3.5 NÚMEROS COMPLEJOS
|
|
|
- Santiago Zúñiga Giménez
- hace 9 años
- Vistas:
Transcripción
1 64 CAPÍTULO Funciones polinomiales y racionales.5 NÚMEROS COMPLEJOS Operaciones aritméticas con números complejos Raíces cuadradas de números negativos Soluciones complejas de ecuaciones cuadráticas Vea en la nota acerca de Cardano (página 74) un ejemplo de cómo se usan números complejos para hallar soluciones reales de ecuaciones con polinomios. En la Sección.5 vimos que si el discriminante de una ecuación cuadrática es negativo, la ecuación no tiene solución real. Por ejemplo, la ecuación x 4 0 no tiene solución real. Si intentamos resolver esta ecuación, obtenemos x 4, por lo que x 4 Pero esto es imposible, porque el cuadrado de cualquier número real es positivo. Por ejemplo, 4, un número positivo.4 Por lo tanto, los números negativos no tienen raíces cuadradas reales. Para hacer posible resolver todas las ecuaciones cuadráticas, los matemáticos han inventado un sistema numérico expandido, llamado sistema de números complejos. Primero definieron el nuevo número i Esto significa que i. Un número complejo es entonces un número de la forma a bi, donde a y b son números reales. DEFINICIÓN DE NÚMEROS COMPLEJOS Un número complejo es una expresión de la forma a donde a y b son números reales y i. La parte real de este número complejo es a y la parte imaginaria es b. Dos números complejos son iguales si y sólo si sus partes reales son iguales y sus partes imaginarias son iguales. bi Observe que las partes reales e imaginarias de un número complejo son números reales. EJEMPLO Números complejos Los siguientes son ejemplos de números complejos. Parte real, parte imaginaria 4 i Parte real, parte imaginaria 6i Parte real 0, parte imaginaria 6 7 Parte real 7, parte imaginaria 0 AHORA INTENTE HACER LOS EJERCICIOS 5 Y 9 Un número tal como 6i, que tiene parte real 0, se llama número imaginario puro. Un número real como 7 puede considerarse como número complejo con parte imaginaria 0. En el sistema de números complejos, toda ecuación cuadrática tiene soluciones. Los números i y i son soluciones de x 4 porque i i 4 4 y i i 4 4 Aun cuando usamos el término imaginario en este contexto, los números imaginarios no deben considerarse como menos reales (en el sentido más bien ordinario que matemático de la palabra) que números negativos o números irracionales. Todos los números (excepto posiblemente los enteros positivos) son creaciones de la mente humana los números y así como el número i. Estudiamos números complejos porque completan, en una forma útil y elegante, nuestro estudio de las soluciones de ecuaciones. De hecho, los
2 SECCIÓN.5 Números complejos 65 números imaginarios son útiles no sólo en álgebra y matemáticas, sino también en las otras ciencias. Para dar sólo un ejemplo, en teoría eléctrica la reactancia de un circuito es una cantidad cuya medida es un número imaginario. Operaciones aritméticas con números complejos Los números complejos se suman, restan, multiplican y dividen exactamente igual que con cualquier número de la forma a b c. La única diferencia que necesitamos recordar es que i. Entonces, los siguientes cálculos son válidos. a bic di ac ad bci bdi ac ad bci bd ac bd ad bci Multiplique y reúna términos semejantes i Combine partes reales e imaginarias Por lo tanto definimos la suma, diferencia y producto de números complejos como sigue. SUMAR, RESTAR Y MULTIPLICAR NÚMEROS COMPLEJOS Definición Descripción Suma a bi c di a c b di Para sumar números complejos, sumamos las partes reales y las partes imaginarias. Resta a bi c di a c b di Multiplicación a bi # c di ac bd ad bci Para restar números complejos, restamos las partes reales y las partes imaginarias. Multiplicamos números complejos como binomios, usando i. Las calculadoras graficadoras pueden realizar operaciones aritméticas con números complejos. (+5i)+(4-i) 7+i (+5i)*(4-i) + Conjugados complejos Número Conjugado i i i i 5 5 EJEMPLO Exprese lo siguiente en la forma a bi. (a) 5i 4 i Sumar, restar y multiplicar números complejos ( c) 5i 4 i (d) i (b) 5i 4 i (a) De acuerdo con la definición, sumamos las partes reales y sumamos las partes imaginarias. 5i 4 i 4 5 i 7 i (b) 5i 4 i 4 5 7i (c) 5i4 i # # 4 (d) i i i i i i i AHORA INTENTE HACER LOS EJERCICIOS 5, 9, 5 Y La división de números complejos es muy semejante a racionalizar el denominador de una expresión radical, que consideramos en la Sección.4. Para el número complejo z a bi definimos que su conjugado complejo es z a bi. Observe que z # z a bia bi a b
3 66 CAPÍTULO Funciones polinomiales y racionales De modo que el producto de un número complejo y su conjugado es siempre un número real no negativo. Usamos esta propiedad para dividir números complejos. Library of Congress LEONHARD EULER (707-78) nació en Basilea, Suiza, hijo de un pastor. Cuando Euler tenía años, su padre lo envió a la Universidad en Basilea a estudiar teología, pero Euler pronto decidió dedicarse a las ciencias. Además de teología, estudió matemáticas, medicina, astronomía, física e idiomas de Asia. Se dice que Euler podía calcular sin esfuerzo al igual que los hombres respiran o las águilas vuelan. Cien años antes de Euler, Fermat (vea página 99) había conjeturado que n es un número primo para toda n. Los primeros cinco de estos números son 5, 7, 57, 65,57, y 4,94,967,97. Es fácil demostrar que los primeros cuatro son primos. El quinto también fue considerado primo hasta que Euler, con su fenomenal capacidad de cálculo, demostró que es el producto 64 6,700,47 por lo tanto no es primo. Euler publicó más que cualquier otro matemático en la historia. Sus obras recolectadas comprenden 75 grandes volúmenes. Aun cuando quedó ciego los últimos 7 años de su vida, continuó trabajando y publicando sus obras. En éstas popularizó el uso de los símbolos p, e e i, que el lector encontrará en este libro. Una de las más duraderas aportaciones de Euler es su desarrollo de los números complejos. DIVISIÓN DE NÚMEROS COMPLEJOS a bi Para simplificar el cociente, multiplicamos el numerador y el denominador c di por el complejo conjugado del denominador: a bi a a bi di bac c di c di c di b ac bd bc adi c d Más que memorizar toda esta fórmula, es más fácil recordar el primer paso y luego multiplicar el numerador y el denominador como de costumbre. EJEMPLO Dividir números complejos Exprese lo siguiente en la forma a bi. 5i (a) (b) 7 i i Multiplicamos numerador y denominador por el complejo conjugado del denominador para hacer que el nuevo denominador sea un número real. (a) El complejo conjugado de i es i i. 5i i (b) El complejo conjugado de es 7 i a 5i i ba i i b 7 i 5 a 7 i ba. Por lo tanto, INTENTE HACER LOS EJERCICIOS 7 Y 4 b 8i 6 Raíces cuadradas de números negativos Así como todo número real positivo r tiene dos raíces cuadradas r y r, todo número negativo también tiene dos raíces cuadradas. Si r es un número negativo, entonces sus raíces cuadradas son i r, porque i r i r r y i r i r r i 5 i RAÍCES CUADRADAS DE NÚMEROS NEGATIVOS Si r es negativo, entonces la raíz cuadrada principal de r es r i r Las dos raíces cuadradas de r son i r y i r. Por lo general escribimos i b en lugar de b i para evitar confusión con bi EJEMPLO 4 Raíces cuadradas de números negativos ( a) i i (b) 6 i 6 (c) i AHORA INTENTE HACER LOS EJERCICIOS 47 Y 49
4 SECCIÓN.5 Números complejos 67 Debe tenerse especial cuidado al realizar cálculos que comprendan raíces cuadradas de números negativos. Aun cuando a # b ab cuando a y b son positivas, esto no es verdadero cuando ambas son negativas. Por ejemplo, pero # i # i i entonces # Al completar radicales de números negativos, expréselas primero en la forma i r (donde r > 0) para evitar posibles errores de este tipo. EJEMPLO 5 Usar raíces cuadradas de números negativos Evalúe 4 y expréselos en la forma a bi. 4 i i 4 i i 6 i # 8 i AHORA INTENTE HACER EL EJERCICIO 5 Soluciones complejas de ecuaciones cuadráticas Ya hemos visto que si a 0, entonces las soluciones de la ecuación cuadrática ax bx c 0 son b b 4ac x a Si b 4ac < 0, entonces la ecuación no tiene solución real. Pero en el sistema de números complejos, esta ecuación siempre tendrá soluciones porque los números negativos tienen raíces cuadradas en la situación expandida. EJEMPLO 6 0 Ecuaciones cuadráticas con soluciones complejas Resuelva cada una de las ecuaciones siguientes. (a) x 9 0 (b) x 4x 5 0 (a) La ecuación x 9 0 significa x 9, y entonces x 9 i 9 i Las soluciones son por tanto i y i. (b) Por la Fórmula Cuadrática tenemos x # i i Entonces las soluciones son i y i. AHORA INTENTE HACER LOS EJERCICIOS 57 Y 59 i
5 68 CAPÍTULO Funciones polinomiales y racionales Vemos del Ejemplo 6 que si una ecuación cuadrática con coeficientes reales tiene soluciones complejos, entonces estas soluciones son complejos conjugados entre sí. Por lo tanto, si a bi es una solución, entonces a bi también es una solución. EJEMPLO 7 Complejos conjugados como soluciones de una cuadrática Demuestre que las soluciones de la ecuaciones 4x 4x 7 0 son conjugados complejos entre sí. Usamos la Fórmula Cuadrática para obtener x i Por lo tanto, las soluciones son i y i, y éstos son complejos conjugados. AHORA INTENTE HACER EL EJERCICIO 65.5 EJERCICIOS CONCEPTOS. El número imaginario i tiene la propiedad de que i.. Para el número complejo la parte real es y la parte imaginaria es.. (a) El complejo conjugado de es. (b). 4. Si es una solución de una ecuación cuadrática con coeficientes reales, entonces también es una solución de la ecuación. HABILIDADES 5-4 Encuentre las partes real e imaginaria del número complejo i i i 4 7i. i Evalúe la expresión y escriba el resultado en la forma a bi. 5. 5i i 9 i 8. i A 5 9. A7 ib A5 ib 0. 4 i 5i 5i 4 6i ib.. 4 i i 4 i 4. ia i.. i i i 7 7 i4 i 5 i 6 5i i i i i 6 9i i 0i i 4 6i i i i i i A iba 6 B i 7i i 4 i 5 i 5 4 i ib i 5i 5i i i i Evalúe la expresión radical y exprese el resultado en la forma a bi B
6 S E C C I Ó N.6 Ceros complejos y el Teorema Fundamental de Álgebra Encuentre todas las soluciones de la ecuación y expréselas en la forma a bi. 57. x x x 4x x x 0 6. x x x 6x x x x x x x x x 67. t t z x x x 6x x x x x 0 z 0 z z 7-80 Recuerde que el símbolo z representa el conjugado complejo de z. Si z a bi y w c di, demuestre cada enunciado z z 7. z z 74. z z # 77. z z es un número real. 78. z z es un número imaginario puro. 79. z # z es un número real. 80. z z si y sólo si z es real. DESCUBRIMIENTO DISCUSIÓN REDACCIÓN 8. Raíces complejas conjugadas Suponga que la ecuación ax bx c 0 tiene coeficientes reales y raíces complejas. Por qué deben las raíces ser complejos conjugados entre sí? (Piense en cómo encontraría las raíces usando la Fórmula Cuadrática.) 8. Potencias de i Calcule las primeras potencias de i, es decir, i, i, i,..., i. Se observa un patrón? Explique cómo calcularía usted cualquier potencia entera de i, usando el patrón que haya descubierto. Use este procedimiento para calcular i 4446.
Números Complejos. Presentación 1 Precalculus Sec. 1.5
Números Complejos Presentación 1 Precalculus Sec. 1.5 Tipos de números reales Enteros positivos o números naturales: Enteros no-negativos: 1,, 3, 4,... Enteros 0, 1,, 3, 4,......, 4, 3,, 1, 0, 1,, 3, 4,...
CURSO PROPEDÉUTICO 2017
CURSO PROPEDÉUTICO 2017 1 FUNDAMENTOS DE MATEMÁTICAS OBJETIVO Formar estudiantes altamente capacitados, que cuenten con competencias y conocimientos para construir y utilizar técnicas que contribuyan a
2.4. Números complejos
2.4 Números complejos 95 83 Relaciones temperatura-latitud a tabla siguiente contiene promedios de temperaturas anuales para los hemisferios norte y sur a varias latitudes. atitud Hemisf. N. Hemisf. S.
Este conjunto posee elementos que se obtienen a partir de raíces cuadradas con cantidad subradical negativa.
DEFINICIÓN:Los Números Imaginarios surgen de la necesidad de resolver ecuaciones cuadráticas sin solución en el campo real. Este conjunto se representa por I Este conjunto posee elementos que se obtienen
Sumar y restar radicales
Sumar y restar radicales Radicales semejantes Decimos que dos radicales son semejantes si tienen el mismo índice y el mismo radicando. Ejemplos: Los siguientes pares de radicales son semejantes. 5 y y
Contenido: 1. Definición y clasificación. Polinomios.
Polinomios. Contenido:. Definición y clasificación.. Operaciones.. Simplificación. 4. Productos notables.. Factorización. 6. Completar cuadrados. 7. Nociones de despeje.. Definición y clasificación Definición.
Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios
Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios Prof. Caroline Rodríguez Martínez Polinomios Un polinomio es un solo término o la suma de dos o más términos se compone
5.- Potencia de 1 Un número racional elevado a 1 es igual a sí mismo.
POTENCIAS DE EXPONENTE ENTERO Y BASE RACIONAL 1.- 2.- 3.- PROPIEDADES DE LAS POTENCIAS DE NÚMEROS RACIONALES Pulsa en las siguientes pestañas para analizar cada una de las propiedades de la multiplicación:
primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en
Unidad 1. Conjuntos de números II. Operaciones y expresiones 1. Operaciones con números racionales. Las operaciones con números racionales las estamos realizando desde los grados 12 primarios. 1 + 2 =
Tema: Expresiones Algebraicas. Subtema: Polinomios
Tema: Expresiones Algebraicas Subtema: Polinomios Polinomios Definición: Un polinomio es una expresión algebraica que cumple con las siguientes condiciones: Ningún término de la expresión tiene un denominador
2. Números Complejos. Presenta: Eduardo Hernández Huerta. Universidad del Valle de México (UVM). Campus Coyoacán 9 de septiembre de 2017
ÁLGEBRA 2. Números Complejos Presenta: Eduardo Hernández Huerta Universidad del Valle de México (UVM). Campus Coyoacán 9 de septiembre de 2017 Contenido 1 Números complejos Complejo conjugado Representación
TEMA: 5 ÁLGEBRA 3º ESO
TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x
CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García
INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
MATEMÁTICAS UNIDAD 4 GRADO 8º. Números complejos, Inecuaciones y desigualdades
1 Franklin Eduardo Pérez Quintero MATEMÁTICAS UNIDAD 4 GRADO 8º Números complejos, Inecuaciones y desigualdades 1 2 Franklin Eduardo Pérez Quintero LOGRO: Identifica los conjuntos de números que pertenecen
Expresiones algebraicas
Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos
Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =
1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite
4.1. Qué es un número complejo. Representación geométrica.
Tema Números complejos.. Qué es un número complejo. Representación geométrica. Un número complejo z C C es el conjunto de los números complejos es una expresión de la forma z a + b i en la que a, b R a
NUMEROS COMPLEJOS. Se llama unidad imaginaria a un ente abstracto i, al que se le atribuye la propiedad de que su cuadrado es -1: i ² = -1.
Contenido Apunte de Números complejos o imaginarios: Suma y producto de números complejos. División. Raíz cuadrada. Conjugado. Módulo y argumento. Fórmula De Moivre. Raíces. Primera parte NUMEROS COMPLEJOS
Expresiones Algebraicas Racionales en los Números Reales
en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido cional nales Algebraica Racional ales : Contenido Discutiremos: qué es una expresión algebraica racional : Contenido
Matemáticas. Matías Puello Chamorro. Algebra Operativa. 9 de agosto de 2016
Matemáticas Algebra Operativa Matías Puello Chamorro http://www.unilibrebaq.edu.co 9 de agosto de 2016 Índice 1. Introducción 3 2. Definiciones básicas del Algebra 4 2.1. Definición de igualdad............................
REPASO ALGEBRA ELEMENTAL
REPASO ALGEBRA ELEMENTAL OPERACIONES MATEMÁTICAS POR: DRA. KARILUZ DÁVILA DÍAZ Operaciones matemáticas comunes Operaciones matemáticas comunes que se utilizan en el curso de Química General son: Operación
CEPA Rosalía de Castro. Fundamentos de Matemáticas Tema 4: Expresiones algebraicas
TEMA 4. Expresiones algebraicas: 1. Una expresión algebraica es una expresión formada por operadores algebraicos que combinan operandos que pueden ser letras o números. Las letras se llaman variables y
UNIDAD 1 NUMEROS COMPLEJOS
UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo
Tema 2 Algebra. Expresiones algebraicas Índice
Tema 2 Algebra. Expresiones algebraicas Índice 1. Expresiones algebraicas comunes... 2 2. Valor numérico de una expresión algebraica... 2 3. Tipos de expresiones algebraicas... 2 4. Monomios... 2 4.1.
Preparación para Álgebra universitaria con trigonometría
Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.
UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO DE ARECIBO
UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO DE ARECIBO Departamento de Ciencias y Tecnología AÑO 004-00 EGMA 00 - Fundamentos de Álgebra Documento de Trabajo para el SEGUNDO EXAMEN PARCIAL ì Contenido:
RESUMEN DE ALGEBRA. CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe.
RESUMEN DE ALGEBRA CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe. El álgebra es la rama del conocimiento de la matemática; es decir se desprende de ella. Estudia realidades
9 Expresiones racionales
Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #9: viernes, 10 de junio de 2016. 9 Epresiones racionales 9.1 Fracciones
LOS NÚMEROS COMPLEJOS
LOS NÚMEROS COMPLEJOS Para una mirada sobre el origen y desarrollo histórico de los números complejos leer el siguiente documento páginas 8-13 CANTIDADES IMAGINARIAS Definición: Las cantidades imaginarias
EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos.
EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. 1. Introducción Los números complejos o imaginarios nacen de la necesidad de resolver
FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.
FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto
Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Polinomios
Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Polinomios Prof. Glorymill Santiago Labrador Adaptado por: Prof. Anneliesse Sánchez, Prof. Caroline Rodríguez Polinomios Definición: Un
Expresiones algebraicas
Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas
NÚMEROS COMPLEJOS: C
NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales
(6x + 8) + (4x + 2) (6x + 8) + (4x + 2) = 10x + 10
Operaciones con números complejos Objetivos de aprendizaje Sumar números complejos. Restar números complejos. Multiplicar números complejos. Encontrar conjugados de números complejos. Dividir números complejos.
Lic. Manuel de Jesús Campos Boc
UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 015 Lic. Manuel
I.E.S. ANTONIO DOMÍNGUEZ ORTIZ
I.E.S. ANTONIO DOMÍNGUEZ ORTIZ 3º DE E.S.O TEMA 5 LENGUAJE ALGEBRAICO 1 ÍNDICE 1 DEFINICIONES 1.1 Expresiones algebraicas 1.2 Incógnitas o variables. 1.3 Términos 1.4 Valor numérico de una expresión algebraica.
UNIDAD VI.-OPERACIONES CON FRACCIONES ALGEBRAICAS. Como podrás recordar, en fracciones numéricas,, para simplificarlas era muy sencillo, pues por
UNIDAD VI.-OPERACIONES CON FRACCIONES ALGEBRAICAS Simplificación de Fracciones Algebraicas 8 Como podrás recordar, en fracciones numéricas,, para simplificarlas era mu sencillo, pues por 5 5 ejemplo para
EJERCICIOS DE POLINOMIOS
EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:
Alumno/a:... Lo primero que debes tener en cuenta cuando trabajes con radicales es que no son más que potencias con exponente fraccionario.
Hoja Cálculos con radicales Calificación Alumno/a:... Curso: º E.S.O. A Definición de radical Lo primero que debes tener en cuenta cuando trabajes con radicales es que no son más que potencias con exponente
NÚMEROS COMPLEJOS. Capítulo Operaciones con números complejos
Capítulo 1 NÚMEROS COMPLEJOS Observe que la ecuación x 2 + 1 0 no tiene solución en los números reales porque tendríamos que encontrar un número cuyo cuadrado fuera 1, es decir x 2 1 o, lo que viene a
CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.
CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad
TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0
Ficha 0 Un monomio es una expresión algebraica formada por el producto de un número, llamado coeficiente, por una o más variables con exponente natural o cero, llamadas parte literal. El grado es la suma
Preparación para Álgebra 1 de Escuela Superior
Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS
C u r s o : Matemática Material N 15 UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS GUÍA TEÓRICO PRÁCTICA Nº 1 EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una expresión algebraica consiste en sustituir
EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS
EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS
Álgebra 2. Plan de estudios (305 temas)
Álgebra 2 Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales pueden personalizar el
Expresión C. numérico Factor literal 9abc 9 abc
GUÍA DE REFUERZO DE ÁLGEBRA Un término algebraico es el producto de una o más variables (llamado factor literal) y una constante literal o numérica (llamada coeficiente). Ejemplos: 3xy ; 45 ; m Signo -
Números complejos. Números complejos 28/02/2016 CURSO
Números complejos CURSO 2015-2016 Números complejos 1) Definición números complejos 2) Representación gráfica de un número complejo ( Afijo, módulo, argumento). Conjugado 3) Operaciones con números complejos.
Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales
1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro
NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz:
NÚMEROS COMPLEJOS Página 7 REFLEXIONA Y RESUELVE Extraer fuera de la raíz Saca fuera de la raíz: a) b) 00 a) b) 00 0 Potencias de Calcula las sucesivas potencias de : a) ( ) ( ) ( ) b) ( ) c) ( ) 5 a)
Álgebra vs Aritmética. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: Polinomios. Expresiones algebraicas. Álgebra elemental.
16/01/01 ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: olinomios Álgebra vs Aritmética La Aritmética siempre opera sobre números concretos. El Álgebra hace cálculos simbólicos en los que las
Potencias de exponente entero o fraccionario y radicales sencillos
Potencias de exponente entero o fraccionario y radicales sencillos I. Potencias de exponente entero La potencia es una operación matemática que sirve para representar la multiplicación de un número por
Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio
Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Raíces 1. Raíces cuadradas y cúbicas Comencemos el estudio de las raíces
Unidad 6. Raíces de polinomios. Objetivos. Al finalizar la unidad, el alumno:
Unidad 6 Raíces de polinomios Objetivos Al finalizar la unidad, el alumno: Comprenderá el Teorema Fundamental del Álgebra. Aplicará los teoremas del residuo y del factor en la obtención de las raíces de
ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.
ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K
TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19
TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 Introducción 19 Lenguaje común y lenguaje algebraico 22 Actividad 1 (Lenguaje común y lenguaje algebraico) 23 Actividad 2 (Lenguaje común y
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números
Cantidades imaginarias - numeros complejos
Cantidades imaginarias - numeros complejos Las operaciones directas (Suma, multiplicación y potenciación) no crearon problema de cálculo, por ser siempre realizables. En cambio las operaciones inversas
CURSO UNICO DE INGRESO 2010
INSTITUTO SUPERIOR ZARELA MOYANO DE TOLEDO PROF. ING. ELSA MEDINA CURSO UNICO DE INGRESO 2010 MATEMATICAS INTRODUCCION El presente material supone un REPASO sobre los temas fundamentales y necesarios para
UNIDAD DE APRENDIZAJE II
UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números
UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.
UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad
TEMA 1. Números Reales. Teoría. Matemáticas
1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo
Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón
2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción
Propiedades de las potencias de exponente racional
ENCUENTRO # 8 TEMA: Radicales.Propiedades. CONTENIDOS:. Propiedades de las potencias de exponente racional.. Radicales.Propiedades.. Simplificación de radicales.. Operaciones con radicales. DESARROLLO
Exponentes, Raíces y Radicales. Números Reales
Exponentes y Exponentes Fraccionarios, Raíces y Exponentes, Raíces y en los Números Reales Carlos A. Rivera-Morales Precálculo I Exponentes, Raíces y Tabla de Contenido Contenido Exponentes y Exponentes
CURSO PROPEDEUTICO DEALGEBRA PARA BQFT QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 2013 ELABORÓ ALEJANDRO JAIME CARRETO SOSA
QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 201 ELABORÓ ALEJANDRO JAIME CARRETO SOSA 1 Operaciones entre Quebrados (Fracciones) Sumar quebrados o fracciones: se calcula el común denominador,
SERIE INTRODUCTORIA. REPASO DE ALGEBRA.
SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m
Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales.
Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Índice de contenido Polinomios y fracciones algebraicas: nociones básicas...2 Qué es y qué no es un polinomio...2
UNIDAD DE APRENDIZAJE I
UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.
Bloque 1. Aritmética y Álgebra
Bloque. Aritmética y Álgebra 6. Los números reales: radicales. Definición de radical Un radical es una epresión de la forma, en la que n y a ; con tal que cuando a sea negativo, n ha de ser impar. Obsérvese
4.1. Polinomios y teoría de ecuaciones
CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +
cómo expresarías?. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: 3º A Expresiones algebraicas Álgebra vs Aritmética
16/01/01 ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: º A cómo expresarías?. La altura de mi hermano si te digo que mide 10 cm más que mi hermana: El perímetro de un triángulo
TEMA 3. Algebra. Teoría. Matemáticas
1 1 Las expresiones algebraicas Las expresiones algebraicas son operaciones aritméticas, de suma, resta, multiplicación y división, en las que se combinan letras y números. Para entenderlo mejor, vamos
Radicales y sus operaciones MATEMÁTICAS 2º CICLO E.S.O.
Radicales y sus operaciones MATEMÁTICAS º CICLO E.S.O. Objetivos: Simplificar radicales Efectuar operaciones de suma, resta, multiplicación y división con radicales Racionalizar parte de una fracción Notación:
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 1º Año Ciclo Básico de Secundaria Teoría Nº 2 Segundo Trimestre
CONJUNTO DE LOS NÚMEROS ENTEROS Los números enteros están formados por: los números naturales (o enteros positivos y el cero) y los números negativos. El cero no tiene signo, no es ni positivo ni negativo.
Polinomios. 1.- Funciones cuadráticas
Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial
Semana 2: Introducción al Álgebra
Semana 2: Introducción al Álgebra Taller de Preparación para Prueba PLANEA Ing. Jonathan Quiroga Tinoco Conalep Tehuacán P.T.B. en ADMO, SOMA y EMEC UNIDAD 08 Lenguaje algebraico 1. Lenguaje y expresión
1. Conocimientos previos. 2. Sucesión Progresiones aritméticas. 1 CONOCIMIENTOS PREVIOS. 1
CONOCIMIENTOS PREVIOS. Límites.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Repasar las operaciones básicas con expresiones algebraicas. Repasar
S2: Polinomios complejos
S: Polinomios complejos Un polinomio complejo de grado n es un polinomio de la forma: p x = a 0 + a 1 x + a x + + a n x n Donde los a i C se llaman coeficientes y a n 0. Observa que como R C los coeficientes
NÚMEROS COMPLEJOS UNIDAD 5. Página 130. El paso de N a Z
UNIDAD NÚMEROS COMPLEJOS Página 0 El paso de N a Z 0 Imagina que solo se conocieran los números naturales, N. Sin utilizar otro tipo de números, intenta resolver las siguientes ecuaciones: a) x + b) x
REPASO_RECUPERACION_III_PERIODO_MATEMATICAS_9_ DE 6
REPASO_RECUPERACION_III_PERIODO_MATEMATICAS_9_2016 1 DE 6 Nombre: Fecha: REPASO_RECUPERACION_III_PERIODO_MATEMATICAS_9_2016 2 DE 6 REPASO_RECUPERACION_III_PERIODO_MATEMATICAS_9_2016 3 DE 6 VOCABULARIO
TEMA 4: EXPRESIONES ALGEBRAICAS.
TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso
ALGEBRA. a b. abc. Álgebra. Rama de las matemáticas que generaliza los métodos y procedimientos para efectuar Cálculos y resolver problemas.
ALGEBRA Álgebra. Rama de las matemáticas que generaliza los métodos procedimientos para efectuar Cálculos resolver problemas. Área del círculo.= r Volumen del cilindro = r h LENGUAJE ALGEBRAICO El lenguaje
CURSO PROPEDÉUTICO 2017
CURSO PROPEDÉUTICO 2017 MATEMÁTICAS OBJETIVO GENERAL El alumno al término del curso tendrá un conocimiento sobre la importancia de las matemáticas para el desempeño de su vida profesional y personal, así
Titulo: MULTIPLICACION Y DIVISIÓN DE POLINOMIOS Año escolar: 3ER: año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual
UNIDAD DE APRENDIZAJE II
UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Multiplicar y dividir números enteros y fraccionarios 2. Utilizar las propiedad conmutativas y asociativa Saberes declarativos A Concepto de base, potencia
Las operaciones con números irracionales
Las operaciones con números irracionales Antes de empezar a sumar, restar, multiplicar, y realizar cualquier tipo de las operaciones con números irracionales, debemos comprender como extraer, e introducir
NÚMEROS COMPLEJOS (C) Si calculamos los valores de las potencias de i, encontramos que: con n N + y 0 p < 4
NÚMEROS COMPLEJOS (C) DEFINICIÓN DE LA UNIDAD IMAGINARIA El cuadrado de un número real siempre es no negativo. Por ejemplo, no existe ningún número real x para el cual x 2 = -1. Para remediar esta situación,
Fundamentos de la Matemática UNEFA NÚCLEO TÁCHIRA GUÍA DE ESTUDIO CON FINES INSTRUCCIONALES
UNIDAD I: EXPRESIONES ALGEBRAICAS. El ÁLGEBRA es la rama de las Matemáticas que estudia la cantidad considerada del modo más generalizado posible, siendo los árabes los primeros en desarrollarla. En Álgebra
Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas
Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Algebra y Trigonometría Taller 6: Funciones Polinomiales y Racionales Teorema del residuo y del factor. Hallar los valores que se piden
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados
