EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRÁCTICA Nº 9 : EL VATÍMETRO CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO

Documentos relacionados
EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 6 PRÁCTICA Nº 8 : EL VATÍMETRO DIGITAL CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 8 PRÁCTICA Nº 8 : EL VATÍMETRO DIGITAL VATIMETRO DIGITAL SUNEQUIPLO DWM-03060

El VATIMETRO PRUEBAS SOBRE EL TRANSFORMADOR MONOFASICO DE TENSION

El VATÍMETRO DIGITAL CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO DE TENSION

El VATÍMETRO DIGITAL CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO DE TENSION

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE

CAPITULO XI EL VATIMETRO. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito

LABORATORIO DE TRANSFORMADORES

INDICE INTRODUCCION 1

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 7A PRÁCTICA Nº 7 MEDICIONES EN CORRIENTE ALTERNA (AC)

INSTRUMENTOS DE MEDICION DE CORRIENTE ALTERNA. Interpretar las características nominales descritas en los instrumentos de medición para AC.

PRESENTACIÓN X-Y MEDICIONES CON EL OSCILOSCOPIO SOBRE CIRCUITOS RC Y RL

Universidad de la República Facultad de Ingeniería. Electrotécnica 1. Clase 8 - Circuitos Magnéticos y Transformadores. Curso 2018

Andrés García Rodríguez. I.E.S. Enrique Nieto. Electrotecnia 1

EL VATIMETRO ANALÓGICO. CIRCUITOS TRIFÁSICOS: CONEXIÓN EN ESTRELLA Y EN DELTA.

Máquinas e Instalaciones Eléctricas

GUÍA 6: CIRCUITOS MAGNÉTICOS Electricidad y Magnetismo

PARÁMETROS ELÉCTRICOS DE LAS INSTALACIONES ELÉCTRICAS

Laboratorio de Física II

LABORATORIO DE CONVERSORES ESTÁTICOS PRÁCTICA N 9

Parte II. Transformador Monofásico

APUNTE: EL TRANSFORMADOR

:: MARCO TEÓRICO [12.3] En la figura (12.1) se muestran dos bobinas B1 y B2 próximas entre si pertenecientes a circuitos diferentes.

UNIVERSIDAD DE COSTA RICA

CARACTERISTICAS DE LOS DIODOS CIRCUITOS RECTIFICADORES DE MEDIA ONDA

FÍSICA GENERAL II Programación. Contenidos

SISTEMAS ELECTROMECÁNICOS

INSTITUTO REGIONAL DE OCCIDENTE IRO-INATEC Electricidad Industrial- Vespertino La Potencia Eléctrica (P)

Electromagnétismo II: aplicación de la Ley de Faraday. Versión 1.0

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 4 PRÁCTICA Nº 5 MEDICIONES CON EL OSCILOSCOPIO

EL DIODO ZENER. REGULADORES DE VOLTAJE

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

Inducción electromagnética. 1. Flujo de campo magnético

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética.

1. Estudiar la FEM inducida en bobinas y la inductancia mutua. 2. Estudiar el cambio de la inductancia en una bobina al variar el núcleo laminado.

En la figura se muestra un generador alterno sinusoidal conectado a una resistencia.

Laboratorio de Técnicas Experimentales II - 2º Física Laboratorio L1 - "Osciloscopio"

APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN

TEMA 4. REPASO DE LAS LEYES Y PRINCIPIOS DE ELECTROMAGNESTISMO.

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

PRÁCTICA 5 EL TRANSFORMADOR

PRESENTACIÓN X-Y MEDICIONES CON EL OSCILOSCOPIO SOBRE CIRCUITOS RC Y RL

Experimento de laboratorio No. 6 Estudio de la ley de Faraday en un transformador.

MAGNETISMO EN LA MATERIA.

Histéresis ferromagnética y temperatura de Curie

Histéresis magnética Transiciones de fase magnéticas

Interacción electromagnética

Generación y medición de campos magnéticos

Histéresis ferromagnética y temperatura de Curie

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

Técnicas Experimentales II: Módulo de Electromagnetismo

UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO.

Electricidad y Magnetismo. Unidad 7. Inducción Electromagnética

CURSO CERO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

Práctico de Laboratorio N 7

sen(ωt + ϕ) donde la amplitud de corriente en función de la amplitud del voltaje es: = +

es e valor máximo de la fem

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 1

PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

EL TRANSFORMADOR IDEAL

INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Interpretar las características nominales de los instrumentos de medición AC.

Laboratorio de Maquinas Eléctricas, Edificio 4 (CITT). I. OBJETIVOS

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 10 EL CAMPO MAGNETICO DEFINICIÓN DEL VECTOR INDUCCIÓN MAGNÉTICA Y DEL CAMPO MAGNÉTICO.

UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INGENIERÍA ELÉCTRICA

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

EXPERIMENTO DE LABORATORIO No 1 EL TRANSFORMADOR MONOFASICO. Página 1 de 6

Nombre: DNI: (PRIMERA PARTE)

CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

No, ya que existen perdidas, pudiendo hacer tal conexionado en un transformador ideal.

EL DIODO ZENER. REGULADORES DE VOLTAJE

Electrotecnia. Proves d accés a la universitat. Serie 3. Convocatòria Primera parte

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

DIODOS REALES RELACIÓN CORRIENTE-VOLTAJE DE LA JUNTURA PN

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA

CONTENIDOS. Contenidos. Presentación. xiii

Tema Fuerza electromotriz inducida

Inducción electromagnética

Eje Magnético. Eje magnético de la barra de la línea que une los dos polos.

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11

Material básico del laboratorio de Electrónica y Circuitos. Generador de señales MTX-3240 o similar. Osciloscopio digital TDS-210 o similar.

1. Estudiar la relación entre campo magnético variable y f.e.m. inducida en una bobina.

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V

Faraday tenía razón!! María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999

PRESENTACIÓN Y OBJETIVOS...17 AUTORES...19

1. MOTOR DE CORRIENTE CONTINUA Y DINAMO

- Comprobar experimentalmente, las relaciones de transformación de impedancia, voltaje y corriente de un transformador ideal.

Consiste en provocar una corriente eléctrica mediante un campo magnético variable.

Cap. 1.- Leyes de Maxwell en forma diferencial e integral

INDUCCIÓN ELECTROMAGNÉTICA

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

EL VATIMETRO ANALOGICO. CIRCUITOS TRIFASICOS: CONEXION EN ESTRELLA Y EN DELTA.

PROCEDIMIENTOS DE MEDICIONES DC SOBRE DISPOSITIVOS DE DOS TERMINALES

República Bolivariana de Venezuela Ministerio del Poder Popular Para La Educación U.E.P. Instituto Educacional Aragua Maracay-Edo.

Electromagnetismo (Todos. Selectividad Andalucía )

PRÁCTICA No. 9 RESPUESTA DE RÉGIMEN TRANSITORIO EN CIRCUITOS RLC

Transcripción:

EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRÁCTICA Nº 9 : EL VATÍMETRO CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO VATIMETRO DIGITAL SUNEQUIPLO DWM-03060

EXPERIMENTO DEMOSTRATIVO DE LA PRÁCTICA 8 En el laboratorio se van a montar los circuitos mostrados u otros equivalentes para demostrar la diferencia entre las mediciones obtenidas con instrumentos que leen el verdadero valor rms y las obtenidas con otros que no tienen esta capacidad de medición. Circuito solo con Variac

Circuito con Variac y dimmer

VATIMETRO ANALÓGICO: INSTRUMENTO ELECTRODINAMOMÉTRICO Galvanómetro de D'Arsonval Instrumento electrodinamométrico

IDENTIFICACIÓN TERMINALES DEL VATIMETRO MONOFÁSICO Multiplicador V 1 = 120 V V 2 = 240 V I 1 = 1 A 1 2 I 2 = 5 A 5 10

FORMAS DE CONEXIÓN DE UN VATIMETRO MONOFÁSICO PRIMERA FORMA * La potencia medida por el vatímetro es la suma de la potencia en la carga más la potencia disipada por la bobina de corriente. * Conveniente cuando la resistencia de carga es mucho mayor que la resistencia de la bobina de corriente.

FORMAS DE CONEXIÓN DE UN VATIMETRO MONOFÁSICO SEGUNDA FORMA * La potencia medida por el vatímetro es la suma de la potencia en la carga más la potencia disipada por la bobina de voltaje. * Conveniente cuando la resistencia de carga es mucho menor que la resistencia de la bobina de voltaje.

COMPENSACIÓN DEL VATIMETRO MONOFÁSICO Vatímetro analógico sin compensación conectado en la segunda forma Vatímetro compensado: El campo del electroimán es proporcional a i p. El vatímetro indica la potencia en R.

COMO SABER SI UN VATIMETRO ESTÁ COMPENSADO? *Se conecta el vatímetro en la segunda forma de conexión. * Se desconecta la carga R, por lo que i c es cero. * Si está compensado, la lectura del instrumento es cero.

TRANSFORMADOR MONOFÁSICO * Es un dispositivo constituido por dos o más bobinas de material conductor, aisladas entre sí eléctricamente y enrolladas alrededor de un mismo núcleo de material ferromagnético. * Convierte la energía eléctrica alterna de un cierto nivel de tensión, en energía alterna de otro nivel de tensión y misma frecuencia, por medio de la inducción electromagnética.

CONCEPTOS FUNDAMENTALES * Un campo magnético es la región del espacio donde se manifiestan acciones sobre las agujas magnéticas. * Un dipolo magnético es un elemento puntual que produce un campo magnético. * La variable física que caracteriza a un dipolo magnético es su momento magnético. * La inducción electromagnética es el fenómeno que origina la producción de una fuerza electromotriz (voltaje) en un medio o cuerpo expuesto a un campo magnético variable. (Ley de Faraday, una de las cuatro Ecuaciones de Maxwell). v(t) = N dφ(t) dt

CONCEPTOS FUNDAMENTALES * La permeabilidad magnética µ es la capacidad de una sustancia o medio para atraer y hacer pasar a través de sí los campos magnéticos. Relaciona la densidad de flujo magnético B con la intensidad de campo H. Esta relación puede ser lineal o no lineal. B = (µ, H). *Según la característica de µ, hay materiales ferromagnéticos, paramagnéticos y diamagnéticos. * En los materiales ferromagnéticos la magnetización depende de la historia magnética del material y pueden presentar magnetización en ausencia de corriente (imanes permanentes, usados para el núcleo de los transformadores). Se caracterizan por el ciclo de histéresis que se presenta en el plano B,H.

CURVA DE MAGNETIZACIÓN (CICLO DE HISTÉRESIS) *En un material ferromagnético (núcleo del transformador) que no ha sido sometido a campos electromagnéticos, inicialmente los momentos magnéticos tienen direcciones aleatorias. Al aplicar corriente eléctrica, los momentos magnéticos se empiezan a orientar. *La relación entre la densidad de flujo magnético, que depende de la orientación de los momentos magnéticos, y la intensidad de campo, relacionada con la corriente que se aplique, está dada por la ecuación: B = f (µ, H) donde B: Densidad de flujo magnético H: Intensidad de campo µ: Permeabilidad magnética *La curva que se obtiene al representar esta función en el plano (H,B) se llama curva de magnetización o curva de histéresis del elemento ferromagnético.

ANÁLISIS DETALLADO DE LA CURVA DE MAGNETIZACIÓN

CURVA DE MAGNETIZACIÓN DETALLADA El área dentro de la curva es la energía disipada por el material ferromagnético en forma de calor durante el proceso cíclico.

TRANSFORMADOR IDEAL Bobinas perfectamente acopladas. El flujo es Φ(t) en ambas. v 1 = N 1 dφ(t) dt v 2 = N 2 dφ(t) dt v 1 v 2 = N 1 N 2 = n Si no hay pérdidas en el sistema: v 1 i 1 + v 2 i 2 = 0 i 2 i 1 = v 1 v 2 = n

ACOPLAMIENTO DE RESISTENCIAS CON TRANSFORMADOR IDEAL i 2 i 1 = v 1 v 2 = n v 1 = nv 2 R L = v 2 i 2 i 1 = i 2 n R eq = v 1 i 1 = nv 2 i 2 n = n 2 v 2 = n 2 R L i 2

MODELO DEL TRANSFORMADOR REAL Reflejando la impedancia del secundario hacia el primario:

PRUEBAS BÁSICAS SOBRE UN TRANSFORMADOR MONOFÁSICO * Observación de la curva de histéresis * Determinación de la relación de vueltas n = N 1 /N 2 * Determinación de la ubicación de las marcas de polaridad * Relación de proporción entre la resistencia del primario R 1 y la del secundario R 2, expresada como K = R 2 /R 1 * Prueba de corto-circuito * Prueba de circuito abierto * Prueba de carga

CIRCUITO PARA OBSERVAR LA CURVA DE MAGNETIZACIÓN *El osciloscopio debe estar conectado flotando y en el modo XY. *En el canal horizontal (CHX) se está aplicando el voltaje sobre la resistencia de 1Ω, el cual es proporcional a la corriente que circula por el transformador, que es proporcional a la intensidad de campo eléctrico H, y tiene polaridad positiva. *En el canal vertical (CHY) se está aplicando el voltaje en el condensador de 500nF y tiene polaridad positiva. Cuál es la relación de este voltaje con la densidad de flujo magnético B?

RELACIÓN ENTRE EL VOLTAJE EN EL CONDENSADOR DEL CIRCUITO PARA OBSERVAR LA CURVA DE MAGNETIZACIÓN Y LA DENSIDAD DE FLUJO MAGNÉTICO B v 1 = i c R 2 + v c i c = C dv c dt dφ v 1 = N 1 dt = N 1A db dt Impedancia del condensador: Zc = 1 ωc = 1 2π 60Hz500nF = 5.305Ω La resistencia en serie con el condensador es de 1MΩ, por lo tanto Zc <<R 2, lo cual significa que la magnitud del voltaje sobre v c es mucho menor que sobre R 2 v 1 = i c R 2 = CR 2 dv c dt = N 1 A db dt CR 2v c = N 1 AB B = CR 2 N 1 A v c Nota: Es interesante observar las formas de onda de los dos canales en función del tiempo.

PROCEDIMIENTO PARA DETERMINAR LA RELACIÓN DE VUELTAS n n = V 1 /V 2

PROCEDIMIENTO PARA DETERMINAR LA UBICACIÓN DE LAS MARCAS DE POLARIDAD V = V1 - V2 V = V1 + V2

PROCEDIMIENTO PARA DETERMINAR LA RELACIÓN DE PROPORCIÓN K = R 2 /R 1 * Mida con el ohmetro digital la resistencia del arrollado del primario R 1 * Mida con el ohmetro digital la resistencia del arrollado del secundario R 2 * Determine la relación K = R 2 /R 1

PROCEDIMIENTO PARA REALIZAR LAS PRUEBAS DE CORTOCIRCUITO Sabiendo que I 1 = I 2 / n y conociendo el valor nominal de I 2, se aumenta el voltaje de entrada lentamente hasta que I 1 alcanza el valor nominal. V 1 está alrededor de pocos voltios. Se miden V 1 =V 1sc, I 1 = I 1sc y el ángulo de desfasaje entre V 1 e I 1, θ.

CÁLCULOS PARA DETERMINAR LOS PARÁMETROS RELACIONADOS CON LAS PRUEBAS DE CORTOCIRCUITO Z 1 = Z 1 cosθ + j Z 1 senθ Z 1 = V 1SC I 1SC K = R 2 R 1 R 2 = KR 1, y consideramos que L 2 = KL 1 Z 1 cosθ = R 1 + n 2 R 2 = R 1 1+ Kn 2 Z 1 senθ = ωl 1 + ωn 2 L 2 = ωl 1 1+ Kn 2 ( ) R 1 = Z 1 cosθ ( 1+ Kn 2 ) ( ) L 1 = Z 1 senθ ω( 1+ Kn 2 )

PROCEDIMIENTO PARA REALIZAR LAS PRUEBAS DE CIRCUITO ABIERTO * Se aplica el voltaje nominal a la entrada * Se miden V 1 =V 1oc, I 1 = I 1oc, potencia en la entrada W 1oc y V 2.

CÁLCULOS PARA DETERMINAR LOS PARÁMETROS RELACIONADOS CON LAS PRUEBAS DE CORTOCIRCUITO * Se considera que la impedancia formada por R 1 y L 1 es despreciable frente a la impedancia en paralelo, por lo tanto las mediciones permiten determinar los parámetros Lm y Rp.

PROCEDIMIENTO PARA REALIZAR LA PRUEBA DE CARGA * Para diferentes valores de la resistencia de carga R se van a medir el voltaje de entrada V 1L, la corriente de entrada I 1L, la potencia de entrada W 1L usando el vatímetro digital y el voltaje sobre la carga V 2L. * Con las mediciones realizadas se elaborarán tres gráficas. * Se calcula la regulación η en el secundario mediante la siguiente fórmula: η = V sec(vacío) V sec(plena carga) V sec(vacío) 100%

CRONOGRAMA DE TRABAJO PARA LA PRÁCTICA Nº 8 Conocimiento del vatímetro digital y del transformador bajo estudio Medición de la relación de vueltas, la polaridad de los arrollados y la relación K Obtención del ciclo de histéresis Realización de las pruebas de cortocircuito Realización de las pruebas de circuito abierto Realización de las pruebas de carga 30 minutos 30 minutos 30 minutos 30 minutos 30 minutos 30 minutos