Qué son los enzimas? -asa. Los enzimas son biocatalizadores, es decir, sustancias que en una reacción química aumentan notablemente su velocidad.

Documentos relacionados
Concepto de velocidad inicial [ ] d[ ] v =, t -> 0 dt

CARACTERÍSTICAS DE LAS ENZIMAS

ENZIMAS SON BIOCATALIZADORES AUMENTAN LA VELOCIDAD DE REACCIÓN NO SE GASTAN EN CANTIDADES MUY PEQUEÑAS

1. Características generales

Tema 6. Cinética Enzimática TEMA 7 CINÉTICA ENZIMÁTICA 3. INHIBICIONES EN REACCIONES ENZIMÁTICAS INHIBICIÓN COMPETITIVA Y NO COMPETITIVA

Enzimas Departamento de Bioquímica Noviembre de 2005

ENZIMAS: CONCEPTOS BÁSICOS Y CINÉTICA

EL CONTROL DE LAS ACTIVIDADES CELULARES

ENZIMAS Catalizadores biológicos

TEMA 11.- CINÉTICA ENZIMÁTICA

CINETICA ENZIMATICA ESTUDIA LA VELOCIDAD DE LAS REACCIONES BIOQUÍMICAS

El metabolismo es un conjunto de reacciones químicas que tienen lugar en las células del cuerpo

ASPECTOS GENERALES SOBRE LOS ENZIMAS

1.- Explica cuáles son los principales factores que afectan a la actividad enzimática.

ENZIMAS. Kuhne en el año de 1876 les llamó enzima a los catalizadores que producían

METABOLISMO. Contenidos trabajados en clase.

Son proteínas globulares altamente especializadas que provocan o aceleran una reacción bioquímica.

TEMA 5 ENZIMAS. Cualquier complejidad intelectual puede ser transmitida en el lenguaje corriente «Brontosaurus» y la nalga del ministro S.J.

TEMA 13. LAS REACCIONES METABÓLICAS. LA IMPORTANCIA DE LAS ENZIMAS.

ESTRUCTURA DE LA TRIOSAFOSFATO ISOMERASA esta proteína es una eficiente enzima involucrada en la vía glucolítica.

LAS ENZIMAS ENZIMAS CLASIFICACIÓN ESTRUCTURA FUNCIÓN. Biocatalizadores. proteica. velocidad reacción. Energía activación. Inorgánica.

TEMA 5:BIOCATALIZADORES: ENZIMAS, VITAMINAS Y HORMONAS

Energía y enzimas: bioenergética. n Los organismos obtienen su energía de la luz o de compuestos químicos y la conservan en forma de ATP.

Universidad Nacional de Tucumán ENZIMAS

6. Enzimas - Actividades

ENZIMAS. 3)- La mayor parte de las rutas metabólicas son comunes a todos los seres vivos.

ENZIMAS Las enzimas son proteínas

DEPARTAMENTO DE BIOQUÍMICA ESFUNO EUTM E N Z I M A S

CARACTERÍSTICAS DE LAS ENZIMAS MECANISMOS DE ACCIÓN ENZIMÁTICA CINÉTICA ENZIMÁTICA REGULACIÓN DE LA ACTIVIDAD ENZIMÁTICA

Enzimas. Determinación de su actividad catalítica en distintos materiales biológicos

ENZIMAS SE TRATA DE PROTEÍNAS ESPECIALES QUE EJERCEN SU ACCIÓN UNIÉNDOSE SELECTIVAMENTE A OTRAS MOLÉCULAS DENOMINADAS SUSTRATOS.

NOCIONES BÁSICAS DE ENERGÍA

ENZIMAS. Las enzimas son catalizadores específicos: cada enzima cataliza un solo tipo de reacción y, casi siempre, utiliza un único sustrato.

endoenzimas exoenzimas:

A + B [A + B] C + D E.A. Los principales biocatalizadores son: enzimas, vitaminas, hormonas y algunos oligoelementos (Fe, Cu, Zn, I, F, ).

ESTUDIOS CINÉTICOS SE MIDE LA VELOCIDAD DE LA REACCIÓN CATALIZADA. La velocidad de reacciones químicas: Para una reacción:

Las enzimas son, en su gran mayoría, proteínas globulares sintetizadas por las células para catalizar reacciones bioquímicas.

UNIDAD 12. METABOLISMO Y ENZIMAS.

ACTIVIDAD ENZIMÁTICA. Curvas temporales de la actividad enzimática de la lactato deshidrogenasa de músculo esquelético de pollo.

Tema 10. Regulación de la actividad enzimática

Generalidades de ENZIMAS

Proteínas como blancos farmacológicos. Dra. Jenny Fiedler.

CINÉTICA ENZIMÁTICA. Ecuación de Michaelis-Menten Efecto de inhibidores

Son CATALIZADORES, es decir, disminuyen la energía de activación de las reacciones químicas. Son PROTEÍNAS con estructura tridimensional, que poseen

ENZIMAS GENERALIDADES DE LAS ENZIMAS. Material extraído de:

LA ENERGÍA EN LAS REACCIONES METABÓLICAS

1. Necesidad energética de las células. Concepto de metabolismo.

PROTEINAS COMO CATALIZADORES ENZIMAS

Orden en estructuras biológicas

Estructurales: dan forma a la proteína.

METABOLISMO Y ENZIMAS

Contenidos teóricos. Unidad temática 1. Diseño molecular de vida. Tema 1. El agua como disolvente

Bioquímica Estructural y Metabólica. TEMA 5. Enzimología

METABOLISMO Y ENZIMAS

REACCIONES METABÓLICAS

J. L. Sánchez Guillén. IES Pando - Oviedo Departamento de Biología y Geología

Página 1 clases83.jimdo.com PRIMERA CLASE DE ENZIMAS DEFINICION ENERGIA DE ACTIVACION CONCENTRACION EN FUNCION DE TIEMPO

ENZIMAS I TEMA Introducción

PRACTICO Nº 3 ENZIMOLOGÍA II

ENZIMAS. Las enzimas son proteínas con función catalítica

Universidad Nacional de la Patagonia S. J. B Facultad de Ciencias Naturales Química Biológica. Química Biológica TP 5 ENZIMAS, Introducción

Metabolismo de los glúcidos

ACTIVIDAD ENZIMÁTICA. Dra. Lilian González Segura Departamento de Bioquímica Facultad de Química

1. Necesidad energética de las células. Concepto de metabolismo.

UNIVERSIDAD PERUANA CAYETANO HEREDIA CENTRO FORMATIVO PREUNIVERSITARIO BIOLOGÍA METABOLISMO

SERIE Nº 6. Enzimas y Coenzimas

el acetil CoA procede de cualquier sustancia o molécula que degrademos para obtener energía.

1.- CONCEPTO DE ENZIMA

BLOQUE I: LAS MOLÉCULAS DE LA VIDA ENZIMAS. 2. Mecanismo de acción y cinética enzimática.

Metabolismo celular I. Reacciones enzimáticas

IES Francisco Pacheco

Reacciones enzimáticas Sergio Huerta Ochoa UAM-Iztapalapa

FACULTAD DE QUÍMICA DEPARTAMENTO DE BIOQUÍMICA. CURSO DE BIOQUÍMICA (CLAVE 1508) Licenciaturas de QFB y QA

CATALISIS ENZIMATICA

ENZIMAS-2005 CINÉTICA ENZIMÁTICA

Catalizadores orgánicos. Se encuentran prácticamente en todos los tejidos. De importancia las enzimas séricas.

Problema 1: Características de las reacciones enzimáticas. Problema 2: Cinética de una enzima alostérica.

ENZIMAS Y METABOLISMO

INTITUCIÓN EDUCATIVA COLEGIO ARTISTICO RAFAEL CONTRERAS NAVARRO GUIA DE APRENDIZAJE METABOLISMO CELULAR

OBJETIVO: Poner en evidencia enzimas mediante su actividad frente a sustratos específicos.

QUÍMICA BIOLÓGICA. Enzimas Cinética Enzimática

Metabolismo. Catabolismo. Oxidación-reducción 30/09/2009. Clase 5. Energética celular: nutrición y metabolismo

UNIDAD 11. METABOLISMO CELULAR Y DEL SER VIVO

Cinética Enzimática. Enrique Rivera González

PROPEDÉUTICO DE ODONTOLOGÍA BIOQUÍMICA BÁSICA

Son sustancias que aumentan la velocidad de reacción y actúan a concentraciones muy bajas, pues no se gastan en el proceso.

CURSO DE BIOQUÍMICA APLICADA GENERALIDADES DE MÉTODOS ENZIMÁTICOS

ENZIMAS. Son moléculas de naturaleza proteínica que aceleran las reacciones bioquímicas.

GUIA DE APRENDIZAJE METABOLISMO CELULAR

Concepto. Catabolismo Anabolismo

Enzimas Catalizadores bioquímicos. Rogelio Valadez Blanco

PROTEÍNAS.

GUÍA DE TRABAJOS PRÁCTICOS

Similitudes y Diferencias entre los catalizadores inorgánico y las enzimas

Las Proteínas BIOLOGÍA 2º BACHILLERATO TEMA 4: Actividades: 1º DÍA Los aminoácidos. Pg

Generalidades de ENZIMAS

BIOQUÍMICA TEMA 2. ENZIMAS

(Vía aerobia) Pág. 177

Concepto de Enzima. Mecanismo de Acción Enzimática

Transcripción:

Javier Cámara

Qué son los enzimas? -asa Los enzimas son biocatalizadores, es decir, sustancias que en una reacción química aumentan notablemente su velocidad. Su función no es hacer reacciones imposibles, sino únicamente acelerar las reacciones que espontáneamente podrían producirse. Las reacciones catalizadas por enzimas llegan a ser desde un millón hasta 100 millones de veces más rápidas que la misma reacción no catalizada.

Rendimiento de los enzimas Enzima Velocidad en ausencia de enzima Velocidad de reacción catalizada Rendimiento Anhidrasa carbónica Corismato mutasa Triosafosfato isomerasa Carboxipeptidasa A AMP nucleosidasa Nucleasa estafilococal 1.3 X 10 1 2.6 X 10 5 4.3 X 10 6 3.0 X 10 9 1.0 X 10 11 1.7 X 10-13 1.0 X 10 6 50 4300 578 60 95 7.7 X 10 6 1.9 X 10 6 1.0 X 10 9 1.9X 10 11 6.0 X 10 12 5.6 X 10 14

Características de los enzimas -Casi todos son proteínas. Los ribozimas, son los únicos enzimas no proteicos. - Tienen elevado peso molecular. - No se consumen durante la reacción. - Muy activos. Típicamente, cada molécula de enzima es capaz de transformar cada segundo de 100 a 1000 moléculas de sustrato en producto. El número de estas moléculas transformadas a producto por molécula de enzima en cada segundo, se conoce como el número de recambio. -Actúan a temperatura ambiente. -Son muy específicos.

Acción enzimática La sustancia sobre la que actúa el enzima se llama sustrato. S + E El sustrato se une al enzima, formando el complejo sustrato-enzima. S-E Una vez formados los productos el enzima puede comenzar un nuevo ciclo de reacción. P + E Ciclo de un enzima: sacarasa

Formación del complejo sustrato-enzima productos enzima complejo sustrato-enzima La unión se realiza en una región concreta del enzima, llamada centro activo. El centro activo comprende (1) un sitio de unión formado por los aminoácidos que están en contacto directo con el sustrato y (2) un sitio catalítico, formado por los aminoácidos directamente implicados en el mecanismo de la reacción. enzima

Modelo Ajuste inducido (Koshland) : El sustrato y centro activo no tienen formas complementarias. Al aproximarse, uno de los dos, o ambos, cambian de forma hasta encajar exactamente. Modelos de unión sustrato-enzima E Complejo sustrato-enzima. S Enzima y productos Modelo llave-cerradura: El sustrato, por su forma espacial, encaja exactamente con el centro activo del enzima. E E Proceso de formación del complejo sustrato-enzima. P Complejo sustrato-enzima. S

Reacción con dos sustratos a) Formación de un complejo ternario: E-S 1 -S 2 Pueden darse dos posibilidades: S 1 S 2 E E S 1 S 2 Complejo binario E S 1 S 2 Complejo ternario E P a) El complejo binario se forma siempre orden. Por ejemplo, primero se forma ES 2 y después se añade el otro sustrato para formar el complejo ternario ES 2 S 1 b) El complejo binario se forma al azar: unas veces se forma primero ES 1 y otras el ES 2. Después se forma ES 1 S 2 o el ES 2 S 1 respectivamente. b) Sin formación del complejo ternario E-S 1 -S 2 : mecanismo ping-pong S 2 S 1 + E S 1 -E P 1 -E S 2 - E P 2 + E P 1

Nomenclatura 1.- A los primeros enzimas que se descubrieron se les dio un nombre propio. Este nombre, los relacionaba, o no, con la procedencia anatómica donde fueron descubiertos: ptialina de la saliva, tripsina pancreática, rubisco... 2.- El primer intento de sistematizar la nomenclatura, fue utilizar un nombre con dos partes. La primera parte es el nombre del sustrato específico o general sobre el que actúan y la segunda parte es la terminación asa: ureasa, lipasa, proteasa... 3.- Al descubrirse que un mismo enzima puede realizar catalizar distintas reacciones, se amplió el nombre, añadiendo la función que realiza antes de la terminación asa, por ejemplo Isocítrico descarboxilasa. Al enzima rubisco, se le denomina ribulosa difosfato carboxilasa o bien ribulosa difosfato oxidasa, según la reacción que catalice. 4.- Un nuevo avance el nomenclatura se logra dando información complementaria, al indicar el coenzima que utiliza: malato NAD + oxidoreductasa. 5.- La sistematización completa del nombre, se hace, nombrando a los enzimas con un numero clave (E.C.) que caracteriza al tipo de reacción según la clase (primer digito), subclase (segundo digito) y subsubclase (tercer digito). El cuarto digito es para lel enzima especifico. Asi, en la E.C. 2.7.1.1: el 2 indica que se trata de una transferasa, el 7 indica que transfiere fosfato, el primer 1 que el alcohol es el aceptor del fosfato y el último 1 indica que es una hexoquinasa o ATPasa. También se le denomina D-hexosa-6-fosforotransferasa, enzima que cataliza la transferencia de fosfato desde el ATP al grupo hidroxilo de carbono 6 de la glucosa.

Tipos de enzimas Según su composición se pueden clasificar en tres grupos: 1.- Ribozimas: compuestos por pequeñas moléculas de ARN, que tienen actividad catalítica. 2.- Enzimas simples o estrictamente proteicos: son aquellos que están compuestos exclusivamente por aminoácidos. 3.- Enzimas complejos u holoenzimas: son los compuestos por una parte proteica (Apoenzima) y un grupo prostético, parte no formada por aminoácidos, (Cofactor). HOLOENZIMA = APOENZIMA + COFACTOR Si es inorgánica se le denomina activador inorgánico. Ej. Mg 2+ es necesario para las quinasas. El Zn 2+ para las carboxipeptidasas... Si es una molécula orgánica se les denomina COENZIMA La biotina o vit b 8 es coenzima de los enzimas que transfieren CO 2

Coenzimas Son cofactores orgánicos que quedan modificados en la reacción ya que actúan de transportadores de grupos químicos. Al ser modificados suelen actuar de coenzimas para otros enzimas. En esta segunda reacción se regeneran y pueden actuar de nuevo de coenzimas para la primera enzima. No suelen ser específicos, suelen unirse a distintos apoenzimas. Las uniones son con enlaces débiles. Coenzima A: Es un ejemplo de coenzima de transferencia. El CoA tranporta grupos acetil (-CO-CH 3 ) NAD + y NADH FAD + Si en 1 y 5 se unen H tendremos el FADH 2 El NADH 2 y el FADH 2 y sus formas oxidadas NAD + y FAD + son coenzimas de oxido-reducción. (transportan H + y e - )

Clasificación de los enzimas Clase 1: Oxidorreductasas Clase 2: Transferasas Clase 3: Hidrolasas Clase 4: Liasas Clase 5: Isomerasas Clase 6: Sintetasas

Clase 1: Oxidorreductasas Catalizan reacciones de oxidorreducción, es decir, transferencia de hidrógeno (H) o electrones (e - ) de un sustrato a otro. Según el sustrato sobre el que actúan o los coenzimas utilizados se diferencian 97 subclases diferentes. De ellas las dos más importantes son: Oxidasas: transfieren sólo electrones Deshidrogenasas: transfieren H utilizando coenzimas. e - e - reducido oxidado CH 3 CH OH COOH Ác. láctico NAD + oxidado e - e - reducido CH 3 C O COOH Ác. pirúvico NADH+H +

Clase 2: Transferasas Catalizan la transferencia de un grupo químico, distinto del hidrógeno, de un sustrato a otro. Hay 9 subclases. Glucosa Glucoquinasa Glucosa 6 fosfato Pi Pi Pi Pi Pi ATP ADP

Clase 3: Hidrolasas Rompen enlaces con la adición de una molécula de agua. El enzima también rompe la molécula de agua, introduciendo el OH en un lado del enlace y el H al otro lado. Hay 13 subclases. H 2 O OH + H Maltasa + H 2 O

Clase 4: Liasas Rompen enlaces sin la adición de una molécula de agua. Hay 99 subclases. Generalmente: crean dobles enlace o rompen dobles enlaces. + Acetacetato descarboxilasa + Ácido acetoacético Acetona CO 2

Clase 5: Isomerasas Catalizan el cambio de posición de un grupo químico de una parte a otra del sustrato. Hay 99 Subclases. Fosfoglicerato mutasa Ácido 3 fosfoglicérico Ácido 2 fosfoglicérico

Clase 6: Ligasas o sintetasas Catalizan la unión de moléculas o grupos moleculares, con la energía aportada por la desfosforilación del ATP. Hay 5 subclases. + ATP ADP + P i ATP ADP + P i + Péptido sintetasa Glicina Ác. Glutámico Dipéptido

Especificidad absoluta El enzima sólo reconoce a un sustrato. Fumarato hidrolasa Específica para el isómero trans- del fumárico y da el producto en su forma isomerica L-

Especificidad de grupo Actúan sobre el mismo grupo químico de moléculas. Por ejemplo, la β-glucosidasa reconoce cualquier glúcido β pero no a los α. α fructosa β fructosa α glucosa β glucosa

Especificidad de clase Actúan sobre el mismo tipo de enlace. Por ejemplo las carboxilesterasas hidrolizan todo tipo de ésteres, independientemente de la naturaleza de R o R carboxilesterasas Ester Ácido Alcohol

Mecanismo de acción I Según la teoría de las colisiones para que una reacción química se produzca, debe ocurrir simultáneamente: Que las moléculas reaccionantes colisionen de forma eficaz, es decir, que se encuentren con una orientación óptima Que choquen con energía suficiente. A esta energía se le denomina energía de activación. Con una de las dos condiciones, ejemplo: No eficaz y energía de activación adecuada No hay reacción Choque Eficaz y energía de activación adecuada Hay reacción

Mecanismo de acción II Por qué los enzimas aceleran las reacciones químicas? Los catalizadores cambian la energía de activación de una determinada reacción, y por tanto incrementan la velocidad de reacción. Reacción exotérmica Complejo activado Reacción no catalizada Reacción catalizada Reacción endotérmica Complejo activado Energía libre de Gibbs Reactivos Energía de activación E.A H<0 Energía libre de Gibbs Energía de activación E.A Productos H>0 Productos Transcurso de la reacción Reactivos Transcurso de la reacción

Cinética enzimática Estudia la velocidad de las reacciones catalizadas por enzimas. [ ] v = d[ ] dt p s Si representamos la aparición de producto, o la desaparición del sustrato, en función del tiempo se obtiene la llamada curva de velocidad de la reacción, o simplemente, la cinética de la reacción. t

Modelo de Michaelis-Menten En 1913 Leonor Michaelis y Maude Menten postulatron la teoría general de la acción enzimática, basada en la formación del complejo SE.

1.-Deducciones de M-M Michaelis y Menten propusieron que las reacciones catalizadas enzimáticamente ocurren en dos etapas: En la primera etapa se forma el complejo enzima-sustrato y en la segunda, el complejo enzima-sustrato da lugar a la formación del producto, liberando el enzima libre K 1 S + E SE E + P K 2 En este esquema, k 1, k 2 y k 3 son las constantes cinéticas individuales de cada proceso y también reciben el nombre de constantes microscópicas de velocidad. Según esto, podemos afirmar que: v 1 = k 1 [S] [E] v 2 = k 2 [SE] v 3 = k 3 [SE] Dado que concentración total de enzima, [E T ] es constante a lo largo de la reacción y que presenta dos formas: el enzima libre (E) y el enzima unido al sustrato (ES), se puede decir que: [E T ] = [E] + [SE] O lo que es lo mismo Sustituyendo en la primera ecuación, K 3 v 1 = k 1 [S] [E T ] - k 1 [S] [SE] [E] = [E T ] - [SE] la transformamos en la siguiente:

2.-Deducciones de M-M De la reacción: S + E K 1 SE K 3 E + P K 2 deducimos que la velocidad de formación del complejo enzima-sustrato (v 1 ) es igual a la de su disociación (v 2 + v 3 ), por tanto: v 1 = v 2 + v 3 O lo que lo mismo: k 1 [S] [E T ] - k 1 [S] [SE] = k 2 [SE]+ k 3 [SE] Despejando [SE], queda que: Si todas las constantes [SE] = [E t ] [S] (k 2 +k 3 )/k 1 + [S] las agrupamos en una: K m = (k 2 +k 3 ) / k 1 queda: [SE] = [E t ] [S] K m + [S] A la constante K M se le denomina constante de Michaelis-Menten.

3.-Deducciones de M-M De la reacción: S + E K 1 SE K 3 E + P K 2 Deducimos que la velocidad de formación del producto es: v = v 3 = k 3 [SE] Sustituyendo [SE] por su valor [E t ] [S] v= k 3 K m + [S] Si definimos un nuevo concepto, velocidad máxima como V max = k 3 [E t ] tendremos: V = V max [S] K m + [S] Que es la ecuación de velocidad que explica el comportamiento cinético de los enzimas

Gráfica de Michaelis-Menten v max v max 2 v La representación gráfica de la ecuación de Michaelis-Menten, velocidad frente a [S], es una hipérbola La velocidad máxima se logra cuando todos los centros activos están ocupados Cuánto vale la [S] cuando la velocidad es la mitad de la máxima? V max /2 = Simplificando V max [S] K m + [S] [S] 1/2 = K m + [S] Es decir [S] + k m = 2 [S]? [S] =K m [s] despejando K m = [S]

Significado de K m Km es la concentración de sustrato para la cual la velocidad de reacción es la mitad de la velocidad máxima. El valor de Km da idea de la afinidad del enzima por el sustrato. A menor Km, mayor afinidad del enzima por el sustrato. Este hecho tiene fácil explicación si tenemos en cuenta que Km se define como (k 2 +k 3 /k 1 ), donde las reacciones 2 y 3 destruyen el complejo ES, mientras que la reacción 1 lo forma. Así, si Km es grande, el complejo ES es inestable pues predomina la tendencia a destruirlo (poca afinidad hacia el sustrato), y si Km es pequeña, el complejo ES es estable, ya que predomina la tendencia a formarlo (gran afinidad hacia el sustrato). La Km del sustrato natural es menor que la de los sustratos análogos. Si dos sustratos del mismo enzima tienen distinta Km, el que presente mayor Km tiene menor afinidad por el enzima, y la reacción transcurre siempre a menor velocidad que con el sustrato de menor Km, salvo a concentraciones saturantes de sustrato, donde la V = V max. Los valores de Km de muchos enzimas son próximos a los de la concentración fisiológica de sus sustratos, de forma que pequeñas variaciones en la [S] pueden suponer grandes cambios en la velocidad de toda una ruta metabólica.

Cálculo de K m y de V max Para determinar gráficamente los valores de K M yv max es más sencillo utilizar la representación doble recíproca (1/v 0 frente a 1/[S] 0 ), ya que es una línea recta. 1/V Esta representación doble recíproca recibe el nombre de representación de Lineweaver-Burk. Es una recta en la cual: Pendiente= K M / V max La pendiente es K M /V max La abscisa en el origen (1/v 0 = 0) es -1/K M La ordenada en el origen (1/[S] 0 = 0) es 1/V max 1/V max -1/K m 1/[S] De esta forma, a partir de los datos experimentales se puede calcular gráficamente, los valores de K M y V max de un enzima para diversos sustratos. Si -2=-1/K m K m =1/2 Si 3=1/v max V max =1/3

Unidades de la velocidad de reacción Se define la unidad de actividad enzimática (U) como la cantidad de enzima que cataliza la conversión de 1 µmol de sustrato en un minuto. (1 µmol/min). El Sistema Internacional de unidades (SI) define la unidad de actividad enzimática como la cantidad de enzima que transforma 1 mol de sustrato por segundo. Esta unidad se llama katal (kat). Como 1 mol son 10 6 µmoles y 1 minuto son 60 segundos, resulta que 1 katal = 60 x 10 6 U. Esta unidad es muy grande, de forma que se utilizan frecuentemente los submúltiplos como el microkatal (µkat = 10-6 kat) o el nanokatal (nkat = 10-9 kat).

Regulación de las reacciones enzimáticas La actividad de los enzimas puede regularse por: 1.- Expresión génica. 2.- Efecto del ph. 3.- Efecto de la temperatura. 4.- Presencia de inhibidores. 5.- Modulación alostérica. 6.- Modulación por proteolisis. 7.- Modulación isoenzimas.

Regulación por expresión génica Las células controlan que los genes que codifican enzimas, se expresen, es decir que se lean, formando el ARN m que permitirá la posterior síntesis del enzima, o que no se expresen, es decir que no se forme el ARN m y por tanto se impide la síntesis del enzima. ADN ARN m Expresión génica = Síntesis de ARN m Síntesis del enzima Si se expresa el gen que codifica el enzima, se dice que hay inducción enzimática. Si no se expresa el gen que codifica el enzima, se dice que hay represión enzimática.

Regulación por efecto del ph Los enzimas, en las cadenas laterales de sus aminoácidos, poseen grupos químicos ionizables (carboxilos -COOH; amino -NH 2 ; tiol -SH; imidazol, etc.). Según el ph del medio estos grupos se ionizan de forma distinta, pueden tener carga eléctrica positiva, negativa o neutra. Como la forma espacial de las proteínas depende, en parte, de las cargas eléctricas de sus restos, habrá un ph en el cual la conformación será la más adecuada para la actividad catalítica. Este es el llamado ph óptimo. Enzima Pepsina Ureasa Catalasa ph óptimo 1,5 6,8 7,6 V 100% 50% Si cambia el ph del medio, cambia la forma espacial del enzima y esto cambia la velocidad de la reacción. Tripsina 7,7 Fumarasa 7,8 Arginasa 9,7 1 2 3 4 5 6 7 8 9 10 11 12 ph

Regulación por temperatura En general, los aumentos de temperatura aceleran las reacciones químicas: por cada 10ºC de incremento, la velocidad de reacción se duplica. Sin embargo, al ser proteínas, a partir de cierta temperatura, se empiezan a desnaturalizar por el calor y la actividad enzimática decrece rápidamente hasta anularse. La temperatura a la cual la actividad catalítica es máxima se llama temperatura óptima. V 100% Tª s de desnaturalización. 50% -10 0 10 20 30 40 50 (Tª optima). T ºC

Regulación por inhibidores Los inhibidores son substancias que se unen al enzima disminuyendo o anulando su actividad. Hay dos tipos: 1.- Inhibición irreversible: El inhibidor se fija permanentemente, por medio de enlaces covalentes, al lugar activo de la enzima, o lo desnaturaliza impidiendo su actividad. Por ejemplo, los llamados gases nerviosos actúan sobre los enzimas que participan en la transmisión del impulso nervioso, de forma que este proceso no puede tener lugar, produciéndose parálisis o muerte. 2.- Inhibición reversible: El inhibidor se fija temporalmente, por medio de enlaces débiles, al enzima dificultando su acción. Pueden ser de tres tipos: Inhibidores competitivos, no competitivos y acompetitivos

Inhibición competitiva Ocurre cuando el inhibidor se une al centro activo, compitiendo con el sustrato. y 1/V Con inhibidor Sin inhibidor v v max Sin inhibidor Pendiente= K M / V max 1/V max Aumenta Km No cambia Vmax Con inhibidor -1/K m 1/[S] K m -I K m +I [s]

Inhibición no competitiva Ocurre cuando el inhibidor se une a un sitio del enzima distinto del centro activo: no compite con el sustrato. Pero modifica la configuración del enzima retrasando la unión con el sustrato. 1/V Con inhibidor Sin inhibidor v v max Sin inhibidor Pendiente= K M / V max 1/V max No cambia Km Disminuye Vmax Con inhibidor -1/K m 1/[S] K m -I K m +I [s]

Inhibición acompetitiva Ocurre cuando el inhibidor se une al complejo sustrato-enzima, retrasando la liberación del producto. Complejo sustrato-enzima 1/V Con inhibidor Sin inhibidor v v max Sin inhibidor Pendiente= K M / V max 1/V max Con inhibidor Disminuye Km Disminuye Vmax -1/K m 1/[S] K m -I K m +I [s]

Modulación alostérica I El término alostérico significa otro sitio y también otra forma. Los enzimas alostéricos son aquellos, que presentan dos sitios y dos formas. Los sitios son lugares donde se pueden unir sustancias. Uno es el centro activo, al que puede unirse el sustrato y otra el centro regulador, al que puede unirse, de forma reversible, otra sustancia llamada ligando. Las formas son dos conformaciones espaciales, que están en equilibrio químico. Una es la tensa, en la que sustrato no se puede unir, forma inactiva y la otra es la relajada, en la que el sustrato se puede unir. Forma tensa Forma relajada Centro activo sin afinidad al sustrato Centro activo con afinidad al sustrato Centro regulador Centro regulador Si el ligando y el sustrato son substancias distintas, al enzima alostérico se le llama herotrópico, en caso contrario, es decir, si son la misma sustancia, se denominan homotrópico.

Modulación alostérica II El equilibrio puede romperse cuando se une el ligando al centro regulador, dando estabilidad a la forma a la que se una. Si la unión siempre estabiliza la forma relajada al ligando se le denomina efector alostérico. Si la unión siempre estabiliza la forma tensa al ligando se le denomina inhibidor alostérico. Forma tensa estabilizada Forma tensa Forma relajada Forma relajada estabilizada Inhibidor alostérico Efector alostérico Ambas posibilidades permiten explicar dos tipos de regulación de una vía metabólica: Retroihibión o feed back: cuando el producto final, es el inhibidor alostérico del primer enzima de la vía. S A B E 1 E 2 E 3 Producto final Inducción enzimática: cuando el sustrato inicial, es el efector alostérico del primer enzima de la vía. S A B Producto final E 1 E 2 E 3 Inhibidor alostérico Efector alostérico

Modulación alostérica III Los enzimas alostéricos, suelen estar formados por varias subunidades o protómeros. En cada una de ellas se diferencia un centro activo y un centro regulador. Sustrato Ligando En estos enzimas, si se une el ligando a una subunidad se produce una transmisión alostérica, por la cual todas las subunidades quedan estabilizadas, es decir que siguen la ley del todo o nada. A este efecto se le denomina cooperativismo. El cooperativismo hace que los enzimas alostéricos no sigan exactamente la ecuación de Michaelis-Menten. Se dice que su cinética es no Michaeliana. La gráfica velocidad frente a [S] no es una hipérbola, sino una sigmoide. Variación V V/2 En la cinética sigmoidea, pequeñas variaciones en la [S] en una zona crítica (cercana a la K M ) se traduce en grandes variaciones en la velocidad de reacción. K M Variación S [S]

Modulación por proteolisis Existen enzimas que tienen un mecanismo rápido de regulación pasando de la forma activa a la inactiva por la rotura reversible o irreversible de enlaces covalentes. Un ejemplo de modificación covalente reversible es la unión de un grupo fosfato a un OH de un residuo de aminoácido de la molécula de enzima que permite la transformación de una forma en otra. ATP ADP Quinasa O-H O-P i Un ejemplo de modificación covalente irreversible es la transformación de zimógenos en enzimas activas. En esto enzimas se elimina parte de la cadena proteica y, como consecuencia, la nueva estructura permite la formación del centro activo en la molécula. Esto ocurre en la transformación de pepsinógeno, tripsinógeno o quimiotripsinógeno en enzimas proteolíticas activas. Se pierden 6 aminoácidos de un extremo Extremo más corto Forma inactiva Fosfatasa P i Forma activa Tripsinógeno: inactivo Tripsina: activa

Modulación isoenzimas Se llaman isozimas o isoenzimas a los enzimas que catalizan la misma reacción pero que pueden distinguirse por alguna característica física, estructural, inmunológica, etc. Su origen es genético. Las diferencias que presentan, se traducen en ligeros cambios en sus propiedades, de forma que cada isozima se adapta perfectamente a la función que debe realizar. Se diferencian isoenzimas en función de: - el tipo de tejido: Por ejemplo, la Hexokinasa, presenta, al menos, cuatro formas distintas: -Hepática - Cerebral -Muscular -Eritrocitaria - el compartimento celular donde actúa: Por ejemplo, la malato deshidrogenasa del citoplasma es distinta de la de la mitocondria. -el momento concreto del desarrollo del individuo: Por ejemplo, algunos enzimas de la glicolisis del feto son diferentes de los mismos enzimas en el adulto.