Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales complejos), una aplicación lineal o transformación lineal de V a W es una función T : V W que tiene las dos propiedades siguientes: 1. Para cualesquiera vectores u, v V, T (u + v) = T (u) + T (v). 2. Para cualquier vector v V y cualquier escalar λ, T (λv) = λt (v). En otras palabras, una aplicación lineal es una aplicación que conserva la suma de vectores y la multiplicación por escalares. La primera consecuencia de estas dos propiedades que caracterizan a las aplicaciones lineales es el llamado Principio de Superposición que es la siguiente propiedad: Principio de superposición: Para cualesquiera vectores u 1,..., u n en V y cualesquiera escalares c 1,..., c n, T (c 1 u 1 + + c n u n ) = c 1 T (u 1 ) + + c n T (u n ). Es decir, una aplicación cumple el principio de superposición si conserva las combinaciones lineales. Esta propiedad por sí sola es equivalente a las dos que hemos usado para definir las aplicaciones lineales porque no sólo se deduce de aquéllas sino que también aquellas se deducen de esta porque ambas son casos particulares del principio de superposición. Otra consecuencia importante de la definición de aplicación lineal es que toda aplicación lineal T : V W evaluada en el vector cero de V da como resultado el vector cero de W : T (0) = 0. Finalmente, sabemos que cualquier aplicación biyectiva (sobreyectiva e inyectiva) tiene una aplicación inversa (y, recíprocamente, cualquier aplicación que tenga inversa es biyectiva). En el caso especial de una aplicación lineal biyectiva, la aplicación inversa es también una aplicación lineal. Ejemplos de aplicaciones lineales. Homotecias y simetría central del plano............................................................................................................ Proyección del plano sobre una recta que pasa por el origen................................................................... 1 Versión de 5 de noviembre de 2014, 14:07 h.
Simetrías axiales del plano...................................................................................................................................... Giros del plano.............................................................................................................................................................. La aplicación lineal de R n a R m definida por una matriz m n............................................................. La aplicación lineal de R n a R n definida por una operación elemental de filas.............................. Subespacios imagen y núcleo de una aplicación lineal Dada una aplicación lineal T : V W, el espacio V se llama el dominio de T y el espacio W se llama el codominio de T. Subespacio imagen: El conjunto de todos aquellos vectores de W que se pueden obtener como resultado de evaluar la aplicación T en algún vector de V se llama la imagen de T y se denota Im T. Dicho de otra forma, un vector b de W pertenece a Im T si y sólo si el problema de hallar un x V tal que T (x) = b tiene alguna solución. Por la propiedad T (0) = 0, la imagen de T contiene el cero de W. Además, si p y q pertenecen a la imagen de T es porque existen vectores u, v V tales que T (u) = p y T (v) = q; entonces también existe un vector en V cuya imagen por T es p + q (ese vector es, naturalmente u + v ya que T (u + v) = T (u) + T (v) = p + q), con lo que p + q también pertenece a la imagen de T. De forma similar se demuestra que Im T cumple también la tercera condición para ser un subespacio vectorial de W (que los reescalados de los vectores de Im T siguen perteneciendo a Im T ). En conclusión tenemos: La imagen de una aplicación lineal es un subespacio vectorial del codominio. Supongamos que V tiene una base B = {v 1,..., v n }. Entonces, las imágenes de estos vectores por una aplicación lineal T : V W, {T (v 1 ),..., T (v n )} generan el subespacio Im T de W. Una aplicación lineal es sobreyectiva si y sólo si su imagen es todo su codominio, es decir, dada una aplicación lineal T : V W, ésta es sobreyectiva si y sólo si Im T = W. imagen de T 2
Subespacio núcleo: El conjunto de todos aquellos vectores del dominio, V, en los que la aplicación T se anula se llama el núcleo de T y se denota 1 ker T. Dicho de otra forma, un vector a de V pertenece a ker T si y sólo si T (a) = 0. Por tanto el núcleo de T es el conjunto solución de la ecuación T (x) = 0. El núcleo de una aplicación lineal T : V W contiene al menos el vector cero de V ya que toda aplicación lineal tiene la propiedad T (0) = 0. Además, por la propiedad T (u + v) = T (u) + T (v), si u y v están en el núcleo de T, también lo está su suma u + v y por la propiedad T (λu) = λt (u), si u está en el núcleo de T, también lo está cualquiera de sus múltiplos λu. Esto demuestra: El núcleo de una aplicación lineal es un subespacio vectorial del dominio. Una aplicación lineal es inyectiva si y sólo si su núcleo contiene sólo el vecto cero (se suele decir si y sólo si su núcleo es cero ), es decir, dada una aplicación lineal T : V W, ésta es inyectiva si y sólo si ker T = 0. núcleo de T La aplicación lineal de R n a R m definida por una matriz m n Ya conocemos un ejemplo de aplicación lineal: Para comprobar si unos valores particulares de las incógnitas x 1,..., x n constituyen una solución de un sistema de m ecuaciones lineales Ax = b tenemos que evaluar los miembros de la izquierda de todas las ecuaciones y comprobar si el resultado es o no es igual al vector de los miembros de la derecha (terminos independientes). Al evaluar los miembros de la izquierda estamos evaluando el producto de la matriz A de coeficientes (que, por simplificar la exposición, supondremos que son reales) por el vector x de R n cuyos elementos son los valores dados a las incógnitas x 1,..., x n, es decir, al evaluar los miembros de la izquierda de un sistema de ecuaciones lineales estamos evaluando una función: T A : R n R m, T A (x) = Ax. Las propiedades que ya conocemos del producto matriz por vector, A(x+y) = Ax+Ay, A(λx) = λ(ax) son exactamente las propiedades que definen una aplicación lineal. Por tanto, la función T A definida por la matriz de coeficientes A es una aplicación lineal y tenemos lo siguiente: Toda matriz real A de m filas y n columnas determina una aplicación lineal T A : R n R m que se llama la aplicación lineal definida por la matriz A y que está definida por T A (x) = Ax. Subespacio imagen de T A : El subespacio imagen de la aplicación lineal T A : R n R m definida por una matriz m n está generado por las imágenes de los n vectores e 1,..., e n de la base canónica de R n (columnas de la matriz identidad n n) 1 0 0 0 e 1 =., e 1 2 =.,..., e 0 n =., Im(T A) = Gen{T A (e 1 ),..., T A (e n )}. 0 0 1 la aplicación lineal definida por la matriz A Pero estas imágenes T A (e 1 ) = Ae 1,..., T A (e n ) = Ae n son precisamente las columnas de A ya que Ae 1 es igual a la primera columna de A, Ae 2 es la segunda columna de A, etc. Por ejemplo, ( ) ( ( ) ( ( ( ) ( 1 2 1 2 1 1 1 2 0 2 Si A = entonces Ae 3 4 1 = =, Ae 3 4) 0 3) 2 = =. 3 4) 1 4) Así pues, el subespacio imagen de la aplicación lineal definida por A está generado por las columnas de A y por tanto: El subespacio imagen de T A es el espacio columna de A: Im(T A ) = Col A. 1 ker es abreviatura de la palabra inglesa kernel que significa lo central o más importante de una cosa y deriva del nombre de los granos del maíz ( kernels ) y éste a su vez del nombre del maíz en inglés ( corn ). 3
En consecuencia: La aplicación lineal definida por una matriz es sobreyectiva si y sólo si todo sistema de ecuaciones lineales con esa matriz de coeficientes es consistente cualesquiera que sean los términos independientes. Subespacio núcleo de T A : El núcleo de la aplicación lineal T A es el conjunto solución de T A (x) = 0, pero por la definición de T A esto es justamente el conjunto solución de Ax = 0, que es lo que hemos llamado el espacio nulo de A. Por tanto: El subespacio núcleo de T A es el espacio nulo de A: ker(t A ) = Nul A. En consecuencia: La aplicación lineal definida por una matriz es inyectiva si y sólo si el sistema homogéneo con esa matriz de coeficientes tiene solamente la solución trivial. La matriz canónica de una aplicación lineal de R n a R m No existen más aplicaciones lineales de R n a R m que las definidas por las matrices reales m n explicadas en la sección anterior. Para demostrar esto es así tratemos de descubrir cuál es la matriz de una aplicación lineal cualquiera T : R n R m. Evidentemente, si ya supiésemos que T es la aplicación lineal de una matriz, sabemos que las columnas de la matriz serían los vectores imagen de los n vectores e 1,..., e n de la base canónica de R n. Por tanto, construyamos la matriz A = [T (e 1 ) T (e n )] cuyas columnas son los n vectores T (e 1 ),..., T (e n ) de R m. Sea ahora x un vector cualquiera de R n con coordenadas x 1,..., x n. Entonces x = x 1 e 1 + + x n e n y por el principio de superposición, T (x) = x 1 T (e 1 ) + + x n T (e n ) = [T (e 1 ) T (e n )]x = Ax lo cual significa que T es la aplicación lineal definida por la matriz A. La matriz A obtenida a partir de T usando como columnas las imágenes de los vectores de la base canónica se llama la matriz canónica de la aplicación lineal T. Las matrices elementales Lo que se acaba de decir nos plantea la cuestión de cuál es la matriz canónica asociada a la aplicación lineal definida por una operación elemental de filas. La respuesta es, por lo dicho antes, que es la matriz cuyas columna se obtienen al aplicar dicha operación elemental a cada columna de la matriz identidad. Pero la matriz obtenida de esta forma es precisamente la que se obtiene al aplicar dicha operación elemental directamente a la matriz identidad. Por ejemplo,..... Se llama matriz elemental a toda matriz obtenida aplicando una operación elemental de filas a una matriz identidad. Por lo dicho antes, tenemos: Las matrices elementales son las matrices canónicas de las aplicaciones lineales definidas por las operaciones elementales de filas. Matriz Elemental. Resumen sobre las aplicaciones lineales inyectivas, sobreyectivas y biyectivas Una aplicación lineal es biyectiva (sobreyectiva e inyectiva) si y sólo si tiene una aplicación inversa, la cual también es una aplicación lineal. 4
Una aplicación lineal es sobreyectiva si y sólo si su imagen es todo el codominio. La aplicación lineal definida por una matriz es sobreyectiva si y sólo si todo sistema de ecuaciones lineales con esa matriz de coeficientes es consistente cualesquiera que sean los términos independientes. Una aplicación lineal es inyectiva si y sólo si su núcleo es cero. La aplicación lineal definida por una matriz es inyectiva si y sólo si el sistema homogéneo con esa matriz de coeficientes tiene solamente la solución trivial. 5