Teorema Central del Límite. Cálculo Numérico y Estadística. Grado en Química. U. de Alcalá. Curso F. San Segundo.

Documentos relacionados
VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS

Teorema Central del Límite. Cálculo Numérico y Estadística. Grado en Química. U. de Alcalá. Curso F. San Segundo.

Sumas/promedios de variables aleatorias

Tema 4: Probabilidad y Teoría de Muestras

Tema 13: Distribuciones de probabilidad. Estadística

Tema 4: Variables Aleatorias

9 APROXIMACIONES DE LA BINOMIAL

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

Distribuciones de Probabilidad

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00

Técnicas Cuantitativas para el Management y los Negocios I

Métodos Estadísticos de la Ingeniería Práctica 5: Distribuciones de Probabilidad y el Teorema Central del

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD

Cálculo y EstadísTICa. Primer Semestre.

DISTRIBUCIÓN N BINOMIAL

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA

Modelos de distribuciones discretas y continuas

Tema 6: Modelos de probabilidad.

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Definición de probabilidad

Resumen teórico de los principales conceptos estadísticos

TH. DE CHEBYSHEV DISTRIB. NORMAL.

Maestría en Bioinformática Probabilidad y Estadística: Clase 3

Apuntes de Clases. Modelos de Probabilidad Discretos

Probabilidad y Estadística

ANEXO.- DISTRIBUCIÓN BINOMIAL. DISTRIBUCIÓN NORMAL

VARIABLES ALEATORIAS INTRODUCCIÓN

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Tema 3. Probabilidad y variables aleatorias

T1. Distribuciones de probabilidad discretas

Jueves, 3 de Noviembre de La parte escrita del examen representa el 40 % de la nota y el cuestionario el 60 % restante.

ESTADÍSTICA INFERENCIAL. Sesión 6: Distribuciones de probabilidad para variables aleatorias continuas

Capítulo. Distribución de probabilidad normal. Pearson Prentice Hall. All rights reserved

Variables aleatorias

1. Variables Aleatorias Discretas

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

6.3. Distribuciones continuas

Estadística Grupo V. Tema 10: Modelos de Probabilidad

TEMA 3: Probabilidad. Modelos. Probabilidad

Distribuciones de probabilidad

1 CÁLCULO DE PROBABILIDADES

VARIABLES ALEATORIAS CONTINUAS 1º Bto. CC.SS.

CAPÍTULO 6: VARIABLES ALEATORIAS

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 6)

Tema 7: Estadística y probabilidad

1. La Distribución Normal

Distribuciones de Probabilidad

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Variables aleatorias 1. Problema 1

Tema 6. Variables aleatorias continuas. Distribución Normal

Modelos de distribuciones discretas y continuas

Distribuciones de probabilidad con la calculadora científica Classwiz FX-570/991 SP XII

Bioestadística. El resultado de un experimento aleatorio puede ser descrito en ocasiones como una cantidad numérica.

Distribuciones de probabilidad

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 23

Prof. Eliana Guzmán U. Semestre A-2015

Distribución binomial

Probabilidad del suceso imposible

Cap. Distribuciones de. probabilidad. discreta. Distribuciones de probabilidad. discreta Pearson Prentice Hall. All rights reserved

Tema 3: VARIABLES ALEATORIAS

Bioestadística. Curso Capítulo 3

ESTADÍSTICA INFERENCIAL

La distribución normal

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

Tema 5 Algunas distribuciones importantes

Discretas. Continuas

Examen Final A Total puntos: /100. Buena suerte y éxito! Utilice la siguiente información para responder a las preguntas 1 al 5.

UNIVERSIDAD DE MANAGUA Al más alto nivel

Estadística Aplicada

Distribuciones Continuas

Estadística con. Práctica 3: Probabilidad. Introducción. 1. Modelos discretos. M. Iniesta Universidad de Murcia

Sección. Aplicaciones de la Distribución de probabilidad normal. Pearson Prentice Hall. All rights reserved

EXAMEN DE ESTADÍSTICA Septiembre 2011

Variables aleatorias

TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL.

Tema 6 - Introducción. Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo.

Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM

Práctica 4 TEOREMA CENTRAL DEL LÍMITE

Bioestadística. El resultado de un experimento aleatorio puede ser descrito en ocasiones como una cantidad numérica.

Probabilidad y Estadística

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

ESTADÍSTICA. Rincón del Maestro:

La distribución normal o gaussiana es la distribución. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si

Tema 4: Probabilidad y Teoría de Muestras

Técnicas de Inferencia Estadística II. Tema 2. Contrastes de hipótesis en poblaciones normales

1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que 200.

CONTRASTE DE HIPÓTESIS TEMA 4.1 CONTRASTES BILATERALES

Tema 13. Distribuciones de Probabilidad Problemas Resueltos

TEMA 3. Algunos modelos de probabilidad de tipo discreto. 3.1 Al finalizar el tema el alumno debe conocer...

Tema 3: Estimación estadística de modelos probabilistas. (primera parte)

GRADO TURISMO TEMA 7: INTRODUCCIÓN A LOS MODELOS DE PROBABILIDAD

Transcripción:

Teorema Central del Límite. Cálculo Numérico y Estadística. Grado en Química. U. de Alcalá. Curso 2014-2015. F. San Segundo.

Variables de Bernouilli. Una de las familias de variables aleatorias más básicas son las variables de Bernouilli. Una variable de tipo sólo toma dos valores: el, llamado arbitrariamente éxito y el, llamado fracaso. X Ber(p) 1 0 X Ber(p) La tabla de densidad de una variable (el símbolo signi ca "de tipo") es: VALOR 1 0 Probabilidad p q donde las probabilidades de éxito y de fracaso tienen que cumplir necesariamente Las variables de tipo Ber(p) p son útiles como modelos teóricos de ese tipo tan común de situaciones en las que el experimento tiene sólo dos resultados posibles, pero con distintas probabilidades. Los valores "1"" y "0" representan respuestas a preguntas de tipo "Sí / No". Por ejemplo, una moneda no trucada corresponde a una variable. q p + q = 1. Ber(1/2) 2/14

Media y varianza de las variables de tipo Bernouilli. Aplicando la de nición de media, si X Ber(p) De la misma forma, para la varianza se tiene: entonces: μ = 1 p + 0 q = p. σ 2 = (1 p) 2 p + (0 p) 2 q = q 2 p + p 2 q = p q Las Variables de Bernouilli como piezas básicas de construcción. Ya hemos visto anteriormente que a menudo se usa la técnica de estudiar las variables aleatorias compuestas de otras variables más sencillas. Esa es una de las razones que hacen importantes a las variables de Bernouilli. Al combinar, sumándolas, unas cuantes variables de Bernouilli, se obtiene la familia más importante de variables aleatorias discretas: las binomiales que vamos a estudiar con detalle. 3/14

Variable Binomial. Una variable es de tipo binomial, con parámetros y, si es la suma de variables independientes, todas de tipo. En ese caso escribimos. De forma equivalente: Una variable binomial representa el número total de éxitos que se obtiene en repeticiones independientes de un experimento básico en el que sólo hay dos resultados posibles, que llamamos arbitrariamente éxito y fracaso, con probabilidades respectivas p y q = 1 p. 1 p = 1 6 lanzamos el dado 15 veces y nos preguntamos por el número de veces que se obtiene un 1 Por ejemplo, al lanzar un dado decimos que éxito es sacar un, de manera que. Si esas n = 15 tiradas, estamos pensando en la variable binomial X B(15, 1 ). En otro 6 ejemplo, en un segundo concreto, cada uno de los átomos que forman los aproximadamente 0.0169 g de Potasio 40 que contiene el cuerpo humano puede desintegrarse (éxito) o no. Sabiendo la probabilidad B(n, p) X n p n Ber(p) X = B(n, p) X B(n, p) significa X = X 1 + + X n, con X 1,, X n Ber(p) independientes. n X B(n, p) p de desintegración de cada uno de ellos por segundo podemos calcular la actividad radiactiva del potasio en nuestro cuerpo (en becquerelios)? en 4/14

Tabla (función) de densidad de probabilidad de una variable Binomial. B(n, p) Puesto que hacemos una serie de n 0 n k repeticiones del experimento, el número total de éxitos tiene que ser un valor entre y. Llamemos a ese valor. Entonces usando Combinatoria (ver la Sección 5.1.2 del libro) se obtiene esta espresión para la probabilidad de que k k n valor (probabilidad de éxitos en repeticiones): X tome el n P(X = k) = ( ) p k k q n k n Recuerda que es un número combinatorio. Por ejemplo, para se obtiene esta tabla de densidad: k ( k ) X B(4, 2 ) 7 VALOR 0 1 2 3 4 Probabilidad 0.2603082 0.4164931 0.2498959 0.0666389 0.0066639 k = 3 donde, por ejemplo, si : 4 P(X = 3) = ( ) ( 2 ) ( 5 ) 0.0666389 3 7 7 3 4 5/14

Media y desviación típica de una variable Binomial. Si X B(n, p) Bernouilli es fácil obtener: B(n, p) es una binomial, usando su descomposición como suma de variables de μ X = n p. De la misma forma, pero usando además la independencia se obtiene este resultado para la varianza: σx 2 = n p q, y por tanto σ X = n p q. Ejemplo: para la variable X B(4, 2 ) 7 que hemos visto antes es: 2 8 μ X = 4 =, σ 2 2 5 40 X = 4 =. 7 7 7 7 49 6/14

La Binomial en R. En R disponemos de varias funciones para trabajar con distribuciones binomiales. Las tres que más vamos a usar son: dbinom pbinom qbinom rbinom. Veámoslas por orden: La función dbinom Sirve para calcular la función de densidad de una variable binomial. Por ejemplo, si X B(4, 2 ) 7 B(n, p) P(X = 3), para calcular hacemos dbinom(3, size = 4, prob = 2/7) ## [1] 0.0666389 Para calcular la tabla de densidad completa haríamos: dbinom(0:3, size = 4, prob = 2/7) ## [1] 0.2603082 0.4164931 0.2498959 0.0666389 7/14

La función pbinom. Esta función sirve para calcular la función de distribución de una variable binomial. Si 8 X B(20, ) 35 pbinom(5, size = 20, prob = 8/35) F(5) = P(X 5), para calcular en R usamos: ## [1] 0.7019617 La función rbinom. Esta función sirve para generar valores aleatorios que se distribuyen según las probabilidades de la distribución binomial. Por ejemplo, para generar 20 valores aleatorios de una variable X B(4, 1/3) rbinom(20, size = 4, prob = 1/3) ## [1] 0 2 1 0 0 1 1 0 2 1 2 1 0 1 2 2 1 0 2 1 Fíjate en que, por ejemplo, en esta colección particular de valores no aparece el ni el, X aunque son valores posibles de. 4 3 8/14

Grá co de una distribución binomial típica. La distribución de probabilidad correspondiente a la binomial B(10, 1/3) es: Las binomiales con pequeño ( ) y moderado (ni muy cerca de ni muy cerca de ) tienen un aspecto similar a este, más o menos asimétricas según sea el valor de. Hay otros dos casos interesantes. n n < 30 p 0 1 p 9/14

n Un caso más difícil: grande pero pequeño. Si tenemos una distribución con un valor grande de (por ejemplo ) pero con pequeño (por ejemplo ), de forma que ( ) entonces su grá ca tiene un aspecto similar a este, o más exageradamente asimétrico aún: p n n = 500 p p = 0.01 n p > 5 Este es un caso especial, pero que se presenta con mucha frecuencia en algunos procesos naturales (los "sucesos raros"). La técnica más usada para este tipo de situaciones es aproximar la Binomial por una Distribución de Poisson, que se describen en el Capítulo 8 del libro. 10/14

Y un caso muy importante: grande y no demasiado pequeño. Por sus consecuencias este es el caso que más nos interesa. La grá ca de una binomial como B(80, 1/4) es así: n p El per l de esta distribución tiene forma de curva con forma de campana. Cuando n se hace más grande (cientos o miles), la diferencia entre valores cercanos de la binomial se hace irrelevante. Lo importante entonces es el intervalo al que pertenece el valor de la variable. Es un paso de lo discreto a lo continuo. 11/14

La curva normal. Cuál es esa curva con forma de campana? De Moivre fue capaz de resolver el problema. Si B(n, p) n n > 30 p μ = n p σ = n p q tenemos una binomial con grande ( ) y moderado, de manera que función normal:,, entonces la curva que aproxima a la binomial es la grá ca de la 1 f μ,σ (x) = σ 2π e x μ 1 ( ) 2 σ 2 En realidad se trata de una familia de curvas, que cambian con los valores de y : μ indica la posición del máximo de la campana. σ controla la anchura de la campana. En el Tutorial05 hay herramientas para explorar esta familia de curvas (usando por ejemplo GeoGebra). μ σ 12/14

Un ejemplo. Por ejemplo, para la binomial esta: B(80, 1/4) la curva normal superpuesta a la distribución es 13/14

Usando la curva para calcular la probabilidad. Si en una binomial como P(X = k) X B(80, 1/4) calculamos la probabilidad de un valor individiual,, obtenemos normalmente valores extremadamente pequeños. Lo relevante en este caso son las preguntas sobre intervalos, como corresponde con el área sombreada: P(20 X 25). En el grá co esto Y esa probabilidad se corresponde aproximadamente con el área bajo la curva entre x = 25 n. A medida que aumenta, usar la binomial se hace mucho más difícil que usar la curva. Para calcular ese área necesitaremos integrales. x = 20 y 14/14