Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia"

Transcripción

1 Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Podemos decir que en electricidad y electrónica las medidas que con mayor frecuencia se hacen son de intensidad, tensión y resistencia. A lo largo de este tema vamos a ver como se utilizan el amperímetro, el voltímetro y el óhmetro, aunque hoy en día debido a su versatilidad utilizamos habitualmente el polímetro que como su nombre indica un mismo aparato podrá funcionar como cualquiera de los anteriores e incluso incorporarán otras funciones. Imagen1: Polimetro digital. Fuente: Banco de imagenes del ITE. Licencia Creative Commons. En la siguiente dirección puedes encontrar referencias a aparatos de medida y sus características: Multímetro Rellena los huecos en blanco: Con un medimos la Enviar medimos la intensidad de corriente, con un voltímetro en bornes de un componente y con un óhmetro medimos la de un componente eléctrico o electrónico.

2 1. Medida de intensidad Para el buen funcionamiento de cualquier circuito eléctrico o electrónico es necesario conocer la electricidad que circula por el mismo. El aparato que vamos a utilizar será el amperímetro. Diremos por tanto que un amperímetro es el aparato destinado a medir la intensidad de corriente que circula por un circuito eléctrico. El amperímetro depende de la escala utilizada, así pues nos encontraremos con: Amperímetros magnetoeléctricos: estos aparatos tienen una bobina móvil que está fabricada con un hilo muy fino y las espiras, por donde va a circular la corriente que queremos medir, tienen un tamaño muy reducido. Por lo tanto, podemos decir que la intensidad de corriente, que va a poder medir un amperímetro cuyo sistema de medida sea magnetoeléctrico, va a estar condicionada por las características físicas de los elementos que componen dicho aparato. Mediremos valores de aproximadamente 100 miliamperios. Se utiliza principalmente en corriente continua. Amperímetro electromagnético: están constituidos por una bobina que tiene pocas espiras pero de gran sección. El intervalo de valores que abarca este tipo de amperímetros va desde los 0,5 A a los 300 A. Se puede medir con ellos tanto la corriente continua como la alterna. Siendo solo válidas las medidas de corriente alterna para frecuencias inferiores a 500 Hz. Amperímetro electrodinámico: están constituidos por una bobina fija y otra móvil. El rango de valores varía entre 0,5 A y 100 A. Amperímetro electrotérmico: este tipo de amperímetro actualmente está en desuso. El amperímetro se conecta en serie con el elemento a medir, si medimos corriente continua deberemos tener la precaución de conectar teniendo en cuenta la polaridad, por el polo positivo entrará la corriente y por el negativo saldrá. Este problema con los amperímetros digitales no lo tenemos, nos dará el valor indicándonos el signo negativo en el caso de haberlo colocado con la polaridad cambiada. El esquema de conexionado sería el siguiente, en este caso estaríamos midiendo la corriente que circula por la resistencia R1. Imagen 2: Conexión de un amperímetro. El amperímetro tiene que tener una bobina interna del menor valor posible, teóricamente nula, de lo contrario estaremos introduciendo un error en la medida. Cuando queremos medir intensidades mayores que el rango de medida de nuestro amperímetro debemos recurrir a diferentes técnicas que estudiaremos a continuación. Lo denominaremos ampliación de escala.

3 Recuerda que un amperímetro siempre se tiene que conectar en serie con el circuito. Si lo colocamos en paralelo, y debido a su baja resistencia, estaremos haciendo un cortocircuito con lo que podremos dañar el circuito o el propio amperímetro.

4 1.1. Ampliación de escala mediante resistencia en paralelo El método de la resistencia en paralelo consiste en colocar una resistencia de alta precisión de valor muy pequeño que colocaremos en paralelo con el amperímetro, con esto lo que conseguiremos será que casi toda la corriente se desvíe por esta resistencia y sólo una pequeña parte por el amperímetro. Tal y como puedes ver en la siguiente figura. Imagen 3: Ampliación de escala con resistencia en paralelo. Donde: I: intensidad que atraviesa el circuito. R: resistencia del circuito. Ia: intensidad que atraviesa el amperímetro. Ra: resistencia del amperímetro. Is: intensidad que pasa por la resistencia en paralelo. Rs: resistencia en paralelo. Observando el circuito puedes ver que: I=Ia + Is Ia*Ra = Is*Rs Operando con estas dos ecuaciones llegamos a que: Un amperímetro tiene una resistencia interna de 5Ω, la corriente necesaria para que se desvíe toda la escala es de 15 ma. Qué valor tiene que tener la resistencia que tenemos que colocar en paralelo para incrementar su escala hasta 50 A?

5 1.2. Ampliación de escala mediante transformador de intensidad Se utiliza para medir intensidades elevadas y alternas. El primario del transformador es recorrido por la intensidad a medir y en el secundario se conecta el amperímetro. Como ya sabes la relación existente entre la intensidad del primario (I1) y la del secundario (I2) viene dada por la siguiente expresión: Lo que conseguimos con el transformador es reducir la corriente que circula por el secundario pero siempre proporcional a la que circula por el primario. Como ya sabes, en la placa de características de cualquier máquina eléctrica figuran los valores nominales de la misma. Constructivamente los transformadores de intensidad se fabrican de modo que la intensidad que circula por el secundario para la mayoría de las aplicaciones sea de 5A. Además los transformadores se suelen fabricar con las siguientes intensidades primarias: 5 A, 10 A, 15 A, 20 A, 25 A, 30 A, 40 A, 50 A, 60 A, 75 A, 100 A, 125 A, 150 A, 200 A, 250 A, 300 A, 400 A, 500 A, 600 A, 750 A, 800 A, 1000 A, 1200 A, 1500 A, 2000 A, 2500 A, 3000 A, 4000 A y 5000 A. El esquema será el siguiente: Imagen 4: Ampliación de escala mediante transformador de intensidad.

6 2. Medida de tensión Al igual que la intensidad es muy importante saber el valor en bornes de cualquier componente para el buen funcionamiento del circuito. El aparato que vamos a utilizar es el voltímetro. Nos encontramos con la siguiente clasificación atendiendo a su rango de medidas: Magnetoeléctricos: desde 10 mv hasta V. Electromagnéticos: desde 5 V hasta V. Electrodinámicos: desde 5V hasta V. Electrostaticos: desde 1V hasta KV. El voltímetro se conecta en paralelo con el elemento a medir, en el caso de medir tensiones en circuitos de corriente continua deberemos tener en cuenta la polaridad de forma que el polo positivo del voltímetro se conecte al punto de mayor potencial. Los voltímetros digitales indican valores negativos en caso de conectar la polaridad cambiada. En el siguiente esquema puedes observar cómo se coloca el voltímetro, en este caso en concreto el aparato nos estaría midiendo la caída de tensión en la resistencia R1. Imagen 5: Conexión de un voltímetro. En un voltímetro ideal la resistencia interna debería ser infinita para que no existiera derivación de corriente por el mismo, como eso es imposible se construyen voltímetros con resistencias internas superiores a varios cientos de miles de ohmios. A pesar de que esta resistencia es muy elevada introduce un pequeño error en la medida. Al igual que ocurría con el amperímetro, en ocasiones, la tensión a medir se sale de los rangos de medida por lo que tendremos que recurrir a diferentes técnicas que nos permitan ampliar la escala. Recuerda que un voltímetro siempre se tiene que conectar en paralelo con el elemento sobre el que queremos medir la caída de tensión. Si lo conectamos en serie, y debido al alto valor de su resistencia interna, el paso de corriente quedará interrumpido.

7 2.1. Ampliación de escala mediante resistencia Este método consiste en conectar con el voltímetro una resistencia en serie. Esta forma de medir la utilizaremos en circuitos de corriente continua de tensiones relativamente bajas, nunca superiores a los 1000 V. La resistencia va a ser de un valor muy elevado de forma que la mayor caída de tensión ocurra en esa resistencia y una cantidad mucho menor lo haga en el voltímetro. Donde: Imagen 6: Resistencia en serie con voltímetro. Iv: intensidad que circula por el voltímetro. V: Tensión de alimentación Rv: Resistencia voltimétrica. Vv: Tensión voltimétrica. Ra: Resistencia adicional. Va: Tensión en la resistencia adicional. No te será difícil llegar a los siguientes razonamientos: Y según la Ley de Ohm tenemos que: Dividiendo estas dos ecuaciones entre ellas llegamos a que: Que junto con la primera ecuación llegamos a que: Un voltímetro tiene una resistencia interna de 100 kω y su alcance es de 0 a 50 V, qué resistencia tendremos que colocar para aumentar el rango hasta los 200 V?

8

9 2.2. Ampliación de escala mediante transformador de tensión Para realizar este tipo de ampliación lo que tenemos que hacer es conectar los transformadores de tensión en paralelo, tal y como puedes ver en la figura. La relación de transformación va a ser la relación entre la tensión del primario y del secundario que a su vez también estará relacionado con el número de espiras de modo que: Imagen 7: Ampliación de escala de un voltímetro. En la placa de características del transformador siempre van a figurar las tensiones nominales del primario y del secundario. En los transformadores la tensión nominal del secundario está normalizada en 110 V mientras que los del secundario lo están en 110, 220, 380, 440, 2200, 3300, 5500, 6600, 11000, 13200, 16500, 22000, 27500, 33000, 44000, 55000, 66000, , , y Conociendo estos parámetros es fácil calcular el valor de las tensiones a medir.

10 3. Medida de resistencia En los circuitos electrónicos en los que abundan resistencias de diversos valores se hace necesario saber el valor de las mismas para que el circuito funcione de forma correcta. Sin embargo en electrotecnia no es habitual calcular el valor de las resistencias salvo en casos muy concretos como pueden ser las líneas de distribución o el bobinado de diferentes máquinas. El aparato que vamos a utilizar es el óhmetro, habitualmente consta de un aparato de medida magnetoeléctrico conectado en serie con una batería de tensión constante y una resistencia variable y por supuesto de dos conectores. A la hora de utilizar un óhmetro tenemos que tener en cuenta las siguientes consideraciones: No deben emplearse nunca en circuitos bajo tensión. Las resistencias a medir que formen parte del circuito deben desconectarse, podrían dar lugar a medidas incorrectas. La tensión propia del aparato podría causar daños a los diferentes componentes del circuito. Las conexiones no se deben tocar con las manos debido a que alteraríamos la resistencia a medir, nuestra resistencia quedaría en paralelo con la resistencia que se pretende medir. El aparato tiene que estar calibrado. Para ello las puntas de prueba deben ponerse en contacto, lo cual significa poner un cortocircuito entre los terminales del aparato, esto implica que la resistencia conectada externamente al óhmetro es nula en estas condiciones, y por lo tanto la aguja debe marcar cero ohmios. Imagen 8: Ohmetro. Fuente: Banco de imágenes del Ite. Licencia Creative Commons.

11 3.1. Lectura directa Es el método más rápido y más sencillo de todos, consiste en utilizar el ohmímetro, como su nombre indica, de forma directa. Una vez puesto a cero, tal y como se explicó anteriormente, se procede a realizar la medición. El instrumento está compuesto por una batería (con resistencia interna) y una resistencia variable, el circuito podría ser como el de la figura. Imagen 9: Esquema de un ohmetro. Si cerramos el interruptor J la resistencia de carga Rc queda en cortocircuito por lo tanto nos quedará la resistencia interna del instrumento Ri y la resistencia variable, llegaremos a que: Ahora suponemos que abrimos el interruptor, tenemos que: Realizando el cociente entre ambas expresiones llegamos a que: La medida de las intensidades se traduce en dos diferentes indicaciones sobre la escala del aparato. Ro va a ser una resistencia variable que permitirá el ajuste a cero. Utilizando el método de la lectura directa podemos también determinar la continuidad de un conductor y poder determinar si está cortado o no. En el caso de estar cortado nos indicará una resistencia de infinito, en caso contrario nos indicará un valor de cero. En algunos óhmetros digitales si existe continuidad el aparato emite un pitido.

12 3.2. Medida indirecta con voltímetro y amperímetro Como ya sabes, la tensión, la resistencia y la intensidad están relacionadas entre si mediante la Ley de Ohm, entonces sabiendo los valores de tensión e intensidad que circula por un componente obtendremos el valor de la resistencia. Podremos realizar dos tipos de montaje para calcular el valor de la resistencia. Montaje largo: El esquema es el que puedes ver en la figura. El cálculo no nos da el valor exacto de la resistencia de carga, sino la suma de la resistencia interna del amperímetro mas la resistencia que queremos medir, por lo tanto este montaje lo utilizaremos cuando la resistencia que queremos medir es mucho mayor que la interna del amperímetro. Imagen 10: Montaje largo. Montaje corto: El esquema es el de la figura. En este caso el cálculo obtenido tampoco coincide con el valor exacto de la resistencia de carga, sino la obtenida de la asociación en paralelo de la resistencia de carga y la del voltímetro, por lo tanto este montaje lo utilizaremos para medir resistencias de pequeño valor. Imagen 11: Montaje corto. Tanto en un montaje como en el otro tenemos el problema del calentamiento que se produce por la acción de la corriente al circular por la resistencia, por ese motivo el tiempo que tardemos en realizar la medida tiene que ser muy pequeño para evitar el error por este motivo.

13 3.3. Medida por comparación de tensiones Este método está basado en la comparación de la caída de tensión en dos resistencias que están conectadas en serie cuando por ellas circula la misma corriente. Se utiliza para valores bajos de resistencia, de lo contrario los errores falsearían la medida. Tenemos una resistencia patrón Rp de valor conocido y una resistencia de carga Rc de la que deseamos saber su valor, para ello realizamos el montaje de la figura donde tenemos un amperímetro conectado en el circuito y un voltímetro que podemos desplazar entre dos puntos para medir las caídas de tensión en cada una de las resistencias. El esquema del montaje sería el siguiente: Imagen 12: Medida por comparación de tensiones. Al conectar el voltímetro en la posición (1) obtendremos la caída de tensión que se produce en nuestra resistencia patrón de valor conocido. Al conectar en la posición (2) obtenemos que: Operando con ambas expresiones obtenemos que: Al medir una resistencia por el método de la comparación de tensiones vemos que su tensión es de 20 V. Si cuando está conectada a una resistencia calibrada de 12Ω el valor de su tensión es de 20,5 V, cuál es el valor de la resistencia de carga?

14 3.4. Medida por comparación de intensidades Este método consiste en comparar las intensidades que circulan por la resistencia de carga y la resistencia patrón, al igual que antes es necesario conocer el valor exacto de esa resistencia patrón. También tenemos que tener en cuenta la resistencia interna del instrumento, en este caso la denominaremos Ra. El esquema del montaje es el que se presenta a continuación: Imagen 13: Comparación de intensidades. Dependiendo de la posición del conmutador vamos a tener las siguientes ecuaciones: Igualando ambas expresiones y operando llegamos a que: Este método lo utilizaremos para valores de tensión elevados. Al utilizar el método de la medición de resistencias por comparación de intensidades observamos que la intensidad que circula por la resistencia de carga es de 0,6 A y a través de la resistencia patron de 7000 Ω circula una corriente de 0,58 A. Cuál será el valor de la resistencia de carga?

15 4. El polímetro Si recuerdas. empezábamos el tema diciendo que existían diferentes aparatos para efectuar medidas eléctricas pero que sin embargo hoy en día y debido a su versatilidad, se empleaban los denominados polímetros que engloban todos los aparatos de medida estudiados en este tema, e incluso los más modernos, otra serie de aplicaciones. Estos aparatos pueden ser analógicos o digitales, siendo estos últimos los que actualmente se utilizan con más frecuencia. A continuación puedes ver la imagen de uno de ellos: Imagen 14: Polímetro. Fuente:Banco de Imagenes del ITE. Licencia Creative Commons. Algunas normas básicas para la utilización de los polímetros serian las siguientes: Mantener en buen estado el aparato. Seguir las instrucciones del fabricante en cuanto al uso y mantenimiento. Asegurarse si vamos a medir corrientes alternas o continuas. Empezar a medir por la escala más alta e ir bajando gradualmente hasta conseguir una medida exacta. Previo a cualquier medida ajustar a cero el aparato. Conectar correctamente el aparato.

CAPITULO VI. AMPERIMETRO, VOLTIMETRO, OHMETRO y MULTIMETRO

CAPITULO VI. AMPERIMETRO, VOLTIMETRO, OHMETRO y MULTIMETRO CAPITULO VI AMPERIMETRO, VOLTIMETRO, OHMETRO y MULTIMETRO 6.1 INTRODUCCION. En el Capítulo V estudiamos uno de los dispositivos más útiles para detectar el paso de una corriente por un circuito: El galvanómetro

Más detalles

Figura 1 Fotografía de varios modelos de multímetros

Figura 1 Fotografía de varios modelos de multímetros El Multímetro El multímetro ó polímetro es un instrumento que permite medir diferentes magnitudes eléctricas. Así, en general, todos los modelos permiten medir: - Tensiones alternas y continuas - Corrientes

Más detalles

ASOCIACIÓN DE RESISTORES

ASOCIACIÓN DE RESISTORES ASOCIACIÓN DE RESISTORES Santiago Ramírez de la Piscina Millán Francisco Sierra Gómez Francisco Javier Sánchez Torres 1. INTRODUCCIÓN. Con esta práctica el alumno aprenderá a identificar los elementos

Más detalles

U.T. 4.- CIRCUITOS ELÉCTRICOS

U.T. 4.- CIRCUITOS ELÉCTRICOS U.T. 4.- CIRCUITOS ELÉCTRICOS Un circuito eléctrico es un conjunto de operadores eléctricos que, conectados entre sí de forma adecuada, permite la circulación y el control de la corriente eléctrica. OPERADORES

Más detalles

Práctica 1 y 2: Medidas de tensión e intensidad. Adaptadores de medida. 1. Conceptos generales. 2. Resistencias en derivación (Shunts)

Práctica 1 y 2: Medidas de tensión e intensidad. Adaptadores de medida. 1. Conceptos generales. 2. Resistencias en derivación (Shunts) Medidas de tensión e intensidad. daptadores de medida: Práctica y Práctica y : Medidas de tensión e intensidad. daptadores de medida. Conceptos generales La corriente eléctrica que circula por un instrumento

Más detalles

Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137. Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control

Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137. Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137 Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control Profr. Ing. Cesar Roberto Cruz Pablo Enrique Lavín Lozano

Más detalles

PRÁCTICA Nº 1: EL VOLTÍMETRO Y EL AMPERÍMETRO

PRÁCTICA Nº 1: EL VOLTÍMETRO Y EL AMPERÍMETRO PRÁCTICA Nº 1: EL VOLTÍMETRO Y EL AMPERÍMETRO Objetivos: Utilización de un voltímetro y de un amperímetro, caracterización de aparatos analógicos y digitales, y efecto de carga. Material: Un voltímetro

Más detalles

CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA

CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA EL CIRCUITO ELÉCTRICO Definición: Es un conjunto de elementos empleados para la transmisión y control de la energía eléctrica desde el generador hasta el receptor

Más detalles

Medidas de Intensidad

Medidas de Intensidad Unidad Didáctica Medidas de Intensidad Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION (Dirección

Más detalles

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua.

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua. 1.8. Corriente eléctrica. Ley de Ohm Clases de Electromagnetismo. Ariel Becerra Si un conductor aislado es introducido en un campo eléctrico entonces sobre las cargas libres q en el conductor va a actuar

Más detalles

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa.

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Electricidad: flujo o corriente de electrones. Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Elementos básicos de un circuito: generador,

Más detalles

TEMA 2 CIRCUITOS DE CORRIENTE CONTINUA

TEMA 2 CIRCUITOS DE CORRIENTE CONTINUA TEMA 2 CIRCUITOS DE CORRIENTE CONTINUA II.1 Ley de ohm II.2 Resistencia II.3 Potencia II.4 Energía II.5 Instrumentos de medida II.6 Acoplamiento serie II.7 Acoplamiento paralelo II.8 Acoplamiento mixto

Más detalles

3. 1 Generalidades y clasificación de los generadores. Según sea la energía absorbida, los generadores pueden ser:

3. 1 Generalidades y clasificación de los generadores. Según sea la energía absorbida, los generadores pueden ser: CAPITULO 3 GNRADORS LÉCTRICOS 3. 1 Generalidades y clasificación de los generadores. Se llama generador eléctrico todo aparato o máquina capaz de producir o generar energía eléctrica a expensas de otra

Más detalles

Departamento de Tecnología Villargordo. Componentes del grupo Nº : CURSO

Departamento de Tecnología Villargordo. Componentes del grupo Nº : CURSO Departamento de Tecnología Villargordo J.M.A. Componentes del grupo Nº : - - CURSO USO DEL POLÍMETRO DIGITAL Pantalla Selector Clavija para transistores clavija 10A DC clavija VΩmA clavija COMÚN 1. Pantalla

Más detalles

Utilizar adecuadamente el multímetro para mediciones de voltaje, corriente y resistencia eléctrica.

Utilizar adecuadamente el multímetro para mediciones de voltaje, corriente y resistencia eléctrica. GUIA PAA USO DEL MULTIMETO OBJETIVOS : Utilizar adecuadamente el multímetro para mediciones de voltaje, corriente y resistencia eléctrica. INTODUCCIÓN : El multímetro es un instrumento de medición que

Más detalles

EL TESTER. TIPOS Y SU USO

EL TESTER. TIPOS Y SU USO EL TESTER. TIPOS Y SU USO El denominado multímetro, polímetro o simplemente tester, es como su nombre indica un instrumento para usos múltiples. Es por tanto varios instrumentos contenidos en uno. En el

Más detalles

Figura 1. Circuito simple con una batería, dos pedazos de alambre conductor y una bombilla

Figura 1. Circuito simple con una batería, dos pedazos de alambre conductor y una bombilla Experimento 3 BATERÍAS, BOMBILLAS Y CORRIENTE ELÉCTRICA Objetivos 1. Construir circuitos sencillos con baterías, bombillas, y cables conductores, 2. Interpretar los esquemáticos de circuitos eléctricos,

Más detalles

SOLO PARA INFORMACION

SOLO PARA INFORMACION DOCENTE: TEMA: TURNO: ALUMNOS: UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA ESCUELA PROFESIONAL DE INGENIERIA ELECTRICA LABORATORIO Nº 2 FISICA III CICLO: 2009-A JUAN

Más detalles

Un par de puntas de prueba que comunican el instrumento con el circuito bajo prueba.

Un par de puntas de prueba que comunican el instrumento con el circuito bajo prueba. INSTRUMENTACIÓN ELÉCTRICA Medición de tensión con diferentes instrumentos de medida MULTÍMETROS ANALOGOS De todas las herramientas y equipos que un electricista pueda poseer en su banco o en su maletín

Más detalles

Guía 01. La ley de Ohm

Guía 01. La ley de Ohm Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física Laboratorio de Física II FI-5 A Guía 0 La ley de Ohm Objetivos Conocer la Ley de Ohm y las Leyes de Kirchoff - Estudiar

Más detalles

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad Qué elementos componen un circuito eléctrico? En esta unidad identificaremos los elementos fundamentales de un circuito eléctrico, nomenclatura

Más detalles

Los Circuitos Eléctricos

Los Circuitos Eléctricos Los Circuitos Eléctricos 1.- LA CORRIENTE ELÉCTRICA. La electricidad es un movimiento de electrones, partículas con carga eléctrica negativa que giran alrededor del núcleo de los átomos. En los materiales

Más detalles

ELEMENTOS DE MANIOBRA

ELEMENTOS DE MANIOBRA Circuito eléctrico. Circuito eléctrico. Circuito eléctrico Un circuito eléctrico es un conjunto de operadores o elementos que, unidos entre sí, permiten una circulación de electrones (corriente eléctrica).

Más detalles

EL POLÍMETRO. HERRAMIENTA BÁSICA Y FUNDAMENTAL PARA EL ELECTROMECÁNICO

EL POLÍMETRO. HERRAMIENTA BÁSICA Y FUNDAMENTAL PARA EL ELECTROMECÁNICO EL POLÍMETRO. HERRAMIENTA BÁSICA Y FUNDAMENTAL PARA EL ELECTROMECÁNICO AUTORÍA JESÚS DÍAZ FONSECA TEMÁTICA MANTENIMIENTO DE VEHÍCULOS AUTOPROPULSADOS ETAPA FORMACIÓN PROFESIONAL Resumen En el siguiente

Más detalles

UTN FRM MEDIDAS ELECTRÓNICAS I Página 1 de 6

UTN FRM MEDIDAS ELECTRÓNICAS I Página 1 de 6 UTN FRM MEDIDAS ELECTRÓNICAS I Página 1 de 6 TRABAJO PRACTICO N 7 ENSAYO DE UN TRANSFORMADOR DE INTENSIDAD Los Transformadores de medida (TM) vistos en teoría se utilizan para reducir los valores de tensión

Más detalles

Máquinas eléctricas: Máquinas rotativas de corriente alterna

Máquinas eléctricas: Máquinas rotativas de corriente alterna Máquinas eléctricas: Máquinas rotativas de corriente alterna Ya has visto en temas anteriores el estudio de los motores de corriente continua y la clasificación de las máquinas, pues bien, ahora vas a

Más detalles

QUE ES LA CORRIENTE ALTERNA?

QUE ES LA CORRIENTE ALTERNA? QUE ES LA CORRIENTE ALTERNA? Se describe como el movimiento de electrones libres a lo largo de un conductor conectado a un circuito en el que hay una diferencia de potencial. La corriente alterna fluye

Más detalles

CIRCUITO ELÉCTRICO ELEMENTAL

CIRCUITO ELÉCTRICO ELEMENTAL CIRCUITO ELÉCTRICO ELEMENTL Elementos que integran un circuito elemental. Los elementos necesarios para el armado de un circuito elemental son los que se indican en la figura siguiente; Figura 1 Extremo

Más detalles

Resistencias en serie I =I 1 +I 2 = V R 1

Resistencias en serie I =I 1 +I 2 = V R 1 Resistencias en serie Circuitos de Corriente Continua: La Dirección de la corriente no cambia con el tiempo. De la ley de Ohm:Entre los extremos de una resistencia R hay una diferencia de potencialv en

Más detalles

III. Aparatos de medición

III. Aparatos de medición III. Aparatos de medición Voltímetro - Amperímetro - Ohmímetro Objetivos Conocer y manejar el multímetro digital para hacer mediciones de voltaje, corriente y resistencia en un circuito eléctrico que contiene

Más detalles

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P9:

Más detalles

Mediciones Eléctricas

Mediciones Eléctricas Mediciones Eléctricas Grupos Electrógenos Mediciones Eléctricas Página 1 de 12 Tabla de Contenido Objetivo 1: Medidas de magnitudes eléctricas... 3 Objetivo 2: Generalidades sobre instrumentos de medición...

Más detalles

Todo lo que sube baja... (... y todo lo que se carga se descarga!)

Todo lo que sube baja... (... y todo lo que se carga se descarga!) Todo lo que sube baja... (... y todo lo que se carga se descarga!) María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 Resumen En

Más detalles

Fundamentos de Electricidad de C.C.

Fundamentos de Electricidad de C.C. LEY DE OHM El flujo de los electrones a través de un circuito se parece en muchas cosas al flujo del agua en las tuberías. Por tanto, se puede comprender la acción de una corriente eléctrica comparando

Más detalles

UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA

UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA INSTRUMENTOS DE MEDICION INFORME DE LABORATORIO Presentado por: Andrés González - 0329032 Andrea Herrera - 0327121 Hans Haeusler - 0332903 Rafael Triviño -

Más detalles

Fundamentos de medición de temperatura

Fundamentos de medición de temperatura Fundamentos de medición de temperatura Termistores Termopares David Márquez Jesús Calderón Termistores Resistencia variable con la temperatura Construidos con semiconductores NTC: Coeficiente de temperatura

Más detalles

TEMA 2. CIRCUITOS ELÉCTRICOS.

TEMA 2. CIRCUITOS ELÉCTRICOS. TEMA 2. CIRCUITOS ELÉCTRICOS. 1. INTRODUCCIÓN. A lo largo del presente tema vamos a estudiar los circuitos eléctricos, para lo cual es necesario recordar una serie de conceptos previos tales como la estructura

Más detalles

Instrumentación y Ley de OHM

Instrumentación y Ley de OHM Instrumentación y Ley de OHM A) INSTRUMENTACIÓN 1. OBJETIVOS. 1. Conocer el manejo de instrumentos y materiales de uso corriente en los experimentos de electricidad y magnetismo. 2. Conocer el área de

Más detalles

Tema I: Elementos de un circuito

Tema I: Elementos de un circuito Elementos de un circuito 1 Tema I: Elementos de un circuito 1 Placa de soporte Los elementos pasivos de interés desde la perspectiva de este manual son dispositivos de dos terminales. Para configurar el

Más detalles

Establecer el procedimiento para determinar la polaridad de las terminales de los devanados de un transformador, utilizando Vdc.

Establecer el procedimiento para determinar la polaridad de las terminales de los devanados de un transformador, utilizando Vdc. Tema: EL TRANSFORMADOR MONOFASICO. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I. I. OBJETIVOS. Establecer el procedimiento para determinar la polaridad

Más detalles

COMPONENTES ELECTRÓNICOS: Resistencias

COMPONENTES ELECTRÓNICOS: Resistencias COMPONENTES ELECTRÓNICOS: Resistencias Resistencias fijas. Pueden ser de carbón, película de carbón, película metálica y óxido de metal, siendo las de película de carbón y metálica las más usadas. Se fabrican

Más detalles

Laboratorio de Electricidad PRACTICA - 10 CARACTERÍSTICAS DE UNA INDUCTANCIA EN UN CIRCUITO RL SERIE

Laboratorio de Electricidad PRACTICA - 10 CARACTERÍSTICAS DE UNA INDUCTANCIA EN UN CIRCUITO RL SERIE aboratorio de Electricidad PACTCA - 10 CAACTEÍSTCAS DE NA NDCTANCA EN N CCTO SEE - Finalidades 1.- Estudiar el efecto en un circuito de alterna, de una inductancia y una resistencia conectadas en serie.

Más detalles

CIRCUITOS ELECTRÓNICOS BÁSICOS: EL DIVISOR DE TENSIÓN

CIRCUITOS ELECTRÓNICOS BÁSICOS: EL DIVISOR DE TENSIÓN CIRCUITOS LCTRÓNICOS ÁSICOS: L DIVISOR D TNSIÓN RSUMN: n esta actividad aprenderás a diseñar un tipo de circuito, muy utilizado en electrónica, que sirve para alimentar (proporcionar tensión de alimentación)

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 1 Tema: INSTRUMENTOS. ERRORES. CONTRASTE DE AMPERÍMETRO Y VOLTÍMETRO. Conceptos Fundamentales: Las indicaciones de los instrumentos

Más detalles

PRÁCTICAS DE ELECTRICIDAD CON CROCODILE CLIPS.

PRÁCTICAS DE ELECTRICIDAD CON CROCODILE CLIPS. PRÁCTICAS DE ELECTRICIDAD CON CROCODILE CLIPS. Repaso de electricidad (1). Circuito eléctrico. Arranca Crocodile Clips y presta atención a la explicación del profesor. Él te guiará y te enseñará la electricidad,

Más detalles

LOS INSTRUMENTOS DE MEDIDA

LOS INSTRUMENTOS DE MEDIDA LOS INSTRUMENTOS DE MEDIDA Los instrumentos de medida pueden introducir un error sistemático en el proceso de medida por un defecto de construcción o de calibración. Sólo se elimina el error cambiando

Más detalles

Resistencias. Tema 1 TEST DE AUTOEVALUACIÓN

Resistencias. Tema 1 TEST DE AUTOEVALUACIÓN TEST DE AUTOEVALUACIÓN El nombre real del componente tratado en este primer tema es resistor, pero en el argot técnico suele cambiarse por el de su característica principal, denominándose popularmente

Más detalles

Práctica E4: Medida de potencia en circuitos trifásicos

Práctica E4: Medida de potencia en circuitos trifásicos Medida de potencia en circuitos triásicos: ráctica E4 ráctica E4: Medida de potencia en circuitos triásicos. Objetivos os objetivos de la práctica son:.- Medida de la potencia activa, reactiva y el actor

Más detalles

AUTOMATIZACIÓN INDUSTRIAL DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS

AUTOMATIZACIÓN INDUSTRIAL DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS 3º INGENIERÍA TÉCNICA INDUSTRIAL, ESPECIALIDAD MECÁNICA AUTOMATIZACIÓN INDUSTRIAL PRÁCTICA 5 DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS OBJETIVOS DE LA PRÁCTICA Identificar sobre un montaje real

Más detalles

BLOQUE EXPRESIÓN GRÁFICA A1.- OBTENER LAS VISTAS DE LAS SIGUIENTE PIEZAS, SEGÚN LA NORMATIVA ESTABLECIDA.

BLOQUE EXPRESIÓN GRÁFICA A1.- OBTENER LAS VISTAS DE LAS SIGUIENTE PIEZAS, SEGÚN LA NORMATIVA ESTABLECIDA. BLOQUE EXPRESIÓN GRÁFICA A1.- OBTENER LAS VISTAS DE LAS SIGUIENTE PIEZAS, SEGÚN LA NORMATIVA ESTABLECIDA. Dpto. Tecnología 1/9 A2.- Dibuja la perspectiva isométrica de la siguiente pieza, a partir de sus

Más detalles

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín Un transformador se compone de dos arrollamientos aislados eléctricamente entre sí y devanados sobre un mismo núcleo de hierro. Una corriente alterna que circule por uno de los arrollamientos crea en el

Más detalles

LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO

LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO 7.1. OBJETIVO DEL LABORATORIO. 7.1.1. OBJETIVO GENERAL. Conocer operativamente los fenómenos de Autoinducción, Inductancia

Más detalles

TECNOLOGÍA 4º ESO TEMA 4: Electrónica analógica

TECNOLOGÍA 4º ESO TEMA 4: Electrónica analógica TECNOLOGÍA 4º ESO TEMA 4: Electrónica analógica Índice de contenido 1. Introducción... 4 2. Resistencias... 5 2.1. Definición... 5 2.2. Símbolo y unidades... 6 2.3. Código de colores de las resistencias...7

Más detalles

Medidas de efecto Hall en una muestra de germanio

Medidas de efecto Hall en una muestra de germanio PRÁCTICA 2 Medidas de efecto Hall en una muestra de germanio Temas tratados: semiconductores, teoría de bandas, banda de energía prohibida (band gap), fuerza de Lorentz, efecto Hall, concentración y tipo

Más detalles

PARALELO DE TRANSFORMADORES

PARALELO DE TRANSFORMADORES GUIA DE TRABAJOS PRACTICOS DE LABORATORIO TPN 2 PARALELO DE TRANSFORMADORES 1. Objetivos Estudio teórico y práctico de las condiciones que se deben cumplir para realizar el conexionado en paralelo de dos

Más detalles

MEDICIONES ELECTRICAS II

MEDICIONES ELECTRICAS II Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS II Trabajo Práctico N 3 Tema: MEDICION DE FASE CONTRASTE DE COFIMETRO. Conceptos Fundamentales El período de una señal senoidal se corresponde con

Más detalles

FUENTES DE ALIMENTACION

FUENTES DE ALIMENTACION FUENTES DE ALIMENTACION INTRODUCCIÓN Podemos definir fuente de alimentación como aparato electrónico modificador de la electricidad que convierte la tensión alterna en una tensión continua. Remontándonos

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

7.- Para construir un circuito eléctrico utilizamos 150 metros de hilo de cobre. Si su sección es de 0 8 mm 2 Cuánto valdrá su resistencia?

7.- Para construir un circuito eléctrico utilizamos 150 metros de hilo de cobre. Si su sección es de 0 8 mm 2 Cuánto valdrá su resistencia? 1. Calcula la Resistencia de un hilo de hierro (resistividad del mm 2 hierro ρ Fe = 0.1 Ω ) de longitud 3 m y sección de 10 m mm 2. 2. Ahora disponemos de dos hilos, uno de cobre (resistividad del cobre

Más detalles

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir:

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir: Problemas resueltos Problema 1. Un motor de c.c (excitado según el circuito del dibujo) tiene una tensión en bornes de 230 v., si la fuerza contraelectromotriz generada en el inducido es de 224 v. y absorbe

Más detalles

Estudio y caracterización de células solares fotovoltaicas

Estudio y caracterización de células solares fotovoltaicas Estudio y caracterización de células solares fotovoltaicas Esta práctica consta de tres partes: en la primera analizaremos varias células fotovoltaicas (monocristalina y policristalina), obteniendo su

Más detalles

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA ELECTRICA CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE

Más detalles

FMM= Fuerza magnetomotriz en amperio-vuelta (Av) N = Número de espira I = Intensidad de corriente (A)

FMM= Fuerza magnetomotriz en amperio-vuelta (Av) N = Número de espira I = Intensidad de corriente (A) Flujo magnético Φ El campo magnético se representa a través de las líneas de fuerza. La cantidad de estas líneas se le denomina flujo magnético. Se representa por la letra griega Φ; sus unidades son weber

Más detalles

ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año:

ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año: (Ejercicios resueltos) Alumno: Curso: Año: La Ley de Ohm La Ley de Ohm dice que la intensidad de corriente que circula a través de un conductor es directamente proporcional a la diferencia de potencial

Más detalles

Condensador con tensión alterna sinusoidal

Condensador con tensión alterna sinusoidal Capacitancia e Inductancia en Circuito de Corriente Alterna 1.- OBJETIVO: Experiencia Nº 10 El objetivo fundamental en este experimento es el estudio de la corriente alterna en un circuito RC y RL. 2.-

Más detalles

Circuitos de corriente continua

Circuitos de corriente continua nidad didáctica 3 Circuitos de corriente continua Qué aprenderemos? Cuáles son las leyes experimentales más importantes para analizar un circuito en corriente continua. Cómo resolver circuitos en corriente

Más detalles

Tema: Dispositivos de control de motores.

Tema: Dispositivos de control de motores. Tema: Dispositivos de control de motores. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Control Industrial. I. Objetivos. Que el estudiante: Conozca las diferentes partes de un contactor. Desarrolle

Más detalles

FISICA DE LOS PROCESOS BIOLOGICOS

FISICA DE LOS PROCESOS BIOLOGICOS FISICA DE LOS PROCESOS BIOLOGICOS BIOELECTROMAGNETISMO 1. Cuál es la carga total, en coulombios, de todos los electrones que hay en 3 moles de átomos de hidrógeno? -289481.4 Coulombios 2. Un átomo de hidrógeno

Más detalles

FUENTE DE ALIMENTACION FAC-363B

FUENTE DE ALIMENTACION FAC-363B FUENTE DE ALIMENTACION FAC-363B 1 GENERALIDADES 1.1 Descripción El modelo FAC-363B contiene tres fuentes de alimentación estabilizadas totalmente independientes. La primera suministra una tensión ajustable

Más detalles

Experimento 5. Ampliación de escala de un voltímetro y de un amperímetro

Experimento 5. Ampliación de escala de un voltímetro y de un amperímetro INSTITUTO TECNOLÓGICO DE COSTA RICA I SEMESTRE 2009 ESCUELA DE INGENIERÍA ELECTRÓNICA EL2107 LABORATORIO DE CIRCUITOS ELÉCTRICOS EN CORRIENTE CONTINUA Profesores: Ing. Gabriela Ortiz L., Ing Leonardo Rivas,

Más detalles

Fisica III -10 - APENDICES. - APENDICE 1 -Conductores -El generador de Van de Graaff

Fisica III -10 - APENDICES. - APENDICE 1 -Conductores -El generador de Van de Graaff Fisica III -10 - APENDICES - APENDICE 1 -Conductores -El generador de Van de Graaff - APENDICE 2 - Conductores, dirección y modulo del campo en las proximidades a la superficie. - Conductor esférico. -

Más detalles

TEMA: ANÁLISIS DE CIRCUITOS ELÉCTRICOS

TEMA: ANÁLISIS DE CIRCUITOS ELÉCTRICOS CUSO: º DSOLLO D PODUCTOS LCTÓNICOS. MÓDULO: LCTÓNIC NLÓGIC TM: NÁLISIS D CICUITOS LÉCTICOS NÁLISIS D CICUITOS LÉCTICOS. INTODUCCIÓN.. LYS D KICHOFF.. NÁLISIS D CICUITOS N COINT CONTÍNU. 4. OTOS MÉTODOS

Más detalles

Mediciones Eléctricas

Mediciones Eléctricas UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA Mediciones Eléctricas Ing. Roberto Solís Farfán CIP 84663 APARATOS DE MEDIDA ANALOGICOS Esencialmente el principio de funcionamiento

Más detalles

TEMA 3: ELECTRICIDAD Y ELECTRÓNICA

TEMA 3: ELECTRICIDAD Y ELECTRÓNICA TEMA 3: ELECTRICIDAD Y ELECTRÓNICA Francisco Raposo Tecnología 3ºESO 1. INTRODUCCIÓN. LA CARGA ELÉCTRICA Los materiales están formados por átomos que se componen a su vez de: - Electrones: son carga eléctrica

Más detalles

ELECTRICIDAD Secundaria

ELECTRICIDAD Secundaria ELECTRICIDAD Secundaria Carga eléctrica. Los átomos que constituyen la materia están formados por otras partículas todavía más pequeñas, llamadas protones, neutrones y electrones. Los protones y los electrones

Más detalles

TEMA 1: LA ELECTRICIDAD

TEMA 1: LA ELECTRICIDAD TEMA 1: LA ELECTRICIDAD 1.- Producción y consumo de la electricidad Existen muchas formas de producir electricidad. Las podemos separar en energías no renovables y energías renovables. Las energías no

Más detalles

Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador

Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador P. Abad Liso J. Aguarón de Blas 13 de junio de 2013 Resumen En este informe se hará una pequeña sinopsis de la práctica

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 4 Tema: FACTOR DE FORMA Y DE LECTURA. RESPUESTA EN FRECUENCIA DE INSTRUMENTOS. Tipos de instrumentos Según el principio en que

Más detalles

En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm.

En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm. 3º parte En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm. ELEMENTOS DEL CIRCUITO ELÉCTRICO Para poder relacionar las

Más detalles

Electrónica de potencia e instalaciones eléctricas: Semiconductores: diodo, transistor y tiristor

Electrónica de potencia e instalaciones eléctricas: Semiconductores: diodo, transistor y tiristor Electrónica de potencia e instalaciones eléctricas: Semiconductores: diodo, transistor y tiristor El descubrimiento del diodo y el estudio sobre el comportamiento de los semiconductores desembocó que a

Más detalles

Mediciones eléctricas

Mediciones eléctricas Mediciones eléctricas Unidades eléctricas Culombio (C, unidad de carga eléctrica) Conexión de un amperímetro en un circuito. La introducción de las magnitudes eléctricas requiere añadir una nueva unidad

Más detalles

PRÁCTICA 2 FUENTES DE ALIMENTACION

PRÁCTICA 2 FUENTES DE ALIMENTACION PRÁCTICA 2 FUENTES DE ALIMENTACION Duración estimada: 2 semanas Objetivos de la práctica: 1. Comprender los conceptos fundamentales de fuentes de alimentación estabilizadas y regulables. 2. Iniciarse en

Más detalles

DALCAME Grupo de Investigación Biomédica

DALCAME Grupo de Investigación Biomédica LABORATORIO DE CIRCUITOS ELECTRÓNICOS 1. Conducta de Entrada 2. Laboratorio Funcionamiento de un condensador Observar el efecto de almacenamiento de energía de un condensador: Condensador de 1000µF Medida

Más detalles

Resistencia y resistividad

Resistencia y resistividad Resistencia y resistividad 2 Conductancia y conductividad Variación de la resistencia con la temperatura EE10Medicioneseléctricas Unidadeseléctricas Culombio(C,unidaddecargaeléctrica) Conexióndeunamperímetroenuncircuito.

Más detalles

SENSOR DE OXIGENO Sensor de Oxígeno

SENSOR DE OXIGENO Sensor de Oxígeno SENSOR DE OXIGENO Otro sensor especial utilizado solamente en los Sistemas de Control de Motores es el Sensor de Oxígeno. Este componente se monta en el tubo de escape de gases residuales de la combustión

Más detalles

Capítulo 4. Energía y Potencia

Capítulo 4. Energía y Potencia Capítulo 4 Energía y Potencia 4.1 ntroducción 4.2 Energía de la corriente eléctrica. Ley de Joule 4.3 Generador 4.4 Receptor 4.5 Diferencia de potencial entre dos puntos de un circuito 4.6 Ecuación del

Más detalles

UD 4.-ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO

UD 4.-ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO DPTO. TECNOLOGÍA (ES SEFAAD) UD 4.-ELECTCDAD UD 4.- ELECTCDAD. EL CCUTO ELÉCTCO. ELEMENTOS DE UN CCUTO 3. MAGNTUDES ELÉCTCAS 4. LEY DE OHM 5. ASOCACÓN DE ELEMENTOS 6. TPOS DE COENTE 7. ENEGÍA ELÉCTCA.

Más detalles

TRANSFORMADORES. 7.1 Introducción. 7.2 Transformador monofásico

TRANSFORMADORES. 7.1 Introducción. 7.2 Transformador monofásico TRASFORMADORES 7. ntroducción El transformador es un dispositivo que permite modificar potencia eléctrica de corriente alterna con un determinado valor de tensión y corriente en otra potencia de casi el

Más detalles

Sol: 1,3 10-4 m/s. Sol: I = σωr 2 /2

Sol: 1,3 10-4 m/s. Sol: I = σωr 2 /2 2 ELETOINÉTI 1. Por un conductor filiforme circula una corriente continua de 1. a) uánta carga fluye por una sección del conductor en 1 minuto? b) Si la corriente es producida por el flujo de electrones,

Más detalles

Medidas eléctricas en las instalaciones de baja tensión

Medidas eléctricas en las instalaciones de baja tensión 5 Medidas eléctricas en las instalaciones de baja tensión Introducción El buen funcionamiento de un organismo, una máquina, etc., depende en gran medida del funcionamiento combinado de los distintos elementos

Más detalles

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1 Tecnología 4º ESO Tema 5: Lógica binaria Página 1 4º ESO TEMA 5: Lógica binaria Tecnología 4º ESO Tema 5: Lógica binaria Página 2 Índice de contenido 1. Señales analógicas y digitales...3 2. Código binario,

Más detalles

SÍMBOLOS ELECTRÓNICOS DE LOS INSTRUMENTOS DE MEDICIÓN

SÍMBOLOS ELECTRÓNICOS DE LOS INSTRUMENTOS DE MEDICIÓN Capítulo 1 SÍMBOLOS ELECTRÓNICOS DE LOS INSTRUMENTOS DE MEDICIÓN Una de las principales actividades del profesional en mecánica es sin duda revisar dispositivos y circuitos mediante los instrumentos de

Más detalles

Integrantes: 2. Introducción

Integrantes: 2. Introducción Facultad de Ciencias Departamento de Física Fundamentos de Electricidad y Magnetismo Laboratorio N 7 Campo Magnético Ovidio Almanza Noviembre 28 de 2011 Integrantes: Diana Milena Ramírez Gutiérrez Cod.

Más detalles

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

Cuando un condensador se comporta como una bobina

Cuando un condensador se comporta como una bobina Cuando un condensador se comporta como una bobina Milagros Montijano Moreno Objetivo Se pretende señalar en este trabajo la diferencia entre el componente electrónico ideal y el real y aportar un procedimiento

Más detalles

CONTROL POR ORDENADOR A TRAVÉS DE CONTROLADORA. CONTROLADORA CASERA. Por: Pedro Ruiz

CONTROL POR ORDENADOR A TRAVÉS DE CONTROLADORA. CONTROLADORA CASERA. Por: Pedro Ruiz CONTROL POR ORDENADOR A TRAVÉS DE CONTROLADORA. CONTROLADORA CASERA. Por: Pedro Ruiz CONTROLADORA CASERA Índice 1. Características y zonas de la controladora. 2. El puerto paralelo del ordenador. 3. Construcción

Más detalles

Unidad didáctica: Electromagnetismo

Unidad didáctica: Electromagnetismo Unidad didáctica: Electromagnetismo CURSO 3º ESO 1 ÍNDICE Unidad didáctica: Electromagnetismo 1.- Introducción al electromagnetismo. 2.- Aplicaciones del electromagnetismo. 2.1.- Electroimán. 2.2.- Relé.

Más detalles

Unidad didáctica: Electricidad y Electrónica

Unidad didáctica: Electricidad y Electrónica Unidad didáctica: Electricidad y Electrónica Unidad didáctica: Electricidad y Electrónica ÍNDICE 1.- El átomo y sus partículas. 2.- Materiales conductores, aislantes y semiconductores. 3.- Resistencia.

Más detalles

Simbología electrónica básica y encapsulado de componentes

Simbología electrónica básica y encapsulado de componentes Desarrollo y Construcción de Prototipos Electrónicos Tema 0.1.1 Simbología electrónica básica y encapsulado de componentes 1 Símbolos generales Símbolo Comentarios Tipo de elemento Conductor eléctrico.

Más detalles

Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS

Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS FUNDAMENTOS La electricidad La electricidad es un fenómeno físico cuyo origen se encuentra en las cargas eléctricas y cuya energía se manifiesta

Más detalles