UNIDAD DE APRENDIZAJE II
|
|
|
- José Ángel Poblete Crespo
- hace 9 años
- Vistas:
Transcripción
1 UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Multiplicar y dividir números enteros y fraccionarios 2. Utilizar las propiedad conmutativas y asociativa Saberes declarativos A Concepto de base, potencia y raíz. B Propiedades de exponentes. C Propiedades de raíces. D Algoritmos de operaciones con exponentes y radicales. E Productos Notables. Cuadrados, cubos y exponentes INTRODUCCIÓN La notación exponencial se emplea para indicar cuántas veces se utilizará una cantidad como factor. Por ejemplo, el área A del cuadrado puede escribirse como Léase x cuadrada. El exponente 2 indica que la x se utiliza dos veces como factor. De manera similar, el volumen de un V del cubo es Esta vez, el exponente 3 indica que la Léase x cúbica. A Concepto de base, potencia y raíz Si una variable x (denominada la base) va a emplearse n veces como factor, utilizamos la definición siguiente n (denominada potencia) es un número natural, algunas de las potencias de x son a la quinta potencia a la cuarta potencia a la tercera potencia (también se lee x cúbica ) a la segunda potencia (también se lee x cuadrada ) a la primera potencia (también se lee x) Advierta que si la base no lleva algún exponente, se supone que el exponente es 1; es decir, Además, para a distinta a cero, se define como 1., y El concepto de raíz se puede explicar con la raíz cuadrada, esta se relaciona con el concepto de elevar al cuadrado un número. El número 36, por ejemplo, es el cuadrado de 6. Seis, por otro lado, es la raíz cuadrada de 36; es decir, ( ). De manera semejante,
2 ( ) Observe que al ser cumpla con que, a no puede ser negativo. De este modo, para hallar, encontramos el número b que ; esto es es equivalente a siempre y cuando De igual manera la raíz cúbica, esta relacionada con el concepto de elevar a la tercera potencia (al cubo) un número. El numero 64, por ejemplo, es el cubo de 4. Cuatro por lo tanto, es la raíz cúbica de 64; es decir (El número 3 de la raíz cúbica siempre se debe ser expresado de manera explicita). De manera semejante, ( ) Al ser, a si puede ser negativo. De este modo, para hallar, encontramos el número b que cumpla con que ; esto es es equivalente a para toda Observe que para raíces impares a si puede ser negativo, mientras para raíces pares no. Ejemplo 1 Determinación de raíces b. c. d. e. f. b. ( ) c. d. e. f. B Propiedades de exponentes Reglas de los exponentes Si m, n, y k son enteros positivos, se aplican las reglas siguientes: Regla Regla del producto para exponentes: Exponente cero: Exponente negativo: Ejemplo
3 Regla del cociente para exponentes: Regla de potencia para exponentes: Regla de potencia para productos: Regla de potencia para cocientes: ( ) ( ) Conversión de exponente positivo en negativo: C Propiedades de radicales Reglas de los radicales Si n y m son enteros positivos, se aplican las reglas siguientes: Regla Regla de radicales para productos: Ejemplo, Regla de radicales para cocientes:, Regla de radicales para potencias: Racionalización del denominador: D Algoritmos de operaciones con exponentes y radicales Ejemplo 1 Simplificar usando las reglas del exponente negativo, producto, cociente para exponentes. b. Regla del producto para exponentes Regla del cociente para exponentes Regla del exponente negativo. Regla del exponente negativo Regla del producto para exponentes Regla del cociente para exponentes Regla del exponente negativo
4 Ejemplo 2 Simplificar usando conversión de exponente negativo, reglas de potencia para producto, cociente y exponente. ( ) b. ( ) ( ) Regla del cociente para exponentes ( ) Conversión de exponente negativo ( ) Regla del exponente negativo Regla de la potencia para exponentes. Regla de la potencia para producto. Regla del cociente para exponentes ( ) producto Regla de la potencia para cociente Conversión de exponente negativo Regla de la potencia para exponentes y Simplificar ( ( ) ) Ejemplo 3 Uso de reglas de radicales con reglas de potencias para simplificar. b. Regla de la potencia para exponentes Regla del cociente para exponentes. Exponente cero. Regla de radicales para cocientes Regla de radicales para potencias b. Regla de radicales para productos Regla de radicales para potencias Regla del cociente para exponentes División de constantes Regla de radicales para potencias Simplificación de fracción de potencia Simplificar ( ( ) ) Ejemplo 4 Racionalización del denominador
5 b. c. d. * También se puede aplicar en el numerador. Racionalizar D Productos Notables Se llaman productos notables ciertas multiplicaciones que cumplen reglas fijas y cuyo resultado puede ser escrito por simple inspección, es decir, realizar la operación. Binomio al cuadrado Elevar al cuadrado Al realizar la multiplicación se tiene: equivale a muktiplicar dos veces este binomio por si mismo, e decir, Lo anterior traducido del lenguaje algebraico al común: Binomio al cuadrado El cuadrado de la suma de dos términos es igual al cuadrado del primer término más el doble producto del primero por el segundo término más el cuadrado del segundo término. NOTA: recuerda que la operación de suma incluye la adición y la sustracción. Obtener el resultado de los siguientes binomios al cuadrado. ( ) c. b. ( ) ( ) ( ) ( ) c. Obtener el resultado de los siguientes binomios al cuadrado por simple inspección
6 Binomios Conjugados Es el producto de binomios con signo contrario, es decir, el producto obtiene:, al efectuar esta multiplicación se Lo anterior traducido del lenguaje algebraico al común: Binomio conjugado El cuadrado del término que tiene el mismo signo (llamado idéntico), menos el cuadrado del término con signo diferente (llamado simétrico). NOTA: No importa el orden en el que aparezcan los términos de los binomios, en tanto sean los mismos y no de ellos tenga el signo contrario en este caso y Binomio al Cubo Elevar al cubo equivale a multiplicar tres veces este binomio por sí mismo: Por binomio al cuadrado tenemos que por, entonces se tiene:, por lo que solo nos falta multiplicar una vez Lo anterior traducido del lenguaje algebraico al común: Binomio al cubo El cubo del primer término más el triple producto del cuadrado del primer término por el segundo más el triple del producto del primero por el cuadrado del segundo término más el cubo del segundo término.
7 Obtener el resultado de los siguientes binomios al cubo ( ) 4.( ) 5. Binomios con un término en común Al analizar el producto más general que resulta de multiplicar dos binomios con un término común: Se concluye que el resultado de multiplicar dos binomios que tienen un término común es: Binomio con término común El cuadrado del término común más la suma algebraica de los términos no comunes por el común, más el producto de los no comunes. c. b. c. Obtener el resultado de los siguientes binomios con término común ( ) ( ) EJERCICIOS ADICIONALES
RADICALES. Un radical es una expresión de la forma, en la que n y ; con tal que cuando a sea negativo, n ha de ser impar.
RADICALES Un radical es una expresión de la forma, en la que n y a ; con tal que cuando a sea negativo, n ha de ser impar. Se puede expresar un radical en forma de potencia: Radicales equivalentes Utilizando
Potencias. Potencias con exponente entero. Con exponente racional o fraccionario
Potencias con exponente entero Potencias Con exponente racional o fraccionario Propiedades 1.a 0 = 1 2.a 1 = a 3.Producto de potencias con la misma base: Es otra potencia con la misma base y cuyo exponente
TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1
TEMA : Potencias y raíces Tema : Potencias y raíces ESQUEMA DE LA UNIDAD.- Concepto de potencia..- Potencias de exponente natural..- Potencias de exponente entero negativo..- Operaciones con potencias..-
TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1
TEMA : Potencias y raíces Tema : Potencias y raíces ESQUEMA DE LA UNIDAD.- Concepto de potencia..- Potencias de exponente natural..- Potencias de exponente entero negativo..- Operaciones con potencias..-
UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.
UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad
Bloque 1. Aritmética y Álgebra
Bloque. Aritmética y Álgebra 6. Los números reales: radicales. Definición de radical Un radical es una epresión de la forma, en la que n y a ; con tal que cuando a sea negativo, n ha de ser impar. Obsérvese
RADICACIÓN EN LOS REALES
RADICACIÓN EN LOS REALES La raíz n ésima de un número real es otro número real tal que: n a b si y solo si b n Donde el signo se llama radical, n es el índice, a es el radicando y b es la raíz. En la radicación
Conceptos fundamentales de Algebra
CAPÍTULO Conceptos fundamentales de Algebra.. Conjuntos. Notaciones Se supone que el lector tiene conocimientos básicos de la Teoría de conjuntos. La notación que se usará será la usual, así, por ejemplo,
Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto...
ÍNDICE Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales... 3 Ejercicios... 5 Orden y valor absoluto... 6 Ejercicios... 7 Suma de números reales... 9 Reglas
Propiedades de la Radicación
4 B - MATEMÁTICA UNIDAD I NÚMEROS REALES El Conjunto de los números Reales El Conjunto de los números reales (R) está formado por el conjunto de los números racionales (Q) y el de los irracionales (I).
TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19
TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 Introducción 19 Lenguaje común y lenguaje algebraico 22 Actividad 1 (Lenguaje común y lenguaje algebraico) 23 Actividad 2 (Lenguaje común y
Radicales y sus operaciones MATEMÁTICAS 2º CICLO E.S.O.
Radicales y sus operaciones MATEMÁTICAS º CICLO E.S.O. Objetivos: Simplificar radicales Efectuar operaciones de suma, resta, multiplicación y división con radicales Racionalizar parte de una fracción Notación:
2. EXPRESIONES ALGEBRAICAS
2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división
Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio
Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Raíces 1. Raíces cuadradas y cúbicas Comencemos el estudio de las raíces
POTENCIACION POTENCIA
POTENCIACION POTENCIA Los babilonios utilizaban la elevación a potencia como auxiliar de la multiplicación, y los griegos sentían especial predilección por los cuadrados y los cubos. Diofanto (III d.c.)
Propiedades de las potencias de exponente racional
ENCUENTRO # 8 TEMA: Radicales.Propiedades. CONTENIDOS:. Propiedades de las potencias de exponente racional.. Radicales.Propiedades.. Simplificación de radicales.. Operaciones con radicales. DESARROLLO
Semana 1: Números Reales y sus Operaciones
Semana 1: Números Reales y sus Operaciones Taller de Preparación para Prueba PLANEA Ing. Jonathan Quiroga Tinoco Conalep Tehuacán P.T.B. en ADMO, SOMA y EMEC UNIDAD 04 Los números enteros y sus operaciones
Suma. Propiedades de la suma.
Suma. La suma es la operación matemática que resulta al reunir en una sola a varias cantidades. También se conoce a la suma como adición. Las cantidades que se suman se llaman sumandos y el resultado suma
Cantidades imaginarias - numeros complejos
Cantidades imaginarias - numeros complejos Las operaciones directas (Suma, multiplicación y potenciación) no crearon problema de cálculo, por ser siempre realizables. En cambio las operaciones inversas
1. NUMEROS REALES a. Los Números Reales
1. NUMEROS REALES a. Los Números Reales Los números reales comprenden todo el campo de números que utilizamos en las matemáticas, a excepción de los números complejos que veremos en capítulos superiores.
TERMINOS HOMOGENEOS: Son los que tienen el mismo grado absoluto, son homogéneos porque ambos son de quinto grado absoluto.
TERMINOS HOMOGENEOS: Son los que tienen el mismo grado absoluto, son homogéneos porque ambos son de quinto grado absoluto. 4xy y 6xy. Hallando la suma de los exponentes: 4 + 1 = 5 2 + 3 = 5 TERMINOS HETEROGENEOS:
Potencias y radicales
INICIO ESQUEMA INTERNET ACTIVIDAD MATEMÁTICAS º ESO opción B Unidad : Potencias y radicales Potencias y radicales LECTURA INICIAL ESQUEMA INTERNET ACTIVIDAD Para realizar determinadas mediciones necesitamos
Sumar y restar radicales
Sumar y restar radicales Radicales semejantes Decimos que dos radicales son semejantes si tienen el mismo índice y el mismo radicando. Ejemplos: Los siguientes pares de radicales son semejantes. 5 y y
INSTITUTO FRAY MAMERTO ESQUIU 4ºC MATEMÁTICA
El Conjunto de los números Reales El Conjunto de los números reales (R) está formado por el conjunto de los números racionales (Q) y el de los irracionales (I). En símbolos: R Q I Gráficamente: Q I Z De
RESUMEN DE CONCEPTOS
RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo
Tema 1.- Los números reales
Tema 1.- Los números reales Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se puede expresar en forma de fracción. El número irracional
Conjunto de Números Racionales.
Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números
TEMARIO PRUEBA DE SÍNTESIS MATEMÁTICA SÉPTIMO BÁSICO
SÉPTIMO BÁSICO NÚMEROS ENTEROS : Interpretación de números enteros Orden, comparación y ubicación de números enteros Inverso Aditivo (Opuesto) y Valor Absoluto Suma, resta, multiplicación y división de
Instituto Tecnológico de Saltillo
Instituto Tecnológico de Saltillo Departamento de Ciencias Básicas Curso propedéutico Cuadernillo Álgebra y Trigonometría MC Olivia García Calvillo Ing. Alicia Guadalupe del Bosque Martínez Agosto - Diciembre
(6x + 8) + (4x + 2) (6x + 8) + (4x + 2) = 10x + 10
Operaciones con números complejos Objetivos de aprendizaje Sumar números complejos. Restar números complejos. Multiplicar números complejos. Encontrar conjugados de números complejos. Dividir números complejos.
El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras.
1.- LOS NÚMEROS REALES Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción. El número irracional más
OPERAR CON POTENCIAS: MULTIPLICACIÓN, DIVISIÓN Y POTENCIA DE POTENCIA
OPERAR CON POTENCIAS: MULTIPLICACIÓN, DIVISIÓN Y POTENCIA DE POTENCIA OBJETIVO MULTIPLICACIÓN DE POTENCIAS Como las potencias son multiplicaciones, se va a trabajar con ellas cuando multiplicamos o dividimos:
ÍNDICE. Unidad I Conjuntos 10. Unidad II Sistemas de numeración 70. Presentación... 9
ÍNDICE Presentación... 9 Unidad I Conjuntos 10 Antes de empezar... 12 1 Idea intuitiva de un conjunto... 13 2 Cardinalidad de un conjunto... 20 3 Concepto de conjunto universal, subconjunto; conjuntos
UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS
C u r s o : Matemática Material N 15 UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS GUÍA TEÓRICO PRÁCTICA Nº 1 EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una expresión algebraica consiste en sustituir
ALGEBRA. a b. abc. Álgebra. Rama de las matemáticas que generaliza los métodos y procedimientos para efectuar Cálculos y resolver problemas.
ALGEBRA Álgebra. Rama de las matemáticas que generaliza los métodos procedimientos para efectuar Cálculos resolver problemas. Área del círculo.= r Volumen del cilindro = r h LENGUAJE ALGEBRAICO El lenguaje
Potencias y radicales
Potencias y radicales Contenidos 1. Radicales Potencias de exponente fraccionario Radicales equivalentes Introducir y extraer factores Cálculo de raíces Reducir a índice común Radicales semejantes. Propiedades
Lic. Manuel de Jesús Campos Boc
UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICA I Lic. Manuel de Jesús
GUÌAS TEÒRICO PRÀCTICAS CURSO DE NIVELACIÓN EN MATEMÀTICAS
GUÌAS TEÒRICO PRÀCTICAS CURSO DE NIVELACIÓN EN MATEMÀTICAS UNIVERSIDAD FRANCISCO DE PAULA SANTANDER OCAÑA MATEMÁTICAS GUÌAS TEÒRICO PRÀCTICAS CURSO DE NIVELACIÓN EN MATEMÀTICAS Realizado por: Ing. Marcia
Lic. Manuel de Jesús Campos Boc
UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 015 Lic. Manuel
TEMA 1: NÚMEROS REALES
TEMA 1: NÚMEROS REALES 1. INTRODUCCIÓN El conjunto formado por los números racionales e irracionales es el conjunto de los números reales, se designa por Con los números reales podemos realizar todas las
UNIDAD III. EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES.
UNIDAD III. EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. Ley asociativa El producto de tres o más números, es el mismo sin importar la manera en que se agrupan al multiplicarlos. abc=(ac)b=c(ab)
FISICA MECANICA DOCUMENTO DE CONTENIDO MATEMATICAS PARA FISICOS
FISICA MECANICA DOCUMENTO DE CONTENIDO MATEMATICAS PARA FISICOS Objetivo general: Brindar algunas herramientas matemáticas que los estudiantes de física necesitan para su buen desempeño en el curso de
Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.
Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos
PRODUCTOS Y COCIENTES NOTABLES
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA DURACION 8 0 DE ABRIL
Álgebra y Trigonometría
Álgebra y Trigonometría Conceptos fundamentales del Álgebra Universidad de Antioquia Departamento de Matemáticas 1. Números Reales El conjunto de los números reales está constituido por diferentes clases
Fundación Uno. 1. Propiedades de las potencias de exponente racional. DESARROLLO
ENCUENTRO # 8 TEMA:Radicales. Propiedades. CONTENIDOS:. Propiedades de las potencias de exponente racional.. Radicales. Propiedades.. Simplificación de radicales.. Operaciones con radicales. EJERCICIO
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 1º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre
CONJUNTO DE LOS NÚMEROS NATURALES Los números naturales son aquellos números exactos; es decir, que no tienen parte decimal ni fraccionaria; además son todos positivos. Sistema de numeración decimal El
Matemáticas números reales
Matemáticas números reales Definición El conjunto de los números reales toda clase de números que pueden localizarse en la recta. Son el resultado de la ampliación del conjunto de los números naturales
MATEMÁTICA - 4to... - Prof. Sandra Corti
El conjunto de los números reales (R) está formado por el conjunto de los números racionales (Q) y los números irracionales (I). DEFINICIÓN RAÍZ ENÉSIMA DE UN NÚ- MERO Llamamos raíz enésima de un nro.
Números Reales. Números Irracionales
INSTITUTO FRAY MAMERTO ESQUIU Números Reales La unión del conjunto de los números racionales con el conjunto de los números irracionales recibe el nombre de conjunto de los números reales, y se denota
UNIDAD I MATEMÁTICA 3 A
UNIDAD I MATEMÁTICA 3 A NÚMEROS REALES (R) Números Racionales Expresiones Decimales El Conjunto Q de los números racionales está formado por todos aquellos números que pueden expresarse en forma de fracción,
Expresiones algebraicas
Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas
SERIE INTRODUCTORIA. REPASO DE ALGEBRA.
SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m
Álgebra 2. Plan de estudios (305 temas)
Álgebra 2 Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales pueden personalizar el
NÚMEROS REALES---AGUERRERO
Contenido NÚMEROS REALES... 2 IGUALDAD Y SUS PROPIEDADES... 4 NÚMEROS MÚLTIPLOS, COMPUESTOS Y PRIMOS... 4 NÚMEROS PRIMOS... 5 DESCOMPOSICIÓN DE UN NÚMERO EN SUS FACTORES PRIMOS... 7 MÁXIMO COMÚN DIVISOR...
TEORIA DE EXPONENTES ING. CRISTHIAN VELANDIA
TEORIA DE EXPONENTES ING. CRISTHIAN VELANDIA Conceptos preliminares. Epresión algebraica.- es el conjunto de letras y números interrelacionados entre si, mediante las operaciones de adición y sustracción,
Tema 22 Resumen Operaciones de cálculo y procedimientos del mismo
Tema 22 Resumen Operaciones de cálculo y procedimientos del mismo Operaciones con número naturales Cardinal obtenido al unir dos conjuntos distintos Los términos se denominan. Operación interna N. (Tª
Tema 2 Algebra. Expresiones algebraicas Índice
Tema 2 Algebra. Expresiones algebraicas Índice 1. Expresiones algebraicas comunes... 2 2. Valor numérico de una expresión algebraica... 2 3. Tipos de expresiones algebraicas... 2 4. Monomios... 2 4.1.
CEPA Rosalía de Castro. Fundamentos de Matemáticas Tema 4: Expresiones algebraicas
TEMA 4. Expresiones algebraicas: 1. Una expresión algebraica es una expresión formada por operadores algebraicos que combinan operandos que pueden ser letras o números. Las letras se llaman variables y
Sabes lo que significa racionalizar o racionalización?, a qué te suena?
FAL-0_MAAL_Racionalización Versión:Septiembre0 Revisor:SandraElviaPérez Racionalización Sabesloquesignificaracionalizaroracionalización?, aquétesuena? Por:SandraElviaPérez Supón que después de realizar
Las operaciones con números irracionales
Las operaciones con números irracionales Antes de empezar a sumar, restar, multiplicar, y realizar cualquier tipo de las operaciones con números irracionales, debemos comprender como extraer, e introducir
Propedéutico de Matemáticas
Propedéutico de Matemáticas TEMARIO DEL MODULO I, ARITMÉTICA Y ALGEBRA CAPÍTULO 1: CONCEPTOS ELEMENTALES DE ARITMÉTICA Número primo absoluto o simple. Número compuesto. Múltiplo. Submúltiplo, factor o
Preparación para Álgebra universitaria con trigonometría
Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.
ax 3 -bx 2 = x 2 (ax-b) 2b 5 -b 3 = b 3 (2b 2-1)
CPU Calle Mercado # 555 Teléfono 3 366191 FACTORIZACIÓN Caso I: Factor Común Cómo Reconocer: Existe un factor común en todos los términos. Los números pueden factorizarse en este caso si existe máximo
( ) ( ) a) 8 2. b) 9 12 c) 625 : 5 d) 10 : 6. a) 8 2 = 8 2 = 16 = 4. b) 9 12 = 9 12 = c) 625 : 5 = = 125 = d) 10 : 6 = = 6 3
Tema - Hoja : Cálculo de potencias y raíces Calcula las siguientes multiplicaciones y divisiones de radicales: a) 8 9 c) 6 : d) 0 : 6 a) 8 = 8 = 6 = 9 = 9 = 08 6 c) 6 : = = = 0 d) 0 : 6 = = 6 Realiza las
1. ADICIÓN O SUMA Caso (a): Adición de un número Racional con uno Irracional: La suma de un número racional con uno Irracional es otro irracional.
ADICIÓN, SUSTRACCIÓN, MULTIPLICACIÓN, DIVISIÓN, POTENCIACIÓN Y RADICACIÓN EN LOS NÚMEROS REALES. Hoy en día si hablamos de números seguramente nos damos cuenta de que es un tema muy extenso. Pero, hace
Capítulo 1 Números Reales
Capítulo 1 Números Reales Noción de conjuntos Se denomina conjunto a un grupo o colección de objetos. A cada conjunto se le designa con una letra mayúscula. A los objetos que integran un conjunto reciben
Alumno/a:... Lo primero que debes tener en cuenta cuando trabajes con radicales es que no son más que potencias con exponente fraccionario.
Hoja Cálculos con radicales Calificación Alumno/a:... Curso: º E.S.O. A Definición de radical Lo primero que debes tener en cuenta cuando trabajes con radicales es que no son más que potencias con exponente
Nombre del estudiante: Grupo: Hora: Salón:
Instituto Tecnológico de Saltillo. Cuadernillo de Ejercicios de Álgebra. CURSO DE NIVELACIÓN DE ÁLGEBRA 2013 Nombre del estudiante: Grupo: Hora: Salón: CONTENIDO DEL CUADERNILLO. UNIDAD NÚMEROS REALES.
Expresiones algebraicas
Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos
Exponentes, Raíces y Radicales. Números Reales
Exponentes y Exponentes Fraccionarios, Raíces y Exponentes, Raíces y en los Números Reales Carlos A. Rivera-Morales Precálculo I Exponentes, Raíces y Tabla de Contenido Contenido Exponentes y Exponentes
1: LAS CUATRO OPERACIONES FUNDAMENTALES
ÍNDICE 1: LAS CUATRO OPERACIONES FUNDAMENTALES... 1 1.1 El sistema de los números reales... 1 1.2 Definiciones básicas... 5 1.3 Adición y sustracción... 6 1.4 Símbolos de agrupación... 8 1.5 Multiplicación...
EXAMEN DE PENDIENTES PRIMER PARCIAL MATEMÁTICAS DE 1º DE ESO
EXAMEN DE PENDIENTES PRIMER PARCIAL MATEMÁTICAS DE 1º DE ESO 1.- NÚMEROS NATURALES *Los números naturales. *El sistema de numeración decimal. Cifras y orden de las cifras. *Cardinal y ordinal. *Operación
1 CÁLCULO CON RADICALES. Nota: Para m = 2, es l raíz cuadrada y el 2 no se escribe.
DEFINICIÓN : 1 CÁLCULO CON RADICALES ( m 2, 3, 4,.. ) Ejemplo: Nota: Para m 2, es l raíz cuadrada y el 2 no se escribe. SIMPLIFICACIÓN DE RADICALES: Se escribe el radical en forma de potencia, se simplifica
Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-2-1
Capítulo 5 Los números reales y sus representaciones 2012 Pearson Education, Inc. Diapositiva 5-2-1 Capítulo 5: Los números reales y sus representaciones 5.1 Números reales, orden y valor absoluto 5.2
RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a
UD : Los números reales RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a (que es lo mismo que decir que a b si
Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Polinomios
Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Polinomios Prof. Glorymill Santiago Labrador Adaptado por: Prof. Anneliesse Sánchez, Prof. Caroline Rodríguez Polinomios Definición: Un
Capítulo 3: POTENCIAS Y RAÍCES. TEORÍA. Matemáticas 1º y 2º de ESO
19 1. POTENCIAS Capítulo 3: POTENCIAS Y RAÍCES.. Matemáticas 1º y 2º de ESO 1.1. Concepto de potencia. Base y exponente Ejemplo 1: María guarda 5 collares en una bolsa, cada 5 bolsas en una caja y cada
5.- Potencia de 1 Un número racional elevado a 1 es igual a sí mismo.
POTENCIAS DE EXPONENTE ENTERO Y BASE RACIONAL 1.- 2.- 3.- PROPIEDADES DE LAS POTENCIAS DE NÚMEROS RACIONALES Pulsa en las siguientes pestañas para analizar cada una de las propiedades de la multiplicación:
FUNDAMENTOS NUMÉRICOS
SEMANA 1 ÍNDICE NÚMEROS REALES... 3 APRENDIZAJES ESPERADOS... 3 INTRODUCCIÓN... 3 NÚMEROS REALES (R)... 5 PROPIEDADES DE LOS NÚMEROS REALES... 5 LA RECTA NUMÉRICA... 8 CONJUNTOS E INTERVALOS... 9 OPERACIONES
Potencias y raíces Matemáticas 1º ESO
Potencias y raíces Matemáticas 1º ESO ÍNDICE 1. Potencias 2. Propiedades de potencias 3. Cuadrados perfectos 4. Raíces cuadradas 1 1. POTENCIAS Una potencia es una multiplicación en la que todos los factores
Operatoria con Potencias y Raíces
PreUnAB Clase # 3 Junio 2014 Definición Se llama potencia a una expresiń de la forma, donde a es la base y n es el exponente. Potencia de Exponente Entero a n = a a a... a Cuando el exponente es un número
A) B) C) 5 D) 5 9 E) A) 0 B) 9 9 C) D) E) no está definido 6. ( ) : 4 ( ) 0 A) B) 5 C) 8 D) 9 E) 0 7. Si n Z, entonc
GUÍA Nº 5 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS REALES POTENCIAS EN Q DEFINICIONES a a a a a a a a a n, con a Q {0} y n Z n factores a 0, a 0 a -n a n, a Q {0} y n Z + OBSERVACIONES 0 n 0, si n >
PROPEDEUTICO DE MATEMATICAS I UNIDAD ARITMETICA
PROPEDEUTICO DE MATEMATICAS I UNIDAD ARITMETICA 1.1 CLASIFICACION DE LOS NUMEROS Los números REALES (denotados por R ) son el conjunto de números creados por el hombre para poder transmitir mediante un
ÍNDICE. Capítulo 1 Relaciones y funciones. Capítulo 2 Números reales
ÍNDICE Capítulo 1 Relaciones y funciones 1.1 LÓGICA... 7 1.2 CONJUNTOS... 19 1.2.1 Conceptos básicos... 19 1.2.2 Operaciones entre conjuntos... 25 1.3 RELACIONES... 32 1.3.1 Conceptos básicos... 32 1.3.2
1. EXPRESIONES ALGEBRAICAS.
TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas
PRODUCTOS Y COCIENTES NOTABLES
5. 1 UNIDAD 5 PRODUCTOS Y COCIENTES NOTABLES Objetivo general. Al terminar esta unidad resolverás ejercicios en los que apliques los resultados de los productos cocientes notables. Objetivos específicos:
Uniboyacá GUÍA DE APRENDIZAJE NO 7. Psicología e Ingeniería Ambiental
Uniboyacá GUÍA DE APRENDIZAJE NO 7 1. IDENTIFICACIÓN Programa académico Psicología e Ingeniería Ambiental Actividad académica o curso Matemáticas básicas Semestre Segundo de 2012 Actividad de aprendizaje
TEMA 3. NÚMEROS RACIONALES.
TEMA 3. NÚMEROS RACIONALES. Concepto de fracción Una fracción es el cociente de dos números enteros a y b, que representamos de la siguiente forma: b denominador, indica el número de partes en que se ha
POTENCIACIÓN - PROPIEDADES
POTENCIACIÓN - PROPIEDADES Haga Click sobre la opción que desee ver: 1. Concepto general 2. Propiedades de la potenciación Potencia de exponente cero Potencia de exponente uno Producto (multiplicación)
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número
Los números reales. Álvarez S., Caballero M.V. y Sánchez M a M. Contenidos. Full Screen.
Los números reales Álvarez S., Caballero M.V. y Sánchez M a M [email protected], [email protected], [email protected] Índice 1. Definiciones 3 2. Herramientas 5 2.1. Propiedades de los números reales.....................
Potencias de exponente entero o fraccionario y radicales sencillos
Potencias de exponente entero o fraccionario y radicales sencillos I. Potencias de exponente entero La potencia es una operación matemática que sirve para representar la multiplicación de un número por
Preparación para cálculo
Preparación para cálculo Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan de estudios (406 temas)
Universidad Nacional de Ingeniería UNI FACULTAD DE ELECTROTECNIA Y COMPUTACION
Universidad Nacional de Ingeniería UNI FACULTAD DE ELECTROTECNIA Y COMPUTACION Técnico Superior en Computación MATEMATICA Funciones: Rango, dominio y Graficas Tutor: Lic. Alberto Silva Elaborado Por: Bernardo
Curso Propedeutico 2018 Instituto de Investigación en Ciencias Básicas y Aplicadas, UAEM. Calendario y Temario
Curso Propedeutico 2018 Instituto de Investigación en Ciencias Básicas y Aplicadas, UAEM Calendario y Temario Calendario A continuación se presenta el calendario y, de manera detallada, los temas a presentar
ÍNDICE. Prefacio... xi
ÍNDICE Prefacio... xi 1 EL SISTEMA DE LOS NÚMEROS REALES... 1 1.1 Conjuntos... 1 Ejercicio 1.1, 20 problemas... 7 1.2 Constantes y variables... 8 1.3 El conjunto de los números reales... 9 Ejercicio 1.2,
Potencias de exponente entero I
Matemáticas 2.º ESO Unidad 3 Ficha 1 Potencias de exponente entero I Una potencia es un producto de factores iguales. Exponente: n n Base: a an = a a a La base, a, es el factor que se repite, y el exponente,
