espacio en blanco una (V) si las propuestas son verdaderas o una (F) si son falsas.

Anatomía Coronaria. Dr. Federico Baldiviezo Servicio de Cardioangiología Intervencionista Clínica Privada Vélez Sarsfield Setiembre 2013

Ana Isabel Gómez Alfonso Muñoz V.

Prof. Dr. Juan Gondra del Rio

Cardiovascular. Equipo Docente Anatomía Humana

Fisiología Cardíaca Bqca. Sofía Langton Octubre 2013

GUÍA DE ESTUDIO BIOLOGÍA Por Diego Martínez. a) I, II III y IV b) II y III c) I, III, IV y V d) I, II, III, IV y V e) II, III, IV y V

I. Anatomía y Fisiología del Sistema Excito-Conductor. A. Anatomía del Sistema Excito-Conductor

Sistema Cardiovascular

QUE ES EL RITMO SINUSAL Y CÓMO RECONOCERLO

FISIOLOGÍA LICENCIATURA EN ENFERMERÍA

Unidad II (Sesión 8) Fisiología del Sistema Circulatorio

Generalidades Cardiología

CORAZÓN POR VELÁZQUEZ JAIMES ASHLEY ZULEMA

PMD: CARLOS ANDRES SAMBONI

Las aurículas son cámaras de recepción, que envían la sangre que reciben hacia los ventrículos, que funcionan como cámaras de expulsión.

Trastornos de la Conducción Cardiaca

GUIA LABORATORIO DE ANATOMÍA CARDIOVASCULAR Y PERICARDIO INTRODUCCIÓN

Diagnóstico y tratamiento de los Bloqueos Aurículo-ventriculares ( A-V ) y de los trastornos de conducción intraventricular.

CICLO CARDÍACO. Secuencia de eventos mecánicos durante un latido cardíaco. Cada ciclo se inicia por la generación espontánea de un PA en el NSA.

CIRCULACION FETAL La sangre rica en nutrientes y altamente oxigenada regresa de la placenta por la vena umbilical. La sangre al llegar al hígado la mi

Función Cardiovascular y Ciclo Cardiaco. Cardiovascular. Sistema Cardiovascular. Características del Sistema Cardiovascular

TEMA 18. FISIOLOGÍA DE LA CONTRACCIÓN MIOCÁRDICA. ACTIVIDAD ELÉCTRICA DEL CORAZÓN

Transcripción:

Contenido del capítulo Sistema de conducción Circulación coronaria Inervación del corazón La actividad cardiaca está regulada de tal manera que todos sus componentes: sistema de conducción, miocardio, válvulas cardiacas, estimulación nerviosa y circulación coronaria, actúan coordinadamente en cada latido, a fin de proveer el mejor aporte sanguíneo adecuado a cada situación. El ciclo cardiaco normal se inicia con el llenado auricular pasivo con la sangre proveniente de la circulación sistémica y pulmonar, luego, el nódulo sinusal estimula la contracción auricular para que se complete el llenado ventricular -la sangre pasa a los ventrículos a través de las válvulas aurículo-ventriculares-, (trícúspide a la derecha y mitral a la izquierda); posteriormente los ventrículos se contraen, haciendo que se cierren las válvulas aurículo-ventriculares se produce el primer ruido cardiaco-, y se abran las válvula semilunares (pulmonar a la derecha y aórtica a la izquierda), la sangre es eyectada a las arterias homónimas las que por su estructura elástica reciben en forma complaciente ese volumen sanguíneo, y cuando la presión arterial supera a la ventricular se cierran las válvulas semilunares, -se produce el segundo ruido cardiaco-, mientras las aurículas se van llenando nuevamente para un nuevo ciclo cardiaco, (Figura 1.1). Figura 1.1. Ciclo cardiaco. Se observan las curvas de presión de aurícula izquierda (AI), ventrículo izquierdo (VI) y aorta (Ao), su relación con los ruidos cardiacos y el registro del ECG. Cada gráfico del ciclo cardiaco se corresponde con el momento de la curva de presión o del registro de los ruidos cardiacos. El inicio del QRS coincide con el inicio de la sístole ventricular (C) que ocasiona el cierre de las válvulas AV (C) y el primer ruido cardiaco (1R). Cuando la presión del VI cae por debajo de la presión intraórtica se cierre la válvula aórtica (E), produciéndose el segundo ruido cardiaco (2R).

1.1. SISTEMA DE CONDUCCIÓN El sistema de conducción cardiaco está formado por tejido miocárdico especializado en la generación y la transmisión del impulso cardiaco; sus células carentes de miofibrillas, se engruesan en sus extremos son los discos intercalares, de baja impedancia eléctrica- se unen a otras para transmitir el impulso cardiaco; por esto la velocidad de conducción es 6 veces más rápida en sentido longitudinal. El sistema de conducción está formado por: (Figura 1.2) - Nódulo sinusal o sinoauricular - Haces internodales - Unión aurículoventricular - Tronco del haz de His - Ramas derecha e izquierda del haz de His - Fibras de Purkinje Figura 1.2. Se observan la relación entre el sistema de conducción y las cámaras y válvulas cardiacas. El ciclo cardiaco se inicia con la despolarización espontánea del nódulo sinoauricular (NSA), desde la cual la conducción sigue por los haces internodales hacia la unión aurículoventricular (UAV) donde tiene un retardo fisiológico, para luego seguir por el haz de His y sus ramas hasta las fibras de Purkinje, las cuales finalmente despolarizan ambos ventrículos. Nódulo sinusal El NSA es el marcapasos cardiaco por su mayor frecuencia de despolarización espontánea; está localizado en la unión del subepicardio de la aurícula derecha con la pared derecha de la desembocadura de la vena cava superior; tiene la forma de una coma, de 10-20 mm de largo y 5 mm de espesor; está formada por 3 grupos celulares: las nodales o tipo P, las transicionales o tipo T, y las auriculares; las tipo P son células marcapaso por excelencia. Su presencia puede ser reconocida a las 11 semanas de gestación. La crista terminalis también tiene una fuerte capacidad de marcapasos, de hecho, en algunos y durante una parte del día, ésta es la zona de marcapasos. Haces internodales Son vías preferenciales de conducción intraauricular, están formadas por células nodales tipo T y miocardio auricular, tienen mayor velocidad de conducción y despolarización, y potenciales de acción mas prolongados, se describen tres haces: el haz posterior o de Thorel transcurre en cercanías de la crista terminalis, el medio o de Wenckebach de trayecto variable, y el anterior o de Bachman que se dirige desde el borde anterior del NSA hacia el tabique interauricular, dividiéndose en dos fascículos, uno que va a la aurícula izquierda y el otro que discurre por el tabique interauricular hacia la unión AV; todos estos haces se anastomosan entre sí por encima de la porción compacta del NAV. La conducción es más rápida por los haces de Bachman y Thorel Primero se activa la aurícula derecha, luego el

septum interauricular y finalmente la aurícula izquierda. El tiempo de conducción internodal es de 0,03 seg. y la velocidad de conducción de 1000 mm/seg. La onda P del ECG refleja la despolarización auricular. A los fines prácticos, la activación auricular por la dominancia de las fuerzas inferior y posterior, es representada por un vector orientado a la izquierda, abajo y atrás; éste, proyectado sobre el triángulo de Einthoven es paralelo a DII, por lo que es más alta en esta derivación. Normalmente el miocardio auricular y ventricular están separados entre sí por el cuerpo fibroso central, la única conexión normal entre ambos es la UAV. Unión aurículo-ventricular Aunque fue descripta como un nódulo, es un área de bordes no definidos, localizada por encima del anillo tricuspídeo, en el lado derecho del septum interauricular y delante del ostium del seno coronario. Tiene 3 zonas: zona de células transicionales, porción compacta de la UAV y la porción penetrante del haz de His. La zona de células transicionales, está formada por miocardio auricular, haces internodales y las interconexiones entre estos y la porción compacta de la UAV, en esta zona están la vía rápida, anterosuperior, de unos 2 mm que corre por el tabique interauricular cerca del tendón de Todazo, y la vía lenta. posteroinferior, de 4 mm que viene desde el piso del ostium del seno coronario a lo largo del anillo tricuspídeo; la continuación de ambas es la porción compacta de la UAV, -de 3 x 4 x 6 mm- localizada en el subendocardio del septum interauricular, por encima del implante de la valva septal de la tricúspide, delante del ostium del seno coronario, en el vértice del triángulo de Koch; la porción penetrante de la UAV se continúa con el haz de His cuando atraviesa el cuerpo fibroso central a nivel de la inserción del tendón de Todaro. En la UAV el estímulo cardiaco experimenta un retardo fisiológico de 0,06-0,10 seg, que permite un mayor llenado ventricular antes de su sístole. La velocidad de conducción en la unión AV es de 200 mm/seg y en la porción compacta 50 mm/seg, porque sus células tienen potenciales de reposo más negativos y pocas uniones laxas entre ellas, por lo que hay una elevada resistencia a la conducción iónica. La duración del intervalo PR expresa la velocidad de conducción en aurículas, UAV y haz de His. Bajo ciertas circunstancias la UAV puede ser el marcapasos cardiaco. Haz de His y sus ramas El tronco del haz de His (HH) es la continuación de la UAV; de unos 20 x 2 mm, inicialmente discurre por el borde inferior de la porción membranosa del tabique interventricular, a su salida se divide en ramas derecha e izquierda; la rama derecha es fina y larga -1,5 x 50 mm y continúa la dirección del HH-, transcurre por la cara derecha y debajo del endocardio del tabique interventricular, hasta la base del músculo papilar medial derecho y el ápex, donde se ramifica. La rama izquierda es gruesa y corta -4 x 15 mm-, da las primeras fibras para el fascículo posteroinferior izquierdo, luego para el fascículo anterosuperior izquierdo, que se dirigen a la base de los músculos papilares posterior y anterior respectivamente, y una tercera rama, la medioseptal, discurre por la cara izquierda del tabique interventricular. El HH y sus ramas están envueltas en una vaina que las aísla del miocardio vecino, sus células son largas, vacuoladas, con mitocondrias ordenadas y pocas miofibrillas. El estímulo es conducido rápidamente por la presencia de uniones laxas de alta permeabilidad para los iones. La rama derecha es más larga y más delgada que la izquierda, lo que la hace más susceptible al daño que su homóloga izquierda. A las 6 semanas de gestación las ramas derecha e izquierda del HH se identifican a ambos lados del tabique interventricular, y a las 18 semanas están desarrolladas mostrándose, la izquierda como una estructura ramificada y la derecha como una cordonal. Sistema de Purkinje Es la porción terminal del sistema de conducción, constituida por células grandes, vacuoladas, con pocas miofibrillas y mitocondrias de aspecto desordenado, forma una fina red de fibras interconectadas entre sí por conexiones látero-laterales y término-terminales mediante discos intercalares que favorecen una conducción longitudinal rápida. La red de Purkinje es más abundante en las bases de los músculos papilares y además tienen una mayor resistencia a la isquemia. Los ventrículos son activados simultáneamente de endocardio a epicardio, el

derecho toma menos tiempo debido a su menor masa muscular. El complejo QRS refleja la activación ventricular. La velocidad de conducción en el HH es de 1.000-1.500 mm/seg, en el sistema de Purkinje 3.000-4.000 mm/seg, y en el miocardio ventricular 300-500 mm/seg. 1.2. CIRCULACION CORONARIA De la aorta nacen las dos arterias coronarias, la coronaria izquierda que luego de un tronco corto, se divide en descendente anterior (DA) y circunfleja (Cx), la primera corre por el surco interventricular anterior e irriga la porción anterior del septum a través de las arterias septales y la cara anterior del VI por las ramas diagonales; a su vez la Cx irriga la aurícula izquierda, la pared lateral del VI, y ocasionalmente da la arteria descendente posterior. La coronaria derecha discurre por el surco auriculoventricular derecho y da las arterias del NSA y UAV, e irriga secuencialmente la aurícula derecha, la pared libre del VD, la porción posterior del tabique interventricular, las caras inferior y posterior del VI (Figura 1.3.). Figura 1.3. Anatomía coronaria. A) Una vista oblicua anterior izquierda de la coronaria derecha, da la arteria para el NSA y la UAV. B) Una vista oblicua anterior derecha de la coronaria izquierda, que se divide en descendente anterior y cicunfleja. El NSA está irrigado por la arteria del nódulo sinusal, la cual proviene en el 50-60% de los casos de la coronaria derecha (CD), en el 40-50% es rama de la circunfleja y en el resto de los casos la circulación está compartida por ambas arterias. La UAV es irrigada por la CD en el 85-90% de los casos, y la circunfleja en el resto de los casos. El HH recibe su nutrición de las ramas septales de las descendentes anterior y posterior, esta doble irrigación lo protege del daño isquémico. El fascículo posterior de la rama izquierda es irrigado por ramas de la descendente anterior y posterior; y los fascículos anterior y medioseptal por ramas de las perforantes septales de la descendente anterior. El seno coronario es la vía final del drenaje venoso cardiaco y discurre por el surco aurículoventricular posterior izquierdo, su ostium está ubicado en la cara septal, porción posterior de la AD, tiene una válvula semilunar, la válvula de Tebesio, que junto con la válvula de Eustaquio forman el tendón de Todaro. 1.3. INERVACION DEL CORAZÓN La densidad de filetes nerviosos del simpático y parasimpático es mayor en el sistema de conducción, en comparación con la del miocardio. La porción más ricamente inervada es la zona central del NSA, alrededor de la arteria central del NSA; en la UAV, la zona transicional está más inervada que la porción compacta; finalmente, el haz de His tiene mayor cantidad de filetes nerviosos que el miocardio ventricular.

Figura 1.4. Se observan el seno carotídeo (SC) la vía aferente (par IX) los núcleos bulbares y mesencefálicos: núcleo del tracto solitario (NTS) y núcleo dorsal del vago (NDV), y la vía eferente (par X) que actúa sobre el NSA, aurículas y UAV. Tanto el sistema simpático como el parasimpático por medio de fibras post-ganglionares regulan la descarga de impulsos por el nódulo sinusal y en menor medida en otras áreas del sistema de conducción. La dominancia inhibitoria vagal del corazón está confirmada por la mayor actividad de la acetilcolinesterasa positiva en las células del NSA y las de la zona transicional de la UAV. El sistema simpático aumenta el automatismo del NSA y acelera la conducción a través de la UAV, por lo que se incrementa la frecuencia cardiaca por un acortamiento en la duración del potencial de acción. La estimulación vagal retarda la conducción en la UAV; un ejemplo de esto es que la estimulación del seno carotídeo deprime la conducción en la UAV e induce bradicardia; por último, el miocardio muestra una escasa respuesta a la actividad vagal. Los senos carotídeos tienen filetes nerviosos aferentes del glosofaríngeo que llegan al núcleo del tracto solitario en el bulbo, de donde por medio de neuronas intercalares se relacionan con fibras del núcleo dorsal del vago, en donde se originan las fibras del neumogástrico que inervan el NSA, aurículas y UAV (Figura 1.4). Bibliografía Anderson RH, Becker AE. Anatomy of conduction tissues and accesory atrioventricular conections. In: Zipes DP, Jalif J (Eds). Cardiac Electro-physiology. From cell to bedside, Philadelphia, WB Sauders,1990. Conover MB (Ed). The 12 Electrocardiogram Leads. In: Understanding Electrocardiography, 8th Ed. Mosby, Missouri, 1996, p3-7. Friedman HH (Ed). Anatomía y fisiología del sistema de conducción. En: Diagnóstico electrocardiográfico y vectocardiográfico. Salvat Editores S.A. Barcelona, 1989, p19-31. Hurst JW. Naming of the waves in the ECG. Circulation 1998;98:1937-1942. Huzsar RJ (Ed). Anatomía y fisiología del corazón. En: Arritmias. Principios, interpretación y tratamiento. 3ra Ed. Ediciones Harcourt-Mosby, Madrid, 2003, p1-20. Lauer MR, Sung RJ. Anatomy and Physiology of the Conduction System. In: Podrid PJ, Kowey PR. Cardiac Arrhythmia. Mechanism, diagnosis & management. 2nd Ed. Philadelphia, Lippincott Williams & Wilkins. 2001. 51-79. Marriot HJL, Conover MR (Eds). Development and functions of the cardiac conduction system. In: Advanced Concepts in Arrhhythmias. Mosby, Chicago. 1998. p1-11. Waller BF, Schlant RC. Anatomy of the heart. In: Alexander RW, Schlant RC, Fuster V. The Heart. 9th Ed. McGraw-Hill, New York, 1994. p19-79.