REPASO ALGEBRA ELEMENTAL
|
|
|
- Carmelo Cuenca Morales
- hace 8 años
- Vistas:
Transcripción
1 REPASO ALGEBRA ELEMENTAL OPERACIONES MATEMÁTICAS POR: DRA. KARILUZ DÁVILA DÍAZ
2 Operaciones matemáticas comunes Operaciones matemáticas comunes que se utilizan en el curso de Química General son: Operación Símbolo Ejemplo Suma a + b = 19 Resta a - b 10-9 = 1 Multiplicación a b 10 9 = 90 División a b 10 9 = 1.1 Exponentes a b 9 2 = 81 Logaritmo (base 10) log a log 10 = 1 Logaritmo natural ln a ln 10 = 2.30 Antilogaritmo (base 10) 10 a = 31.6 Antilogaritmo natural e a e 1.5 = 4.48 El orden de operaciones y funciones matemáticas es como sigue: Primero: Evalua la expresión contenida entre los símbolos de agrupación primero. Si hay simbolos de agrupación dentro de otros símbolos, evalue los más internos primero. Los símbolos de agrupación son paréntesis ( ), corchetes [ ] y llaves { }. Segundo: Evalue todos los exponentes y logaritmos que aparecen en la expresión. Tercero: Evalue todas las operaciones de multiplicación y división en el orden que aparecen en la expresión, empezando desde la izquierda hacia la derecha de la ecuación. Cuarto: Evalue todas las sumas y restas en el orden que aparecen en la expresión, moviendose de izquierda a derecha. Ejemplo [(9 5) - 30] [5 2 - (2 5)] [45-30] [25-10] = 1
3 Cuando se suman o restan fracciones con diferentes denominadores se debe buscar un denominador común para poder sumar o restar los numeradores. Si se multiplican o dividen las fracciones se puede multiplicar tanto el numerador como el denominador. Si se puede simplificar los números de la fracción, lo podrá hacer. Ejemplo: = = = 9 4 = 2.25 Notación científica: La notación científica permite expresar un número que ya sea muy grande o pequeño para que sea convenientemente expresado en una forma estándar. La notación científica tiene la siguiente forma: a 10 b El coeficiente a es un número real, el exponente b es un número entero que puede ser positivo o negativo. Si b es positivo el número que se representa será mayor de uno pero de ser negativo éste será menor de uno. Por regla general si tiene más de un dígito antes del punto sólo se escribe el primer dígito y el resto de los dígitos van después del punto.
4 Ejemplos: Caso en que b es positivo: Caso en que b es negativo: 3,350 = 3.35 x = 5.76 x 10-6 Si va a cambiar la representación de un número expresado en notación científica a decimal dependará del signo del exponente b hacia donde ruede el punto decimal. Si b es positivo rodará el punto hacia la derecha, si es negativo lo rodará hacia la izquierda. Ecuaciones lineales Una ecuación es una expresión matemática que representa una igualdad, es decir, que dos cantidades son iguales. En ocasiones éstas ecuaciones tienen una variable o incognita a la que no se le conoce su valor numérico. En éste caso se debe despejar para la variable. Cuando se desea mover algún componente de la ecuación de un lado a otro de la ecuación habrá que hacer la operación inversa que se muestra en ambos lados de la igualdad. Ejemplo sería que si se está sumando en un lado y lo quiero mover al otro se deberá restar ese mismo valor o variable en ambos lados. Para que se vaya familiarizando con los inversos de cada operación aqui se muestra una tabla con las operaciones y sus respectivos inversos: Operaciones inversas + - y 2 y 4 log 10 y ln y y y 10 y e y y 1/y = y -1
5 Ejemplo: a) x! 30 = 34, queremos despejar para x Movemos la resta hacia el lado derecho utilizando el inverso de la resta: x! 30 = 34 x! = x! = 64 Calculamos la raiz cuadrada en ambos lados de la ecuación para finalmente obtener x.! x! b) ln y!! = 2, queremos despejar para y! = 64 x = 8 Calculamos el antilogaritmo natural en ambos lados para sacar a y del logaritmo natural ln y!! = 2 e!"!!! = e! y!! = y = 7.39 Multiplicamos por y en ambos lados para subir a y en la ecuacíon. y 1 y = 7.39y 7.39y = 1 Dividimos sobre 7.39 en ambos lados para finalmente tener y. 7.39y 7.39 = y = y = 0.135
6 Recuerde que su meta es despejar para la variable por lo tanto tiene que ir sacando de afuera para adentro las operaciones matemáticas que aparecen hasta dejar sola la variable que deseamos despejar. Cuando hay fracciones en uno o ambos lados de la igualdad se puede "multiplicar cruzado" que no es otra cosa que multiplicar en ambos lados por el denominador pero haciéndolo todo a la misma vez. a b = c d Ejemplo: a d = b c x 10 = 25 5 x = 25(10) 5 = 50 Note que no necesariamente hay que multiplicar en ambos lados, se puede hacer sólo en un lado de la ecuación dependiendo hacia donde se quiera despejar. En ocasiones hay ecuaciones polinomiales que la misma variable tiene diferentes exponentes. Cuando la variable tiene como exponente mayor un dos se puede resolver para el valor de ésta utilizando la fórmula cuadrática. Antes de aplicar la ecuación en la fórmula cuadrática, esta se debe rearreglar tal que todos los componentes estén en un solo lado de la ecuación y al otro un cero: ax 2 + bx + c = 0 Los coeficientes a, b y c mantienen los signos, ejemplo si es una suma el signo del coeficiente es positivo, si es una resta el signo será negativo. La fórmula cuadrática es:
7 x = b ± b! 4ac 2a Para obtener x, se sustituye en la fórmula cuadrática y resuelve para x. Ejemplo 3x 2-8x = 35 3x! 8x = 35 3x! 8x 35 = 0 x = 8 ± 8! x = x = 8 ± x = 8 ± 22 6 = 2.3 x = = 5 Ecuaciones Simultáneas En muchas ocasiones hay dos o más variables en una ecuación. Cuando esto sucede debe haber igual cantidad de ecuaciones diferentes e independientes que de variables. De esta forma se puede encontrar el valor de cada incognita. Utilicemos el ejemplo de dos variables con dos ecuaciones lineales (de forma y = mx + b) y simples. Para poder conseguir los valores de cada variable hay que empezar resolviendo una de las ecuaciones para una de las variables en término de la otra variable. Esta ecuación se sustituirá en la otra ecuación. Ejemplo: 3x + 2y = 19 y 4x 6 y = 3 Comenzamos despejando para una de las variables en una de las ecuaciones y la utilizamos para sustituir en la otra ecuación.
8 En el siguiente ejemplo comenzamos despejando para la variable y en la segunda ecuación y sustituimos el valor de y en la primera ecuación: y = 4x x + 2 4x = 19 3x + 4x = 19 3x + 4x 3 = x + 4x = x 3 = 13 13x = 13 3 x = = 3 Una vez se consigue el valor de la primera variable se utiliza ese número para sustituir en cualquiera de las dos ecuaciones originales para conseguir la otra variable. En este ejemplo ya conseguimos el valor de x = 3 y lo sustituimos en la primera ecuación y = y = 19 2y = y = 10 y = 10 2 = 5
9 Razones, Proporciones y Porcentajes Una razón compara dos números. Una razón puede representarse como 1:2 o 1/2. Si se visualiza la razón como 1/2 (fracción) también se puede representar como 0.50, en su forma decimal. Dos razones iguales expresan la misma comparación. Ejemplo 1/2 y 2/ y 2 4 Si dividimos 1/2 = 0.50 y si dividimos 2/4 = Como ambas resultan en la misma fracción y comparación son equivalentes y se pueden igualar. 1 2 = 2 4 Una proporción es el nombre que se le da a la aseveración que dos razones son iguales. Por lo tanto la expresión que escribimos antes era un ejemplo de proporciones. Un porcentaje o porciento (%) es una forma de expresar una razón como una fracción de 100. Se compara el número a base de cien. La razón 1/2 que equivale a 0.50 también se puede representar como 50 %, que significa 50 de 100. El porcentaje de cualquier cosa se calcula: % = cantidad de una parte 100 cantidad total
10 Ejemplo si en la clase hay 26 chicas y 18 chicos, Cuál es el porciento de chicas en el salón de clases? = 59 % chicas Pero si le dicen que el grupo de 44 personas el 59 % son chicas, Cómo saber cuántas chicas hay? = x 44 x = 44(59) = 26 chicas 100 Ejercicios I. Resuelve 1. [(9-3) (5+8)] 3 3. [2+ 4(6)] 4 2. (5/9 + 1/3) [7 2 + (5 2) - 4] 5 II. Exprese en notación científica o en decimal según sea el caso III. Encuentre el valor de la variable. 1. x - 12 = x + 3 = 0 3. x - (3-2x) = (x + 3) - 3(1 - x) = x +!! =!! 6. x 5 = x + 5 = x = 5x (3x + 1) - 3(4-2x) = x 2-5x = 4
11 Resultados I II III. 1. x = 8 2. x = x = x = x = x = x = 3 8. x = x = x = 3.14, x = -0.64
FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.
FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto
TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1
TEMA : Potencias y raíces Tema : Potencias y raíces ESQUEMA DE LA UNIDAD.- Concepto de potencia..- Potencias de exponente natural..- Potencias de exponente entero negativo..- Operaciones con potencias..-
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
8 _ 0-0.qxd //0 : Página Números reales INTRODUCCIÓN Los alumnos han trabajado en cursos anteriores con las potencias, y conocen el significado de las potencias de exponente natural y de las partes que
UNIDAD DE APRENDIZAJE II
UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números
CURSO UNICO DE INGRESO 2010
INSTITUTO SUPERIOR ZARELA MOYANO DE TOLEDO PROF. ING. ELSA MEDINA CURSO UNICO DE INGRESO 2010 MATEMATICAS INTRODUCCION El presente material supone un REPASO sobre los temas fundamentales y necesarios para
Unidad didáctica 1. Operaciones básicas con números enteros
Unidad didáctica 1 Operaciones básicas con números enteros 1.- Representación y ordenación de números enteros Para representar números enteros en una recta hay que seguir estos pasos: a) Se dibuja una
Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2
Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,
TEMA: 5 ÁLGEBRA 3º ESO
TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x
Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón
2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción
Matemáticas. Matías Puello Chamorro. Algebra Operativa. 9 de agosto de 2016
Matemáticas Algebra Operativa Matías Puello Chamorro http://www.unilibrebaq.edu.co 9 de agosto de 2016 Índice 1. Introducción 3 2. Definiciones básicas del Algebra 4 2.1. Definición de igualdad............................
Vamos a repasar cómo se hacen las operaciones básicas con los distintos números que seguro has estudiado en secundaria:
TEMA 0: REPASO DE NÚMEROS. Vamos a repasar cómo se hacen las operaciones básicas con los distintos números que seguro has estudiado en secundaria: Suma de números enteros 1. Si los sumandos son del mismo
TEMA 1. Números Reales. Teoría. Matemáticas
1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo
LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.
Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero
MODELOS LINEALES. Alejandro Vera Trejo
MODELOS LINEALES Alejandro Vera Trejo Objetivo Se representará una situación determinada a través de la construcción de una o varias ecuaciones lineales. Se resolverán situaciones reales por medio de ecuaciones
1º BACH MATEMÁTICAS I
1º BACH MATEMÁTICAS I Ecuaciones, inecuaciones y sistemas Trigonometría Vectores Nº complejos Geometría Funciones. Límites. Continuidad. Derivadas Repaso en casa Potencias Radicales. Racionalización. (pag.
UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.
UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad
EL LENGUAJE ALGEBRAICO
LENGUAJE ALGEBRAICO Guillermo Ruiz Varela - PT EL LENGUAJE ALGEBRAICO Hasta ahora siempre hemos trabajado en matemáticas con números y signos, es lo que se llama lenguaje numérico. A partir de ahora, vamos
TEMA Nº 1. Conjuntos numéricos
TEMA Nº 1 Conjuntos numéricos Aprendizajes esperados: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales
MATEMATICA GRADO 9 II PERIODO PROF. LIC. ESP. BLANCA NIEVES CASTILLO R. CORREO: cel
GUIA DE TEORIA NO. 1 LO QUE DEBO SABER Regla de Cramer Un sistema de ecuaciones lineales se dice de Cramer cuando cumple las siguientes condiciones: Es un sistema cuadrado, con igual número de ecuaciones
Créditos institucionales de la UA: 6 Material visual: Diapositivas. Unidad de competencia I Conceptos preliminares
UNIDAD ACADÉMICA PROFESIONAL TIANGUISTENCO PROGRAMA DE ESTUDIOS LICENCIATURA DE INGENIERÍA EN PRODUCCIÓN INDUSTRIAL UNIDAD DE APRENDIZAJE (UA): ÁLGEBRA Créditos institucionales de la UA: 6 Material visual:
UNIDAD 8 INECUACIONES. Objetivo general.
8. 1 UNIDAD 8 INECUACIONES Objetivo general. Al terminar esta Unidad resolverás inecuaciones lineales y cuadráticas e inecuaciones que incluyan valores absolutos, identificarás sus conjuntos solución en
FISICA I Repaso. Si el alumno no supera al maestro, ni es bueno el alumno; ni es bueno el maestro (Proverbio Chino)
Si el alumno no supera al maestro, ni es bueno el alumno; ni es bueno el maestro (Proverbio Chino) Profesor: Cazzaniga, Alejandro J. Física I E.T.N : 28 - República Francesa Pág. 1 de 9 Conjuntos numéricos
OPERACIONES CON POLINOMIOS
4. 1 UNIDAD 4 OPERACIONES CON POLINOMIOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las operaciones de suma, resta, multiplicación y división de polinomios.
TEMA 2.- NÚMEROS ENTEROS
TEMA 2.- NÚMEROS ENTEROS Matemáticas 1º ESO 1.- Números enteros Los números enteros comprenden: Números enteros positivos: +1, +2, +3, +4, (se corresponden con los números naturales: +4 = 4) Números enteros
CURSO PROPEDEUTICO DEALGEBRA PARA BQFT QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 2013 ELABORÓ ALEJANDRO JAIME CARRETO SOSA
QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 201 ELABORÓ ALEJANDRO JAIME CARRETO SOSA 1 Operaciones entre Quebrados (Fracciones) Sumar quebrados o fracciones: se calcula el común denominador,
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
APÉNDICE MATEMÁTICO DEL MÓDULO DE: GESTIÓN FINANCIERA
APÉNDICE MATEMÁTICO DEL MÓDULO DE: GESTIÓN FINANCIERA 1º CURSO DEL CICLO DE GRADO SUPERIOR DE ADMINISTRACIÓN Y FINANZAS. CONTENIDO: Números enteros Fracciones Potencias Igualdades algebraicas notables
Conjunto de Números Racionales.
Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números
Apuntes de matemáticas 2º ESO Curso
Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde a un número menor
LOGRO: Reconoce distintas representaciones de los números reales y usa sus propiedades para resolver Problemas.
ESTANDARES Utilizo números reales en sus diferentes representaciones y en diversos contextos. Resuelvo problemas y simplifico cálculos usando propiedades y relaciones de los números reales y de las relaciones
UNIDAD DE APRENDIZAJE I
UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.
TEMA 1. Los números enteros. Matemáticas
1 Introducción En esta unidad veremos propiedades de los números enteros, como se opera con ellos (con y sin calculadora), los números primos, máximo común divisor y mínimo común múltiplo y por últimos
TEMA 1: NÚMEROS REALES
TEMA 1: NÚMEROS REALES 1. INTRODUCCIÓN El conjunto formado por los números racionales e irracionales es el conjunto de los números reales, se designa por Con los números reales podemos realizar todas las
ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA
UNIDAD OBJETIVO: Resolverá situaciones y problemas en los que se apliquen ecuaciones de primer grado con una incógnita, sistemas de ecuaciones lineales con dos y tres incógnitas, mediante métodos algebraicos
FRACCIONES. La fracción se utiliza para representar las partes que se toman de un objeto que ha sido dividido en partes iguales.
FRACCIONES La fracción se utiliza para representar las partes que se toman de un objeto que ha sido dividido en partes iguales. Por ejemplo, dividimos una pizza en 8 partes iguales y cogemos tres. Esto
Matemáticas B 4º E.S.O.- Ecuaciones, Inecuaciones y Sistemas. 1
Matemáticas B 4º E.S.O.- Ecuaciones, Inecuaciones y Sistemas. 1 ECUACIONES INECUACIONES Y SISTEMAS ECUACIONES Una ecuación es una propuesta de igualdad en la que interviene alguna letra llamada incógnita.
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
2 Números racionales
008 _ 0-000.qxd 9//08 9:06 Página Números racionales INTRODUCCIÓN Los conceptos que se estudian en esta unidad ya han sido tratados en cursos anteriores. A pesar de ello, es importante volverlos a repasar,
Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales
1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro
LEY DE LOS SIGNOS, TEORÍA DE AGRUPAMIENTO Y ORDEN DE OPERACIONES
LEY DE LOS SIGNOS, TEORÍA DE AGRUPAMIENTO Y ORDEN DE OPERACIONES LEY DE LOS SIGNOS SUMA Si los números tienen el mismo signo se suman se deja el mismo signo. 3 + 5 = 8 ( 3) + ( 5) = 8 Si números tienen
Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros.
Los números enteros Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción
Por ejemplo, la necesidad de representar el dinero adeudado, temperatura bajo cero, profundidades con respecto al nivel del mar, etc.
NÚMEROS ENTEROS 1. LOS NÚMEROS ENTEROS. Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el sustraendo, pero en la vida nos encontramos con operaciones de este
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual
Chapter Audio Summary for McDougal Littell Pre-Algebra
Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter 5 Rational Numbers and Equations En el capítulo 5 aprendiste a escribir, comparar y ordenar números racionales. Después aprendiste a sumar
Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009
Lección 10: División de Polinomios Dra. Noemí L. Ruiz Limardo 009 Objetivos de la lección Al finalizar esta lección los estudiantes: Dividirán polinomios de dos o más términos por polinomios de uno y dos
Los Conjuntos de Números
Héctor W. Pagán Profesor de Matemática Mate 40 Debemos recordar.. Los conjuntos de números 2. Opuesto. Valor absoluto 4. Operaciones de números con signo Los Conjuntos de Números Conjuntos importantes
Componentes, cantidades y unidades
Componentes, cantidades y unidades DC DC Corriente Directa CC Corriente Continua Corriente que se mueve a través de un circuito en una misma dirección. 1 Símbolos esquemáticos para circuitos DC Batería
UNIDAD 2: ECUACIONES E INECUACIONES. SISTEMAS DE ECUACIONES
UNIDAD 2: ECUACIONES E INECUACIONES. SISTEMAS DE ECUACIONES 1. IDENTIDADES Y ECUACIONES 2. ECUACIONES POLINÓMICAS 3. ECUACIONES BICUADRADAS 4. ECUACIONES RACIONALES 5. ECUACIONES IRRACIONALES 6. ECUACIONES
TEMA 1. Números Reales. Teoría. Matemáticas
1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo
Definiciones I. Una solución de una ecuación son aquellos valores que al sustituirlos en la ecuación hacen que la igualdad sea cierta.
Ecuaciones Definiciones I Una ecuación es una igualdad algebraica que se verifica únicamente para un conjunto determinado de valores de las variables o indeterminadas que forman la ecuación. a + b 2 =
TEMA 2. Números racionales. Teoría. Matemáticas
1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden
Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto...
ÍNDICE Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales... 3 Ejercicios... 5 Orden y valor absoluto... 6 Ejercicios... 7 Suma de números reales... 9 Reglas
Una fracción decimal tiene por denominador la unidad. Número decimal. Es aquel que se puede expresar mediante una fracción
Fracción decimal Una fracción decimal tiene por denominador la unidad seguida de ceros. Número decimal decimal. Es aquel que se puede expresar mediante una fracción Consta de dos partes: entera y decimal.
RESUMEN DE CONCEPTOS
RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo
Operaciones de números racionales
Operaciones de números racionales Yuitza T. Humarán Martínez Adapatado por Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo El conjunto de los números racionales consiste
Ecuaciones de primer grado
Matemáticas Unidad 16 Ecuaciones de primer grado Objetivos Resolver problemas que impliquen el planteamiento y la resolución de ecuaciones de primer grado de la forma x + a = b; ax = b; ax + b = c, utilizando
UNIDAD DIDÁCTICA #1 CONTENIDO
UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA
Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =
1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite
Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.
Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos
Ecuaciones, inecuaciones y sistemas
Ecuaciones, inecuaciones y sistemas. Matemáticas Aplicadas a las Ciencias Sociales I 1 Ecuaciones, inecuaciones y sistemas Ecuaciones con una incógnita. Ecuación.- Una ecuación es una igualdad de expresiones
TEMA 3. NÚMEROS RACIONALES.
TEMA 3. NÚMEROS RACIONALES. Concepto de fracción Una fracción es el cociente de dos números enteros a y b, que representamos de la siguiente forma: b denominador, indica el número de partes en que se ha
Bloque 1. Aritmética y Álgebra
Bloque 1. Aritmética y Álgebra 3. Los números racionales 1. Los números racionales o fraccionarios Fracción es una o varias partes iguales en que dividimos la unidad. Las fracciones representan siempre
Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma
Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Estamos acostumbrados a trabajar con números naturales o enteros en la vida cotidiana pero en algunas ocasiones tendrás
CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.
CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad
Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1
Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente
Por qué expresar de manera algebraica?
Álgebra 1 Sesión No. 2 Nombre: Fundamentos de álgebra. Parte II. Objetivo: al finalizar la sesión, el estudiante conocerá e identificará las expresiones racionales, las diferentes formas de representar
Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo
Desigualdades o inecuaciones lineales en una variable Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades Una desigualdad o inecuación usa símbolos como ,, para representar
Unidad #1: DESIGUALDAD o inecuaciones COLEGIO BENIGNO TOMÁS ARGOTE UNIDAD # 1
ÁREA: Algebra COLEGIO BENIGNO TOMÁS ARGOTE UNIDAD # 1 ASIGNATURA: Matemática. NIVEL: Duodécimo grado ( CIENCIAS ) PROFESOR: José Alexander Echeverría Ruiz TRIMESTRE: I TÍTULO DE LA UNIDAD DIDÁCTICA: 1.
Radicales y sus operaciones MATEMÁTICAS 2º CICLO E.S.O.
Radicales y sus operaciones MATEMÁTICAS º CICLO E.S.O. Objetivos: Simplificar radicales Efectuar operaciones de suma, resta, multiplicación y división con radicales Racionalizar parte de una fracción Notación:
Ecuaciones de primer grado
Ecuaciones de primer grado º ESO - 3º ESO Definición, elementos y solución de la ecuación de primer grado Una ecuación de primer grado es una igualdad del tipo a b donde a y b son números reales conocidos,
Expresiones algebraicas
Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA III : LOS NÚMEROS ENTEROS Los números negativos. Su necesidad. El conjunto de los números enteros. Valor absoluto de un número entero. Opuesto de un número entero. Suma
Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios
Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios Prof. Caroline Rodríguez Martínez Polinomios Un polinomio es un solo término o la suma de dos o más términos se compone
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Expresiones algebraicas. Ecuaciones de primer grado
lasmatemáticaseu Pedro Castro Ortega Epresiones algebraicas Ecuaciones de primer grado 1 Epresiones algebraicas 11 Definición de epresión algebraica Una epresión algebraica es un conjunto de números letras
TEMA 2: NÚMEROS ENTEROS
TEMA : NÚMEROS ENTEROS 1. NÚMEROS ENTEROS Los números naturales se utilizan para expresar matemáticamente multitud de situaciones cotidianas. Sin embargo, a veces no sirven para cuantificar las situaciones
Tema 1.- Los números reales
Tema 1.- Los números reales Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se puede expresar en forma de fracción. El número irracional
TEMA 2: NÚMEROS ENTEROS 1º ESO. MATEMÁTICAS
TEMA 2: NÚMEROS ENTEROS 1º ESO. MATEMÁTICAS Por qué aparecen los números enteros? Por qué aparecen los números enteros? La cueva de Voronia, es la cueva conocida más profunda de la Tierra, localizada
Expresiones algebraicas
Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos
SERIE INTRODUCTORIA. REPASO DE ALGEBRA.
SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento
El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras.
1.- LOS NÚMEROS REALES Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción. El número irracional más
CONJUNTO DE LOS NUMEROS ENTEROS
República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental Politécnica de la Fuerza Armada Núcleo Caracas CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS NUMEROS
Número que expresa parte de un todo. Toda fracción se representa como el cociente de dos números enteros en la forma con q 0
Fracciones Fracciones Número que expresa parte de un todo. Toda fracción se representa p como el cociente de dos números enteros en la forma con q 0 numerador denominador p q Propiedad fundamental de las
CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García
INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE º E.S.O. (ª parte) NÚMEROS ENTEROS.-) Realiza las operaciones siguientes () (0) (-) ( ) (-) ( -) (-) ( -) (-) () - - - -0 - - - ( -) ( ) ( -) ( ) ( ) ( - ) ( - ) (
Unidad 1: Los números enteros Pag. 3 Unidad 2: Potencias y raíces.pag. 33 Unidad 3: Fracciones y decimales..pag. 64 Unidad 4: Expresiones algebraicas
Unidad 1: Los números enteros Pag. 3 Unidad 2: Potencias y raíces.pag. 33 Unidad 3: Fracciones y decimales..pag. 64 Unidad 4: Expresiones algebraicas Pag. 91 Unidad 5: Ecuaciones Pag. 130 Los números enteros
GAIA.- Números Enteros
GAIA.- Números Enteros 1.- EL CONJUNTO DE LOS NÚMEROS ENTEROS.- El conjunto de los números enteros está formado por todos los números naturales (N) precedidos del signo más (+), los números naturales precedidos
Desigualdades con Valor absoluto
Resolver una desigualdad significa encontrar los valores para los cuales la incógnita cumple la condición. Para ver ejemplos de las diferentes desigualdades que hay, haga Click sobre el nombre: Desigualdades
ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I
Fracción Una fracción es el cociente de dos números enteros a y b, que representamos de la siguiente forma: b a denominador, indica el número de partes en que se ha dividido la unidad. numerador, indica
TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0
Ficha 0 Un monomio es una expresión algebraica formada por el producto de un número, llamado coeficiente, por una o más variables con exponente natural o cero, llamadas parte literal. El grado es la suma
Nombre del estudiante: Grupo: Hora: Salón:
Instituto Tecnológico de Saltillo. Cuadernillo de Ejercicios de Álgebra. CURSO DE NIVELACIÓN DE ÁLGEBRA 2013 Nombre del estudiante: Grupo: Hora: Salón: CONTENIDO DEL CUADERNILLO. UNIDAD NÚMEROS REALES.
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados
Ecuaciones lineales en una variable. Prof. Anneliesse Sánchez Adaptada por Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo
Ecuaciones lineales en una variable Prof. Anneliesse Sánchez Adaptada por Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Qué es una ecuación? Una ecuación es una oración que expresa la igualdad
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:
MATEMÁTICAS UNIDAD 4 GRADO 8º. Números complejos, Inecuaciones y desigualdades
1 Franklin Eduardo Pérez Quintero MATEMÁTICAS UNIDAD 4 GRADO 8º Números complejos, Inecuaciones y desigualdades 1 2 Franklin Eduardo Pérez Quintero LOGRO: Identifica los conjuntos de números que pertenecen
Guía de Estudio Prueba de Aptitud Académica Matemática
Escuela Politécnica PROGRAMA DE PRUEBAS DE ADMISIÓN Guía de Estudio Prueba de Aptitud Académica Matemática Ejército de Guatemala Visite: www.politecnica.edu.gt INTRODUCCIÓN Esta guía de estudio de matemática
EJERCICIOS RESUELTOS DE NÚMEROS REALES
EJERCICIOS RESUELTOS DE NÚMEROS REALES 1. Expresar mediante intervalos los siguientes subconjuntos de R: a) A = x œ R 5-x 4+x < 0 b) B = x œ R x+ d) D = x œ R x -4 x-9 0 e) E = { x œ R x + 4x x - } x-
3. Muestra en un diagrama de Venn-Euler estas mismas operaciones.
Unidad. I. Conjuntos Conceptos: Conjunto Conjunto por extensión y por comprensión Cardinalidad Conjunto universal Conjunto vacío Subconjunto Revisa como se efectúan cada una de las operaciones entre conjuntos,
