Recursividad Introducción a la programación I semestre, 2017
Recursividad Las reglas fundamentales para resolver problemas recursivos: Definir el caso base (solución trivial) Cuál es la solución que no necesita procesamiento adicional? Me recursive pointing CC SA dnisbet @ Flickr
Recursividad Definir llamadas recursivas (solución de problema más pequeño) Aportar una respuesta parcial (salida) y reducir el tamaño o la complejidad del problema modificando los argumentos con la intensión de que tiendan al caso base. Me recursive pointing CC SA dnisbet @ Flickr
Afinando detalles Volvamos a la función num_digitos(numero) y analicemos de forma crítica e ingenieril: Qué problemas tiene en términos de eficiencia? Qué problemas hay con las validaciones (restricciones)? Ei Ingenier@! Cómo podemos afinar estos detalles? Bad Boss CC NC-SA ErickHerbert @ Flickr
Recursividad eficiente Las reglas fundamentales para resolver problemas recursivos de forma eficiente: La validación de las restricciones generales o casos especiales pueden/deben ser trabajados en la función principal (no recursiva). Este es el punto de entrada a nuestro problema, es ahí donde nos aseguraremos que los datos son correctos.
Recursividad eficiente Las reglas fundamentales para resolver problemas recursivos de forma eficiente: El trabajo pesado puede/debe ser resuelto en una función auxiliar (recursiva) que será invocada por la principal. Este es el núcleo, core o corazón de la solución
def num_digitos2(numero): #se evalúa solo una vez if not isinstance(numero,int): return 'Error01' elif numero == 0: #caso especial... return 1 else: return num_digitos2_aux(abs(numero)) def num_digitos2_aux(numero): if(numero == 0): #caso base return 0 else: #función recursiva con argumentos 'mas pequeños' return 1 + num_digitos2_aux(numero //10)
Cómo se ejecuta num_digitos2? >>> num_digitos2(-4925) num_digitos2_aux(4925) # abs(-4925) = 4925 1 + num_digitos2_aux(492) # 4925 // 10 = 492 1 + 1 + num_digitos2_aux(49) # 492 // 10 = 49 1 + 1 + 1 + num_digitos2_aux(4) # 49 // 10 = 4 1 + 1 + 1 + 1 + num_digitos2_aux(0) # 4 // 10 = 0 1 + 1 + 1 + 1 + 0 # numero = 0 >>> 4 >>> num_digitos2(0) >>> 1 # caso especial
Finite staircase CC BY-SA gadl @ Flickr
Consejos... Identifique el o los casos más sencillos a resolver. (casos base) Cual es la condición que debería llevarnos al caso base? Qué debe retornar ese caso? los resultados (return) serán resultados finales o parciales?
Consejos... Busque la forma de hacer el problema más pequeño Hasta ahora los problemas nos pedían reducir el número quitándole dígitos, pero no siempre será así. Identifique casos de prueba que incluyan a los casos sencillos y otros complejos y evalúe utilizando papel y lápiz qué es lo que está haciendo Python. Comente la función num_digitos siguiendo estos consejos: casos base, resultados parciales, finales y donde finaliza el programa.
Sucesión de Fibonacci Leonardo de Pisa Inicia con f(0) = 0 y f(1) = 1, y a partir de ahí cada elemento es la suma de los dos anteriores. De forma formal, para todo n en los Naturales. fibonacci(n) fibonacci(0), si n = 0 0 fibonacci(1), si n = 1 1 fibonacci(n), si n >= 2 fibonacci( n - 1) + fibonacci( n - 2) Encontrar: Entradas, salidas, restricciones. Caso base, soluciones parciales, finales, casos de prueba. Hagan una corrida del programa en papel, prestando especial atención a la pila de llamadas.
Sucesión de Fibonacci Leonardo de Pisa Inicia con f(0) = 0 y f(1) = 1, y a partir de ahí cada elemento es la suma de los dos anteriores. De forma formal, para todo n en los Naturales. fibonacci(n) fibonacci(0), si n = 0 0 fibonacci(1), si n = 1 1 fibonacci(n), si n >= 2 fibonacci( n - 1) + fibonacci( n - 2)
Sucesión de Fibonacci Leonardo de Pisa fibonacci(0), si n = 0 0 fibonacci(1), si n = 1 1 fibonacci(n), si n >= 2 fibonacci( n - 1) + fibonacci( n - 2) Encontrar: Entradas, salidas, restricciones. Caso base, soluciones parciales, finales, casos de prueba. Hagan una corrida del programa en papel, prestando especial atención a la pila de llamadas.
Recursive Road Sign CC BY-SA gadl @ Flickr
Ejercicios 4. Hacer una función que cuente las veces que aparece un dígito en un número: >>> cuenta_digito(8486, 8) 2 >>> cuenta_digito(8486, 0) 0
Ejercicios 5. La función Factorial se define como: Haga una función recursiva para resolver el factorial de cualquier número entero positivo. >>> factorial(0) 1 >>>factorial(1) 1 >>>factorial(7) 5040
Ejercicios 6. construya un número nuevo con los dígitos pares de un número recibido como parámetro de la función: >>> pares(486) 486 >>> pares(175043) 4
Ejercicios Piense en el algoritmo y trate de descomponer el problema en otros pequeños Cuales serían? Recuerde hacer validaciones: en este caso el número que recibe la función debe ser entero. En caso de que no se cumpla entonces se debe retornar el mensaje 'Error'
Ejercicios 7. Un número es palíndromo si puede leerse igual de izquierda a derecha o de derecha a izquierda, escriba una función para determinar esta propiedad. Sintaxis: palindromo(numero) salida donde: numero es numero entero positivo y salida debe ser un valor booleano: True o False. >>> palindromo(38583) >>> palindromo(1010010) True False >>> palindromo(2442) >>> palindromo(101) True 'Error' >>> palindromo(4) >>> palindromo(101) True True
Las presentaciones para el curso IC-1800: "Introducción a la Programación" por Ing. En Computación Alajuela se distribuyen bajo una Licencia Creative Commons Atribución-Compartir Igual 3.0 Costa Rica. 21 http://creativecommons.org/licenses/by-sa/3.0/cr/ http://creativecommons.org/licenses/by-sa/3.0/cr/ *La licencia de la presentación no cubre las imágenes utilizadas*
Recursividad Introducción a la programación I semestre, 2017
Recursividad Las reglas fundamentales para resolver problemas recursivos: Definir el caso base (solución trivial) Cuál es la solución que no necesita procesamiento adicional? Me recursive pointing CC SA dnisbet @ Flickr
Recursividad Definir llamadas recursivas (solución de problema más pequeño) Aportar una respuesta parcial (salida) y reducir el tamaño o la complejidad del problema modificando los argumentos con la intensión de que tiendan al caso base. Me recursive pointing CC SA dnisbet @ Flickr
Afinando detalles Volvamos a la función num_digitos(numero) y analicemos de forma crítica e ingenieril: Qué problemas tiene en términos de eficiencia? Qué problemas hay con las validaciones (restricciones)? Ei Ingenier@! Cómo podemos afinar estos detalles? Bad Boss CC NC-SA ErickHerbert @ Flickr Que problemas hay en términos de eficiencia: - siempre se validan las restricciones, (ineficiente en tiempo y consumo de recursos) pues con solo que validemos 1 vez, YA sabemos con toda certeza que los datos de entrada seguirán siendo válidos.
Recursividad eficiente Las reglas fundamentales para resolver problemas recursivos de forma eficiente: La validación de las restricciones generales o casos especiales pueden/deben ser trabajados en la función principal (no recursiva). Este es el punto de entrada a nuestro problema, es ahí donde nos aseguraremos que los datos son correctos.
Recursividad eficiente Las reglas fundamentales para resolver problemas recursivos de forma eficiente: El trabajo pesado puede/debe ser resuelto en una función auxiliar (recursiva) que será invocada por la principal. Este es el núcleo, core o corazón de la solución
def num_digitos2(numero): #se evalúa solo una vez if not isinstance(numero,int): return 'Error01' elif numero == 0: #caso especial... return 1 else: return num_digitos2_aux(abs(numero)) def num_digitos2_aux(numero): if(numero == 0): #caso base return 0 else: #función recursiva con argumentos 'mas pequeños' return 1 + num_digitos2_aux(numero //10)
Cómo se ejecuta num_digitos2? >>> num_digitos2(-4925) num_digitos2_aux(4925) # abs(-4925) = 4925 1 + num_digitos2_aux(492) # 4925 // 10 = 492 1 + 1 + num_digitos2_aux(49) # 492 // 10 = 49 1 + 1 + 1 + num_digitos2_aux(4) # 49 // 10 = 4 1 + 1 + 1 + 1 + num_digitos2_aux(0) # 4 // 10 = 0 1 + 1 + 1 + 1 + 0 # numero = 0 >>> 4 >>> num_digitos2(0) >>> 1 # caso especial
Finite staircase CC BY-SA gadl @ Flickr http://www.flickr.com/photos/gadl/253426762/in/set72157594316295785 El camino para comprender recursión es largo, inclusive puede verse empinado, con unas gradas eternas, pero habrá una caso base que sea subir una grada con el pie derecho y comenzar a caminar con el izquerdo.
Consejos... Identifique el o los casos más sencillos a resolver. (casos base) Cual es la condición que debería llevarnos al caso base? Qué debe retornar ese caso? los resultados (return) serán resultados finales o parciales? Potencias: X (elevado a la )3 = x * x * x - X elevado a la 1 es X -X0 Hagamos un algoritmo para entender la recursividad: - caso base: entendemos recursividad - sino seguir haciendo práctica
Consejos... Busque la forma de hacer el problema más pequeño Hasta ahora los problemas nos pedían reducir el número quitándole dígitos, pero no siempre será así. Identifique casos de prueba que incluyan a los casos sencillos y otros complejos y evalúe utilizando papel y lápiz qué es lo que está haciendo Python. Comente la función num_digitos siguiendo estos consejos: casos base, resultados parciales, finales y donde finaliza el programa. Potencias: X (elevado a la )3 = x * x * x - X elevado a la 1 es X -X0 Hagamos un algoritmo para entender la recursividad: - caso base: entendemos recursividad - sino seguir haciendo práctica
Sucesión de Fibonacci Leonardo de Pisa Inicia con f(0) = 0 y f(1) = 1, y a partir de ahí cada elemento es la suma de los dos anteriores. De forma formal, para todo n en los Naturales. fibonacci(n) fibonacci(0), si n = 0 0 fibonacci(1), si n = 1 1 fibonacci(n), si n >= 2 fibonacci( n - 1) + fibonacci( n - 2) Encontrar: Entradas, salidas, restricciones. Caso base, soluciones parciales, finales, casos de prueba. Hagan una corrida del programa en papel, prestando especial atención a la pila de llamadas. Acá el video: Nature by NumberskkGeOWYOFoA.mp4
Sucesión de Fibonacci Leonardo de Pisa Inicia con f(0) = 0 y f(1) = 1, y a partir de ahí cada elemento es la suma de los dos anteriores. De forma formal, para todo n en los Naturales. fibonacci(n) fibonacci(0), si n = 0 0 fibonacci(1), si n = 1 1 fibonacci(n), si n >= 2 fibonacci( n - 1) + fibonacci( n - 2) Acá el video: Nature by NumberskkGeOWYOFoA.mp4
Sucesión de Fibonacci Leonardo de Pisa fibonacci(0), si n = 0 0 fibonacci(1), si n = 1 1 fibonacci(n), si n >= 2 fibonacci( n - 1) + fibonacci( n - 2) Encontrar: Entradas, salidas, restricciones. Caso base, soluciones parciales, finales, casos de prueba. Hagan una corrida del programa en papel, prestando especial atención a la pila de llamadas. Acá el video: Nature by NumberskkGeOWYOFoA.mp4
Recursive Road Sign CC BY-SA gadl @ Flickr http://www.flickr.com/photos/gadl/272562772/ Cuidado: camino estrecho... la recursividad tiende a ser un embudo para mucha gente al aprender a programar
Ejercicios 4. Hacer una función que cuente las veces que aparece un dígito en un número: >>> cuenta_digito(8486, 8) 2 >>> cuenta_digito(8486, 0) 0
Ejercicios 5. La función Factorial se define como: Haga una función recursiva para resolver el factorial de cualquier número entero positivo. >>> factorial(0) 1 >>>factorial(1) 1 >>>factorial(7) 5040
Ejercicios 6. construya un número nuevo con los dígitos pares de un número recibido como parámetro de la función: >>> pares(486) 486 >>> pares(175043) 4 Acá hay dos problemas 1. dado un dígito saber si es par o no. (que se podría generalizar para saber si un número es par o no). es_par() un dígito //2, si el residuo es cero quierec decir que es divisible exacto entre dos 2. crear el nuevo número, utilizando un factor
Ejercicios Piense en el algoritmo y trate de descomponer el problema en otros pequeños Cuales serían? Recuerde hacer validaciones: en este caso el número que recibe la función debe ser entero. En caso de que no se cumpla entonces se debe retornar el mensaje 'Error' Acá hay dos problemas 1. dado un dígito saber si es par o no. (que se podría generalizar para saber si un número es par o no). es_par() un dígito //2, si el residuo es cero quierec decir que es divisible exacto entre dos 2. crear el nuevo número, utilizando un factor
Ejercicios 7. Un número es palíndromo si puede leerse igual de izquierda a derecha o de derecha a izquierda, escriba una función para determinar esta propiedad. Sintaxis: palindromo(numero) salida donde: numero es numero entero positivo y salida debe ser un valor booleano: True o False. >>> palindromo(38583) >>> palindromo(1010010) True False >>> palindromo(2442) >>> palindromo(101) True 'Error' >>> palindromo(4) >>> palindromo(101) True True
Las presentaciones para el curso IC-1800: "Introducción a la Programación" por Ing. En Computación Alajuela se distribuyen bajo una Licencia Creative Commons Atribución-Compartir Igual 3.0 Costa Rica. 21 http://creativecommons.org/licenses/by-sa/3.0/cr/ http://creativecommons.org/licenses/by-sa/3.0/cr/ *La licencia de la presentación no cubre las imágenes utilizadas*