Colegio Portocarrero. Departamento de matemáticas. PL con solución

Documentos relacionados
UNIDAD 4 Programación lineal

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis y programación lineal

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución:

Colegio Portocarrero. Curso Departamento de matemáticas. Repaso con solución

Colegio Portocarrero. Curso Departamento de matemáticas. Repaso de todo. Con solución

EJERCICIOS PROGRAMACIÓN LINEAL

Problemas de programación lineal.

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades

III. Escribir las Restricciones en formas de Inecuaciones. A B C X (Grupo 1) Y (Grupo 2) Total

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.

Colegio Portocarrero. Curso Departamento de matemáticas. Álgebra, programación lineal y análisis. (con solución)

UNIDAD 6.- PROGRAMACIÓN LINEAL

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

2. (a) Calcula los puntos del recinto 2x y[20 que hacen mínima la función f(x, y) = 2x + y. Cuántas soluciones hay? (7 puntos)

PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito.

Colegio Portocarrero. Departamento de matemáticas. Repaso de todo con su solución

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2

EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL.

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita:

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello:

2 4. c d. Se verifica: a + 2b = 1

INECUACIONES. Ejercicios Repaso 2ªEvaluación Matemáticas Aplicadas I. Representa gráficamente el sistema de inecuaciones.

EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.

En primer lugar voy a trasladar el enunciado a lenguaje matemático. Me fijo en lo que me preguntan: a una variable la llamo x y a otra y.

Esterilización 1 4. Envase 3 2

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A

Módulo Programación lineal. 3 Medio Diferenciado

APUNTE: Introducción a la Programación Lineal

PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones:

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad

TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL

Universidad Nacional de Ingeniería

Horas requeridas producto B

DP. - AS Matemáticas ISSN: X

Opción A. Alumno. Fecha: 23 Noviembre 2012

Propuesta A B = M = (

Revisora: María Molero

GUIA DE EJERCICIOS - TEORIA DE DECISIONES

Aplicaciones de la función cuadrática. Máximo y Mínimo Algebra Sigla MAT2001

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio

Ejercicios y problemas

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Introducción a la Programación Lineal

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

La concentración de ozono contaminante, en microgramos por metro cúbico, en una

PROBLEMA 1. Considere el siguiente problema de programación lineal:

Introducción a Programación Lineal

Prof. Pérez Rivas Lisbeth Carolina

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

Ej TEMA 3: Producción y Empresa 2015/16

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.

Programación Lineal ALGEBRA. Curso:3 E.M. Unidad: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20.

SELECTIVIDAD. (Hasta modelo 2012) PROBLEMAS UNIDAD 5

T7. PROGRAMACIÓN LINEAL

ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

Universidad de Managua Curso de Programación Lineal

Problemas de Sistemas de Inecuaciones lineales con dos incógnitas.

TEMA 4 PROGRAMACIÓN LINEAL

dada por c(x) = donde x indica el tamaño de los pedidos para renovar existencias

Costeo Tradicional y Costeo ABC. Paola Betancur Gómez ID:

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0

Pruebas de Acceso a las Universidades de Castilla y León

EJERCICIOS PAU PROGRAMACION LINEAL

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y

UNIDAD 5: PROGRAMACIÓN LINEAL

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:

Método Gráfico. Dr. Mauricio Cabrera

1º Dibuja las regiones factibles definidas por los siguientes sistemas:

PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS

Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

CAPÍTULO 4: PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS

Olimpiada Internacional de Matemáticas Fórmula de la Unidad / El Tercer Milenio Año 2016/2017 Primera ronda Problemas para el grado R5

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior.

Tema 5: Análisis de Sensibilidad y Paramétrico

Algebra lineal y conjuntos convexos

6 PROGRAMACIÓN LINEAL

PROGRAMACIÓN LINEAL. Página 102. Página 103

UNIDAD 4 Programación Lineal

ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO

Genera 10 parejas de números. Escríbelos, colocando entre ellos el signo adecuado de desigualdad. Intervalo [ 4,5] (0,3) [ 6,8) ( 7, 1] Desigualdad

20 EJERCICIOS de INECUACIONES 4º ESO opc. B

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS DE PROGRAMACIÓN LINEAL.

PROGRAMACIÓN LINEAL BTO 2ºA NOMBRE

Jesús Getán y Eva Boj. Marzo de 2014

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011

Tema 1. - SISTEMAS DE ECUACIONES.

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos

JUNIO Bloque A

Unidad 4 Programación lineal

Transcripción:

PL con solución Problema 1: Un mayorista de frutos secos tiene almacenados 1800 kg de avellanas y 420 kg de almendras para hacer dos tipos de mezclas que embala en cajas como se indica a continuación: La caja A tiene 6 kg de avellanas y 3 kg de almendras y las vende a 80 euros La caja B tiene 10 kg de avellanas y 1 kg de almendras y las vende a 90 euros Representar la región factible. Cuántas cajas de cada tipo le conviene hacer para que el beneficio sea máximo? Problema 2: Un fabricante comercializa 2 modelos de pantalón vaquero, uno para mujer que le proporciona un beneficio de 12 euros por unidad y otro para hombre con un beneficio unitario de 20 euros. El próximo mes desea fabricar entre 50 y 750 pantalones para mujer y siempre un número no inferior al que fabrica para hombre. Además no tiene posibilidades de fabricar mensualmente más de 1000 unidades en total. Plantea un programa lineal que permita calcular el número de unidades de cada modelo que ha de fabricar para maximizar el beneficio total. Resolviendo el programa anterior diga el máximo beneficio y cuántas unidades de cada modelo se han de comercializar. Diga la solución del apartado anterior si el beneficio unitario es de 15 euros para cada uno de los modelos. NOTA: No es necesario considerar que las cantidades fabricadas sean números enteros. Problema 3: Una papeleria quiere liquidar hasta 78 kg de papel reciclado y hasta 138 kg de papel normal. Para ello hace dos tipos de lotes, A y B. Los lotes A están formados por 1 kg de papel reciclado y 3 kg de papel normal y los lotes B por 2 kg de papel de cada clase. El precio de venta de cada lote A es de 0,9 euros y el de cada lote B es de 1 euro. Cuántos lotes A y B debe vender para maximizar sus ingresos? A cuánto ascienden estos ingresos máximos? Problema 4: Una refinería de petróleo adquiere dos tipos de crudo, ligero y pesado, a un precio de 70 euros y 65 euros por barril, respectivamente. Con cada barril de crudo ligero la refinería produce 0,3 barriles de gasolina 95; 0,4 barriles de gasolina 98 y 0,2 barriles de gasoil. Asimismo, con cada barril de crudo pesado produce 0,1; 0,2 y 0,5 barriles de cada uno de estos tres productos, respectivamente. La refinería debe suministrar al menos 26300 barriles de gasolina 95, 40600 barriles de gasolina 98 y 29500 barriles de gasoil. Determina cuántos barriles de cada tipo de crudo debe comprar la refinería para cubrir sus necesidades de producción con un coste mínimo y calcula éste. Problema 5: Una empresa de equipos informáticos produce dos tipos de microprocesadores: A y B. El trabajo necesario para su producción se desarrolla en dos fases, la de fabricación y la de montaje. Cada microprocesador A requiera 3 minutos de fabricación y 2 minutos de montaje y cada microprocesador B requiere 2 minutos de fabricación y 4 minutos de montaje. Si sólo se dispone diariamente de 4 horas para la fabricación y 4 horas para el montaje, siendo el beneficio obtenido de 160 euros por cada microprocesador A y de 190 euros por cada microprocesador B, se pide justificando la respuesta. Cuántos microprocesadores hay que producir de cada tipo para obtener unos beneficios máximos? Cuál será el valor de dichos beneficios máximos?

Problema 6: En la remodelación de un centro de enseñanza se quiera habilitar un mínimo de 8 nuevas aulas, entre pequeñas (con capacidad para 60 alumnos) y grandes (con capacidad para 120). Como mucho, un 25% de las aulas podrán ser grandes. Además, el centro necesita que se habilite al menos 1 aula grande, y no más de 15 pequeñas. Qué combinaciones de aulas de cada tipo se pueden habilitar? Plantea el problema y representa gráficamente el conjunto de soluciones. Cuál es el número mínimo de aulas pequeñas que se pueden habilitar? Si se quiera que la capacidad total conseguida con las aulas habilitadas sea lo mayor posible cuántas tendría que haber de cada tipo? Cuántos alumnos cabrían en total? Problema 7: En una confiteria se dispone de 24 kg de polvorones y 15 kg de mantecados, que se envasan en dos tipos de caja del modo siguiente: Caja tipo 1: 200 g de polvorones y 100 g de mantecados. Precio: 4 euros Caja tipo 2: 200 g de polvorones y 300 g de mantecados. Precio 6 euros Cuántas cajas de cada tipo se tendrán que preparar y vender para obtener el máximo de ingresos? Cuál es el importe de la venta? Problema 8: En una tienda de artículos deportivos se puede adquirir, entre otros productos, raquetas de bádminton y raquetas de tenis. El beneficio por la venta de cada raqueta es de 20 y 25 euros, respectivamente. Por cuestiones de estrategia comercial, se decide vender al día como máximo, 6 raquetas de bádminton y 5 de tenis. Considerando que el número total de raquetas vendidas no puede ser mayor de 7. Representa la región factible. Halla el número de raquetas que debe venderse de cada clase para que el beneficio se máximo. Calcula ese beneficio máximo. Problema 9: Resuelve las siguientes cuestiones a) Representa gráficamente el recinto definido por el siguiente sistema de inecuaciones: x 3(y 3); 2x + 3y 36; x 15; x 0; y 0 b) Calcula los vértices del recinto. c) Obtén el valor máximo de la función F(x, y) = 8x + 12y en este recinto e indica dónde se alcanza. Problema 10: En una factoría, se desean producir al menos 4 unidades del producto B. Cada unidad de producto B ocupa un metro cúbico de espacio de almacenamiento, lo mismo que cada unidad de producto A. Tan solo disponemos de un almacén con capacidad de 20 metros cúbicos. Juan se encarga de una fase de la producción y Pedro de otra fase de la producción. Cada unidad de A requiere 4 horas de trabajo de Juan y 2 horas de trabajo de Pedro. Cada unidad B requiere 1 hora de trabajo de Juan y 3 horas de trabajo de Pedro. Juan debe trabajar al menos 32 horas y Pedro al menos 36 horas. Cada unidad de producto de A produce un beneficio de 25 euros y cada unidad de B produce un beneficio de 20 euros. Utilizando técnicas de programación lineal, calcula el número de unidades de producto A y de producto B que permiten obtener mayores beneficios, así como el beneficio máximo que se puede conseguir.

Soluciones. Problema 1: Caja A Caja B Restricciones Nº de cajas x y x 0; y 0 Avellanas 6x 10y 6x + 10y 1800 Almendras 3x y 3x + y 420 Beneficios 80x 90y f(x, y) = 80x + 90y Máximo c) Valores de la función objetivo en los vértices de la región factible. O(0, 0); A(140, 0); B(100, 120); C(0, 180). El máximo es f(100, 120) = 18800 euros d) La solución óptima es B(100, 120), es decir, x = 100 cajas A e y = 120 cajas B. Beneficio = 18800euros Problema 2: PV mujer PV hombre Restricciones Nº de pantalones x y 50 x 750; y 0 Limitación PV mujer-hombre x y x y Total pantalones x y x + y 1000 Beneficios 12x 20y f(x, y) = 12x + 20y Máximo c) Valores de la función objetivo en los vértices de la región factible. A(50, 0); B(750, 0); C(750, 250); D(500, 500): E(50, 50). El máximo es f(500, 500) = 16000 euros d) La solución óptima es D(500, 500), es decir, x = 500 pantalones vaqueros de mujer e y = 500 pantalones vaqueros de hombre. Beneficio = 16000 euros e) El máximo es f(750, 250) = f(500, 500) = 15000 euros. La solución óptima se alcanza en C(750, 250) y D(500, 500); por tanto en todos los puntos del segmento CD. Beneficios = 15000 euros

Problema 3: Lote A Lote B Restricciones Nº de lotes x y x 0; y 0 kg papel reciclado x 2y x + 2y 78 kg papel normal 3x 2y 3x + 2y 138 Ingresos 0,9x y f(x, y) = 0,9x + y Máximo c) Valores de la función objetivo en los vértices de la región factible. O(0, 0); A(46, 0); B(30, 24); C(0, 39). El máximo es f(30, 24) = 51 euros d) La solución óptima es B(30, 24), es decir, x = 30 kg de papel reciclado e y = 24 kg de papel normal. Problema 4: Crudo ligero Crudo pesado Restricciones Nº de barriles x y x 0; y 0 Gasolina 95 0,3x 0,1y 0,3x + 0,1y 26300 Gasolina 98 0,4x 0,2y 0,4x + 0,2y 40600 Gasoil 0,2x 0,5y 0,2x + 0,5y 29500 Coste 70x 65y f(x, y) = 70x + 65y Mínimo c) Valores de la función objetivo en los vértices de la región factible. A(147500, 0); B(90000, 23000); C(60000, 83000); D(0, 263000). El mínimo es f(90000, 23000) = 7795000 euros d) La solución óptima es B(90000, 23000), es decir, x = 90000 barriles de crudo ligero e y = 23000 euros barriles de crudo pesado. Coste = 7795000 euros

Problema 5: Microp. A Microp. B Restricciones Nº microprocesadores x y x 0; y 0 Fabricación 3x 2y 3x + 2y 240 Montaje 2x 4y 2x + 4y 240 Beneficios 160x 190y f(x, y) = 160x + 190y Máximo c) Valores de la función objetivo en los vértices de la región factible. O(0, 0); A(80, 0); B(60, 30); C(0, 60). El máximo es f(60, 30) = 15300 euros d) La solución óptima es B(60, 30), es decir, x = 60 microprocesadores del tipo A e y = 30 microprocesadores del tipo B. Beneficios = 15300 euros Problema 6: A. pequeñas A. grandes Restricciones Nº de aulas x y 0 x 15; y 1 Limitación ambas x y x + y 8 Limitación grandes-pequeñas x y 0,25(x + y) y Nº de alumnos 60x 120y f(x, y) = 60x + 120y Máximo c) Se pueden habilitar todas las aulas correspondientes a las coordenadas enteras del interior y de la frontera de la región factible, cuyos vértice son: A(7, 1); B(15, 1); C(15, 5); D(6, 2) d) El número mínimo de aulas pequeñas es de 6 e) Valores de la función objetivo en los vértices de la región factible. El máximo es f(15, 5) = 1500 alumnos f) La solución óptima es C(15, 5), es decir, x = 15 aulas pequeñas e y = 5 aulas grandes. Número de alumnos = 1500

Problema 7: Caja tipo 1 Caja tipo 2 Restricciones Nº de cajas x y x 0; y 0 Polvorones 0,2x 0,2y 0,2x + 0,2y 24 Mantecados 0,1x 0,3y 0,1x + 0,3y 15 Ingresos 4x 6y f(x, y) = 4x + 6y Máximo c) Valores de la función objetivo en los vértices de la región factible. O(0, 0); A(120, 0); B(105, 15); C(0, 50). El máximo es f(105, 15) = 510 euros d) La solución óptima es B(105, 15), es decir, x = 105 cajas tipo 1 e y = 15 cajas tipo 2. Ingresos = 510euros Problema 8: R. bádminton R. tenis Restricciones Nº de unidades x y 0 x 6; 0 y 5 Limitación de ventas x y x + y 7 Beneficios 20x 25y f(x, y) = 20x + 25y Máximo c) Valores de la función objetivo en los vértices de la región factible. O(0, 0); A(6, 0); B(6, 1); C(2, 5); D(0, 5). El máximo es f(2, 5) = 165 euros d) La solución óptima es C(2, 5), es decir, x = 2 raquetas de bádminton e y = 5 raquetas de tenis.beneficios = 165 euros diarios Problema 9: a) Región factible.

b) Vértices de la región factible: O(0, 0); A(15, 0); B(15, 2); C(9, 6); D(0, 3) c) Valores de la función objetivo en los vértices de la región factible. El máximo es F(15, 2) = F(9, 6) = 144. La solución óptima se alcanza en B(15, 2) y C(9, 6); por tanto en todos los puntos del segmento BC Problema 10: Producto A Producto B Restricciones Nº de unidades x y x 0; y 4 Limitación de espacio x y x + y 20 Nº de horas de trabajo de Juan 4x y 4x + y 32 Nº de horas de trabajo de Pedro 2x 3y 2x + 3y 36 Beneficios 25x 20y f(x, y) = 25x + 20y Máximo c) Valores de la función objetivo en los vértices de la región factible. A(12, 4); B(16, 4); C(4, 16); D(6, 8). El máximo es f(16, 4) = 480 euros d) La solución óptima es B(16, 4), es decir, x = 16 unidades del producto A e y = 4 unidades del producto B. Beneficios = 480 euros