9 Expresiones racionales
|
|
|
- Juan Antonio José Espejo Olivera
- hace 9 años
- Vistas:
Transcripción
1 Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #9: viernes, 10 de junio de Epresiones racionales 9.1 Fracciones equivalentes, divisor común mayor, múltiplo común menor Recuerde que en capítulos anteriores habíamos trabajado con fracciones de enteros. Más aún, en esos capítulos demostramos que dada un fracción a/b, b 0, eisten una cantidad infinita de fracciones que son equivalentes a a/b, i.e. a b a k b k, con k 0. De la misma manera, decimos que una epresión racional, P ()/Q() con P (), Q() polinomios es equivalente a una epresión racional de la forma con k() 0. Ejemplo Algunos ejemplos. P ()k() Q()k(), k(), con k() 0. 2 k() k(), con k() 0. 2 k() 3. Halle una fracción con denominador equivalente a la fracción ( 2)( 3). Por lo tanto, ( + 3)( 3 ( 2)( 3) Antes de continuar con el tema de epresiones racionales, es una buena idea repsar los conceptos de múltiplo común menor (MCM) y divisor común mayor (DCM) de dos o más epresiones. 1
2 Definición El múltiplo común menor de dos naturales a y b es el número natural c 0 tal que 1. a y b dividen a c, 2. c es el número positivo menor divisible por ambos números. Ejemplo Note que MCM(24, 80) 240. De manera similar, podemos definir el MCM de dos polinomios. Definición El múltiplo común menor de dos polinomios P () y Q() es el polinomio M() tal que 1. P () y Q() son factores de M() (lo dividen), 2. M() es el polinomio con grado menor divisible por ambos polinomios. Ejemplo Algunos ejemplos. 1. Halle MCM( 2 1, 2 ). Respuesta: De forma análoga a los enteros, escribimos 2 1 y 2 como producto de factores irreducibles (primos): 2 1 ( + 1)( 1) 2 ( 1). Escogemos los factores primos diferentes que aparecen en ambas factorizaciones y elegimos la potencia mayor que aparece en una o otra factorización. Por lo tanto, MCM( 2 1, 2 ) ( 1)( + 1). Observe que MCM( 2 1, 2 ) ( 1)( + 1) ( 2 1), por lo tanto 2 1 divide a ( 1)(+1). También, MCM( 2 1, 2 ) ( 1)(+1) ( 2 )( + 1), por lo tanto 2 divide a ( 1)( + 1). 2. Halle MCM(6 3, 9 2 ) Escogemos los factores primos diferentes que aparecen en ambas factorizaciones y elegimos la potencia mayor que aparece en una o otra factorización. Por lo tanto, MCM(6 3, 9 2 )
3 3. Halle MCM(24 2, 16y) y 2 4 y. Por lo tanto, MCM(24 2, 16y) y 48 2 y. 4. Halle MCM( , 2 9, ). Resumen: Por lo tanto, ( 3) ( 3)( + 3) ( 3)( 1). MCM( , 2 9, ) ( 3) 2 ( + 3)( 1) Para hallar el múltiplo común menor de dos polinomios, haga lo siguiente: 1. Escriba cada epresión como un producto de potencias de factores irreducibles. 2. Selecciona los factores diferentes que aparecen en las factorizaciones de las epresiones. 3. Toma la máima potencia de cada factor diferente. 4. El múltiplo común menor es el producto de las potencias mayores de los factores diferentes. Ahora trabajaremos con el divisor común de mayor de polinomios. Primero refrescaremos la definición que tenemos para enteros. Definición El divisor común mayor (DCM) de a, b Z (al menos uno de ellos distinto de cero) es el entero positivo d tal que 1. d divide a a y b, 2. d es el entero positivo mayor que divide a ambos. Ejemplo Note que DCM(144, 120) 24. De manera similar, podemos definir el DCM de dos polinomios. 3
4 Definición El divisor común mayor de dos polinomios P () y Q() es el polinomio D() tal que 1. D() es factor de (divide a) P () y Q() 2. D() es el polinomio con grado mayor que divide a ambos polinomios. Ejemplo Algunos ejemplos. 1. Halle el divisor común de 2 1 y 2. Respuesta: De forma análoga a los enteros, escribimos 2 1 y 2 como producto de factores irreducibles (primos): 2 1 ( + 1)( 1) 2 ( 1). Escogemos los factores comunes en ambas factorizaciones y elegimos la potencia menor que aparece en una o otra factorización. Por lo tanto, DCM( 2 1, 2 ) Halle DCM(18 4 y 5, 30 2 y 7 ) y y y y 7. Por lo tanto, DCM(18 4 y 5, 30 2 y 7 ) y y Halle DCM( , 2 9, ) ( 3) ( 3)( + 3) ( 3)( 1). Por lo tanto, DCM( , 2 9, ) 3. Resumen: Para hallar el divisor común mayor de dos polinomios, haga lo siguiente: 4
5 1. Escriba cada epresión como un producto de potencias de factores irreducibles. 2. Selecciona los factores que tienen en común ambas factorizaciones. 3. Toma la menor potencia de cada uno de los factores comunes. 4. El múltiplo común menor es el producto de estas potencias. Simplificación de epresiones racionales En el capítulo 2 (lectura del 1 de junio) dijimos que una fracción de números enteros se encuentra en su forma más simple cuando el numerador y el denominador son relativamente primos, esto es, cuando el DCM de ambos es 1. De forma análoga, decimos que una epresión racional de la forma P ()/Q() con P () y Q() polinomios (Q() 0) está en su forma más simple cuando P () y Q() son relativamentes primos, esto es, cuando DCM(P (), Q()) 1. Ejemplo Algunos ejemplos. 1. Simplifica la epresión 6a2 b 3ab 2. 6a 2 b 3ab 2 3 a a b 2 3 a b b 2a b. 2. Simplifica la epresión 123 y 4y y 4y 22 3 y 4 y Simplifica la epresión ( 2) Simplifica la epresión ( 3)( 1) ( 3)( + 3)
6 5. Simplifica la epresión ( + 3)( + 2) ( 3)( 5) Concluimos que Simplifica la epresión está en su forma más simple. 3 1 ( 1)( ) 1 2 (1 )(1 + ) ( 1)( ) ( 1)(1 + ) Suma y resta de epresiones racionales De manera similar al caso de fracciones de enteros, trabajamos primero el caso cuando tenemos dos epresiones racionales homogeneas. Sean a(), b(), c() polinomios con b() 0. Entonces, a() b() ± c() b() Ejemplo Algunos ejemplos , si 5. a() ± c(). d() Suma y resta de epresiones racionales no homogeneas Para sumar o restar dos epresiones racionales no homogéneas, podemos encontrar epresiones racionales homogéneas equivalentes a las epresiones a considerar y luego sumar o restar utilizando la regla anterior. 6
7 Ejemplo Algunos ejemplos MCM(2 2, 4) 4 2. Entonces, MCM( 2 +, 4 + 4) 4( + 1) (4 + 4). Entonces, ( + 1) 3 4( + 1) 4( + 1) 1 4( + 1) ( 2) También podemos utilizar la siguiente fórmula a() b() ± c() d() Ejemplo Algunos ejemplos a()d() ± b()c(). b()d() 7
8 (4) + 22 (1) (2 2 ) (6 + ) 2(4 2 ) (4 + 4) 3(2 + ) ( 2 + )(4 + 4) ( 2 + )(4 + 4) 2 + ( 2 + )(4 + 4) Multiplicación y división de epresiones racionales La multiplicación y la división de epresiones racionales se basan en el concepto de multiplicación y división de fracciones que analizamos anteriormente. En particular, si a(), b(), c(), d() son polinomios con, entonces a() b() a() b() a() b() a() b() a()c(), con b() 0, d() 0. b()d() a() b() d() c() a()d(), con b() 0, c() 0, d() 0. b()c() Ejemplo Algunos ejemplos y y y 53 y y 4 y ( + 2)( + 3) ( + 1)( + 4) y 5 3y 3 2y 3y 5 (3)(3y) (2y)5 9y 10y. 8
9 Ahora, note que Concluimos que ( ) ( + 6)( 3) ( ) ( + 6)( 3) ( 2)( 3) ( + 6)( 3) 5( 2) Ecuaciones racionales Se dice que una ecuación es racional si se puede escribir de la forma P () Q() 0, para P () y Q() polinomios. Resolver una ecuación racional sobre los números reales consiste en hallar el conjunto de estos números que hacen cierta la ecuación. Para resolver la ecuación P () Q() 0, debemos recordar que una fracción es cero si y solo si su numerador es cero y su denominador es diferente de cero. Para resolver la ecuación, tenemos que hallar los números reales tales que P () 0 y Q() 0. Ejemplo Algunos ejemplos. 1. Halle el conjunto solución de la ecuación Respuesta: Como el denominador nunca es cero, entonces el conjunto solución está dado por aqellos reales para los cuales el numerador sea cero. Por lo tanto, el conjunto solución está dado por {3}. 2. Halle el conjunto solución de la ecuación
10 Respuesta: Primero tenemos que escribir la ecuación en la forma Para esto, note que P () Q() ( + 2) Ahora, note que esta ecuación es cierta cuando y Resolvemos primero Note que El conjunto solución está dado por { 6}. 3. Halle el conjunto solución de la ecuación Respuesta: Primero tenemos que escribir la ecuación en la forma Para esto, note que P () Q()
11 Note que esta ecuación es cierta cuando 3 0 y Concluimos que el conjunto solución está dado por {3}. Otro método para resolver ecuaciones racionales Otro método para resolver ecuaciones racionales es lo que se conoce como el proceso de limpiar el denominador. Eplicaremos este proceso con un ejemplo. Suponga que quiere resolver la ecuación Note que si multiplicamos toda la ecuación por 2, el cual es el denominador común mayor de todas las epresiones racionales, entonce obtenemos , la cual es equivalente a Por lo tanto, obtenemos la ecuación Observe que ( 3)( + 1). Por lo tanto, nuestra ecuación se puede escribir como ( 3)( + 1) 0. Concluimos que el conjunto solución es { 1, 3}. Siempre es una buena idea verificar que en realidad no cometimos un error. Note que si 1, entonces, y si 3, entonces ( 1) Por lo tanto, es cierto que { 1, 3} es el conjunto solución a la ecuación Ejemplo Algunos ejemplos
12 1. Halle el conjunto solución de la ecuación Respuesta: Observe que el denominador mayor común de las epresiones racionales es 3( + 1). Multiplique toda la ecuación por 3( + 1) para obtener 3( + 1) 3 2 3( + 1) Concluimos que el conjunto solución está dado por {8/7}. 2. Halle el conjunto solución de la ecuación Respuesta: Observe que el denominador mayor común de las epresiones racionales es 2 1. Multiplique toda la ecuación por 2 1 para obtener ( 2 7 1) 1 6 (2 1) 2 1 (2 1) 5 7 ( + 1)( 1) El polinomio factoriza como (5 + 3)( 2), por lo tanto, tenemos la ecuación (5 + 3)( 2) 0. Concluimos que o 0 y por lo tanto, el conjunto solución está dado por { 3/5, 2}. 3. Halle el conjunto solución de la ecuación Respuesta: Multiplique toda la ecuación por 3 para obtener ( 3) ( 3) Esto ultimo es una contradicción, por lo tanto, no tenemos soluciones. En otras palabras, el conjunto solución está dado por. 12
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual
Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023
Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #8: jueves, 9 de junio de 2016. 8 Factorización Conceptos básicos Hasta
Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales.
Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Índice de contenido Polinomios y fracciones algebraicas: nociones básicas...2 Qué es y qué no es un polinomio...2
TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia
Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE Generalización del concepto de exponentes
Programa Inmersión, Verano 201 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 001 y MATE 02 Clase #: lunes, de junio de 201. Exponentes.1 Generalización del concepto de exponentes
1 Conjuntos y propiedades de los números naturales
Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #1: martes, 31 de mayo de 2016. 1 Conjuntos y propiedades de los números
Bloque 1. Aritmética y Álgebra
Bloque 1. Aritmética y Álgebra 3. Los números racionales 1. Los números racionales o fraccionarios Fracción es una o varias partes iguales en que dividimos la unidad. Las fracciones representan siempre
Recuperado de FRACCIONES
Recuperado de http://es.wikipedia.org/wiki/fracci%c%bn FRACCIONES F r a c c i o n e s P á g i n a abril 06. Este Módulo Educativo fue preparado por la Prof. Ileana Vallejo y autorizado por Huertas College.
Expresiones Algebraicas Racionales en los Números Reales
en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido cional nales Algebraica Racional ales : Contenido Discutiremos: qué es una expresión algebraica racional : Contenido
Operaciones de números racionales
Operaciones de números racionales Yuitza T. Humarán Martínez Adapatado por Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo El conjunto de los números racionales consiste
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
4 ESO. Mat B. Polinomios y fracciones algebraicas
«El que pregunta lo que no sabe es ignorante un día. El que no lo pregunta será ignorante toda la vida» 4 ESO Mat B Polinomios y fracciones algebraicas ÍNDICE: 0. EL LENGUAJE SIMBÓLICO O ALGEBRAICO 1.
Expresiones algebraicas
Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos
El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio.
1 P() 8 El polinomio es el producto de tres factores, siendo dos de ellos los correspondientes a las raíces =1 = - Halla mediante dos divisiones consecutivas por el método de Ruffini el tercer factor Comprobar
1. Expresiones polinómicas con una indeterminada
C/ Francisco García Pavón, 16 Tomelloso 1700 (C. Real) Teléfono Fa: 96 51 9 9 Polinomios 1. Epresiones polinómicas con una indeterminada 1.1. Los monomios Un monomio es una epresión algebraica con una
primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en
Unidad 1. Conjuntos de números II. Operaciones y expresiones 1. Operaciones con números racionales. Las operaciones con números racionales las estamos realizando desde los grados 12 primarios. 1 + 2 =
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página 75 PRACTICA Operaciones con polinomios Efectúa las operaciones y simplifica las siguientes epresiones: ( ) ( ) ( ) ( ) ( ) 6( ) 4( 4) ( ) ( 5) ( ) ( ) ( ) 9 ( 4 ) 9 4 4 4 5 8 ( ) ( ) 6( ) 6
Tema 3. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
Tema 3. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.
FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES
FUNCIONES REALES DE UNA VARIABLE Índice Presentación... 3 Conjunto de los números reales... 4 Los intervalos... 6 Las potencias... 7 Los polinomios... 8 La factorización de polinomios (I)... 9 La factorización
Indica el coeficiente, parte literal y grado de estos monomios.
Polinomios EJERCICIOS 001 Indica el coeficiente, parte literal y grado de estos monomios. a) y z 4 b) 5b c c) 15 y d) y 5 a) Coeficiente: Parte literal: y z 4 Grado: + + 4 9 b) Coeficiente: 5 Parte literal:
FRACCIONES. Profesora: Charo Ferreira
FRACCIONES - Definición: La fracción puede tener varias interpretaciones, todas ellas aplicables y correctas: 1. Fracción es una expresión que indica una cantidad que expresa una o varias unidades no completas.
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE º E.S.O. (ª parte) NÚMEROS ENTEROS.-) Realiza las operaciones siguientes () (0) (-) ( ) (-) ( -) (-) ( -) (-) () - - - -0 - - - ( -) ( ) ( -) ( ) ( ) ( - ) ( - ) (
Expresiones racionales. MATE 0008 Departamento de Matemáticas UPRA
Epresiones racionales MATE 0008 Departamento de Matemáticas UPRA EXPRESIONES RACIONALES En las matemáticas, la palabra racional se asocia a epresiones con forma de fracción; o sea que tienen un numerador
UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico.
UNIDAD 1. NÚMEROS. (Página 22 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. Clasificación de los números Números naturales son aquellos que utilizamos para contar. N = 0,1,2,,,5,6, Números
4 Conjunto de los números reales
Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #4: viernes, 3 de junio de 2016. 4 Conjunto de los números reales 4.1
Fracción: Una fracción consta de dos números enteros dispuestos de esta forma:
TEMAS 3 Y 4: FRACCIONES Y DECIMALES Fracción: Una fracción consta de dos números enteros dispuestos de esta forma: a es el numerador e indica las partes que se toman. b es el denominador e indica las partes
TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES
TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES Dado un polinomio P(x) y un número real a, el resto de la división de P(x) entre (x a) es P(a) (es decir, el resultado de sustituir el valor de x por
Notas teóricas. a) Suma y resta Se agrupan los monomios del mismo grado y se opera.
MATEMÁTICAS EJERCICIOS RESUELTOS DE POLINOMIOS POLINOMIOS A. Introducción Teoría B. Ejercicios resueltos B.. Sumas y restas B.. Multiplicación B.3. División B.4. Sacar factor común B.5. Simplificar fracciones
Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-3-1
Capítulo 5 Los números reales y sus representaciones 2012 Pearson Education, Inc. Diapositiva 5-3-1 Capítulo 5: Los números reales y sus representaciones 5.1 Números reales, orden y valor absoluto 5.2
Polinomios y Fracciones Algebraicas
Polinomios y Fracciones Algebraicas UNIDAD DIDÁCTICA 2 1 o de Bachillerato CCSS Diana Barredo Blanco 1 1 Profesora de Matemáticas 1 o Bachiller (CCSS) 1. POLINOMIOS 1. POLINOMIOS Polinomio: Un polinomio
FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.
FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto
UNIDAD 2 Polinomios y fracciones algebraicas
UNIDAD Polinomios y fracciones algebraicas.. Operaciones básicas con polinomios. Realiza las siguientes sumas y restas: a) ( + + ) + ( 4 + + ) b) ( 4 + + ) + ( 4 + + ) c) ( 4 + + ) (5 + + ) d) ( + + 6)
Tema 6: Fracciones. Fracciones
Fracciones Un quebrado o número fraccionario se expresa por dos números naturales, el denominador que indica en cuántas partes se ha dividido la unidad y el numerador, que indica cuántas partes de esta
Utilizar correctamente las fracciones aritméticas y algebraicas en la simplificación de expresiones y en la solución de problemas.
DEPARTAMENTO DE CIENCIAS MATEMÁTICAS Iniciación al Cálculo Fracciones aritméticas y algebraicas Presentación Para comprender la matemática se hace necesario ser conscientes de la utilidad de los números
Tema 2. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Polinomios.... Definiciones.... Operaciones con polinomios.... Factorización de un polinomio.... Teorema del resto. Criterio de divisibilidad por -a.... Propiedades
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción
Guía de estudio Operaciones con fracciones Unidad A: Clase 18
Guía de estudio Operaciones con fracciones Unidad A: Clase 18 Camilo Ernesto Restrepo Estrada, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1. 8. Operaciones con fracciones Principio fundamental
LECTURA Nº 12: MÉTODOS DE FACTORIZACIÓN
Tenemos un cuadrado cuyos lados miden ( + + ) = + por lo que el área sería: Largo. ancho = ( + ).( + ) = ( + ) Pero ya se conoce el área total que es 9 unidades cuadradas Entonces: ( + ) = 9 donde despejando
CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García
INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica
Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023
Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #3: jueves, 2 de junio de 2016. 3 Decimales 3.1 Sistema de numeración
Número que expresa parte de un todo. Toda fracción se representa como el cociente de dos números enteros en la forma con q 0
Fracciones Fracciones Número que expresa parte de un todo. Toda fracción se representa p como el cociente de dos números enteros en la forma con q 0 numerador denominador p q Propiedad fundamental de las
Polinomios III. I. Fracciones algebraicas con polinomios. 1. Simplificación de fracciones algebraicas. 2. Amplificación de fracciones algebraicas
Polinomios III Finalmente veremos en esta última ficha lo correspondiente a fracciones terminando de esta manera con los polinomios. I. Fracciones algebraicas con polinomios Definiremos como una fracción
Proyecto Guao ADICIÓN Y SUSTRACCIÓN DE FRACCIONES ALGEBRAICAS
ADICIÓN Y SUSTRACCIÓN DE FRACCIONES ALGEBRAICAS Un modelo a escala de un auto de carreras está en proporción 1:x a un auto de carreras real. La longitud del modelo es unidades y la longitud del automóvil
1. GENERALIDADES SOBRE LOS POLINOMIOS.
GENERALIDADES SOBRE LOS POLINOMIOS Funciones polinómicas LAS DEFINICIONES Sea p la función definida por: p ( ) = 2( 2 ) + 2 ( 2 ) + 2 2, p es una función de R en R Y para todo real, se tiene p ( ) = 2
P O L I N O M I O S Y E C U A C I O N E S. A P L I C A C I O N E S
P O L I N O M I O S Y E C U A C I O N E S. A P L I C A C I O N E S. R E P A S O D E P O L I N O M I O S Un polinomio en la variable es una epresión del tipo P()=a n n +a n- n- + +a +a 0, donde n es un
+ 5x. Objetivos Simplificar expresiones algebraicas racionales. Sumar, restar, multiplicar y dividir expresiones algebraicas racionales.
COLEGIO SECUNDARIO LA PLATA Colegio Secundario La Plata Educar para un mundo mejor Epresiones algebraicas racionales Objetivos Simplificar epresiones algebraicas racionales Sumar, restar, multiplicar y
x a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente.
or lo tanto: para determinar epresiones a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente. Apliquemos este resultado
6. ECUACIONES POLINOMICAS Y RACIONALES
6. ECUACIONES POLINOMICAS Y RACIONALES En las unidades anteriores hemos estudiado las ecuaciones de primer y segundo grado. a b 0 a 0 a b c 0 a 0 Estas son casos particulares de ecuaciones de carácter
INSTITUCION EDUCATIVA DISTRITAL SIERRA MORENA
INSTITUCION EDUCATIVA DISTRITAL SIERRA MORENA Por una escuela activa, viva, planeada y proyectada al siglo XXI FEPARTAMENTO; MATEMATICAS SEDE: A JORNADA: FIN DE SEMANA Ciclo; _ II_ Asignatura; MATEMATICAS
Ecuaciones lineales en una variable. Prof. Anneliesse Sánchez Adaptada por Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo
Ecuaciones lineales en una variable Prof. Anneliesse Sánchez Adaptada por Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Qué es una ecuación? Una ecuación es una oración que expresa la igualdad
CURSO PROPEDÉUTICO 2017
CURSO PROPEDÉUTICO 2017 1 FUNDAMENTOS DE MATEMÁTICAS OBJETIVO Formar estudiantes altamente capacitados, que cuenten con competencias y conocimientos para construir y utilizar técnicas que contribuyan a
EJERCICIOS. 7.3 Valor de un polinomio para x = a. Por lo tanto: para determinar expresiones
or lo tanto: para determinar epresiones a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente. Apliquemos este resultado
POLINOMIOS. 1. Si P(x)= 4x 3-3x 2 +1 y Q(x)= 3x 2-3x+2, opera: a) P-Q b) 3P+2Q c) P+Q d) P.Q. b) 3P+2Q= 12x 3-3x 2-6x+7. Sol: a) P-Q= 4x 3-6x 2 +3x-1
POLINOMIOS 1. Si P()= +1 y Q()= +, opera: a) PQ b) P+Q c) P+Q d) P.Q Sol: a) PQ= 6 +1 b) P+Q= 1 6+7 c) P+Q= + d) P.Q= 1 5 1 +17 +. Si P()= +1, Q()= +1 y R()= 6 +61, opera: a) P+Q; b) PQ+R; c) PR; d) P.QR;
Tema 2 Algebra. Expresiones algebraicas Índice
Tema 2 Algebra. Expresiones algebraicas Índice 1. Expresiones algebraicas comunes... 2 2. Valor numérico de una expresión algebraica... 2 3. Tipos de expresiones algebraicas... 2 4. Monomios... 2 4.1.
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x
TEMA: 5 ÁLGEBRA 3º ESO
TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x
Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca
Tema Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca.1 De las siguientes operaciones, cuál no permite operar cualquier par de números naturales para obtener un resultado natural? a) La suma.
Chapter Audio Summary for McDougal Littell Pre-Algebra
Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter 5 Rational Numbers and Equations En el capítulo 5 aprendiste a escribir, comparar y ordenar números racionales. Después aprendiste a sumar
2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1)
. Un polinomio con raíces únicas, 0, 2, 2, 3 es: a) 4 +4 3 + 2 6 b) 4 +6 3 +9 2 42 c) 5 6 4 +9 3 +4 2 2 d) 5 +6 4 +9 3 4 2 2 e) 4 4 3 + 2 +6 2. Calcula cociente y resto en la siguiente división de polinomios:
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.
OBJETIVO 1 RECONOCER LAS FORMAS DE REPRESENTACIÓN QUE TIENE UNA FRACCIÓN NOMBRE: CURSO: FECHA: Representación en la recta numérica.
OBJETIVO RECONOCER LAS ORMAS DE REPRESENTACIÓN QUE TIENE UNA RACCIÓN NOMBRE: CURSO: ECHA: RACCIONES Una fracción está compuesta por un numerador y un denominador. Denominador " Partes en que se divide
CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.
CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad
EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS
EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS
TEMA 2. Números racionales. Teoría. Matemáticas
1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden
TEMA 2. Números racionales. Teoría. Matemáticas
1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden
EXPRESIONES ALGEBRAICAS RACIONALES
Epresiones Algebraicas Racionales EXPRESIONES ALGEBRAICAS RACIONALES Llamaremos epresiones algebraicas racionales a las de la forma A() donde A() y B() son B() polinomios de variable, y B() 0. Por ejemplo,
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 1º Año Ciclo Básico de Secundaria Teoría Nº 2 Segundo Trimestre
CONJUNTO DE LOS NÚMEROS ENTEROS Los números enteros están formados por: los números naturales (o enteros positivos y el cero) y los números negativos. El cero no tiene signo, no es ni positivo ni negativo.
Solución: a) Suprimiendo los factores comunes en numerador y denominador, resulta:
Simplifica las siguientes epresiones: 0y 8 y z 8( z + )( ) + Suprimiendo los factores comunes en numerador y denominador resulta: 5y z Sacando factor común en el denominador resulta: 8( + )( ) ( ) ( +
Funciones polinómicas
Funciones polinómicas Footer Text 4/23/2015 1 Funciones Polinómicas La ecuación general de una función polinómica de grado n con coeficientes reales está dada por f(x) = a n x n + a n-1 x n-1 + + a 1 x
EXPRESIONES RACIONALES
EXPRESIONES RACIONALES a El conjunto de las fracciones b, donde a b son enteros (0, ±1, ±, ±, ) b 0, se le conoce como los números racionales. En matemática, la palabra racional se asocia a epresiones
4º ESO ACADÉMICAS POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS
POLINOMIOS 1.- POLINOMIOS Una epresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta, multiplicación, división y potenciación). 1 t Ejemplo:
ECUACIONES E INECUACIONES.
CAPÍTULO 3 ECUACIONES E INECUACIONES www.mathspace.jimdo.com [email protected] 3.1. ECUACIONES Una ecuación es una igualdad donde por lo menos hay un número desconocido, llamado incógnita o variable,
ECUACIONES EN Q (NÚMEROS RACIONALES)
Echa un vistazo a esta situación. ECUACIONES EN Q (NÚMEROS RACIONALES) El domingo, Leonardo caminó 4 unidades. El lunes, Leonardo caminó un tercio de lo que caminó el martes. El caminó un total de 12 unidades
RADICACIÓN EN LOS REALES
RADICACIÓN EN LOS REALES La raíz n ésima de un número real es otro número real tal que: n a b si y solo si b n Donde el signo se llama radical, n es el índice, a es el radicando y b es la raíz. En la radicación
3.5 NÚMEROS COMPLEJOS
64 CAPÍTULO Funciones polinomiales y racionales.5 NÚMEROS COMPLEJOS Operaciones aritméticas con números complejos Raíces cuadradas de números negativos Soluciones complejas de ecuaciones cuadráticas Vea
TEMA Nº 1. Conjuntos numéricos
TEMA Nº 1 Conjuntos numéricos Aprendizajes esperados: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales
Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =
1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite
UNIDAD Deberás recordar. Veamos algunos ejemplos de cómo operar con estos números:
Pág. 1 de Las operaciones con números positivos y negativos Veamos algunos ejemplos de cómo operar con estos números: + + 6 2 1 + 4 = + + 6 + 4 2 1 = = +( + 6 + 4) ( + 2 +1) = = +1 8 = + ( + 4 6) + 4 +
I CICLO COMÚN MATEMÁTICAS INBAC UNIDAD DIDÁCTICA #2. Suma y resta de fracciones de igual denominador
UNIDAD DIDÁCTICA #2 INDICE PÁGINA Suma y resta de fracciones de igual denominador -----------------------------------------------2 Resta de fracciones de igual denominador ---------------------------------------------------------3
Ámbito Científico y Tecnológico. Repaso de números enteros y racionales
Ámbito Científico y Tecnológico. Repaso de números enteros y racionales 1 Prioridad de las operaciones Si en una operación aparecen sumas, o restas y multiplicaciones o divisiones, el resultado varía según
Contenido 1. Definición Tipos de fracciones Fracción igual a la unidad 9 4. Fracción propia Fracción impropia Frac
FRACCIÓN Contenido 1. Definición... 3 2. Tipos de fracciones..... 8 3. Fracción igual a la unidad 9 4. Fracción propia... 10 5. Fracción impropia... 11 6. Fracciones decimales... 14 7. Fracciones equivalentes...
1. dejar a una lado de la igualdad la expresión que contenga una raíz.
1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar
NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva
NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide
Expresiones algebraicas
Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas
S2: Polinomios complejos
S: Polinomios complejos Un polinomio complejo de grado n es un polinomio de la forma: p x = a 0 + a 1 x + a x + + a n x n Donde los a i C se llaman coeficientes y a n 0. Observa que como R C los coeficientes
FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.
-PA-0 FACTORIZACION V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto de dos de sus divisores. Ejemplo: Factoriza 0 en dos de sus divisores :, es decir 0 = Y
Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta
Centro Asociado Palma de Mallorca Tutor: Antonio Rivero Cuesta 2.1 De las siguientes operaciones, cuál no permite operar cualquier par de números naturales para obtener un resultado natural? a) La suma.
10.4 Sistemas de ecuaciones lineales
Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 001 y MATE 02 Clase #11: martes, 14 de junio de 2016. 10.4 Sistemas de ecuaciones lineales
UNIDAD 2.- Polinomios (tema 2 del libro)
UNIDAD.- Polinomios tema del libro). OPERACIONES CON POLINOMIOS n Un monomio en la indeterminada es toda epresión de la forma a donde a se llama coeficiente y n grado del monomio. Dos monomios se dicen
UNIDAD 3. Fracciones algebraicas. Sistemas de Ecuaciones Lineales
Matemática UNIDAD 3. Fracciones algebraicas. Sistemas de Ecuaciones Lineales Medio GUÍA N 1 FRACCIONES ALGEBRAICAS Una expresión racional o fracción algebraica es un cuociente de polinomios en una o más
FACTORIZACIÓN GUÍA CIU NRO:
República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental Politécnica de la Fuerza Armada Núcleo Caracas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático
Descomposición factorial. Suma o diferencia de cubos perfectos. P r o c e d i m i e n t o
103 Descomposición factorial Suma o diferencia de cubos perfectos P r o c e d i m i e n t o 1. Se abren dos paréntesis 2. En el primer paréntesis se escribe la suma o la diferencia, según el caso, de las
Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.
Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones
Los Conjuntos de Números
Héctor W. Pagán Profesor de Matemática Mate 40 Debemos recordar.. Los conjuntos de números 2. Opuesto. Valor absoluto 4. Operaciones de números con signo Los Conjuntos de Números Conjuntos importantes
FRACCIONES. Como expresiones numéricas las fracciones tienen un valor numérico que se halla dividiendo el numerador entre el denominador.
. Qué son las fracciones? FRACCIONES Las fracciones son epresiones numéricas que constan de dos partes Denominador Epresa el número de partes ente las que divido la unidad. Numerador Epresa el número de
