Trabajo Práctico Nro. 1: Uso del Osciloscopio y generador de Funciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Trabajo Práctico Nro. 1: Uso del Osciloscopio y generador de Funciones"

Transcripción

1 Trabajo Práctico Nro. 1: Uso del Osciloscopio y generador de Funciones Electricidad y Magnetismo 13 de Mayo de

2 Índice 1. Osciloscopio Utilización Osciloscopio analógico Osciloscopio digital Generador de Señales Señales Formas de Onda Desfasajes Temporales Mediante figuras de Lissajous Mediante retrasos temporales Convención importante Objetivos de la práctica Desarrollo y Análisis Experimental Bibliografía 17 2

3 Introducción 1. Osciloscopio Un osciloscopio es un instrumento de medición electrónico para la representación gráfica de señales eléctricas que pueden variar en el tiempo, como por ejemplo la tensión como un voltimetro. Es muy usado en electrónica de señal, frecuentemente junto a un analizador de espectro. En la figura 1 se observa la imagen de un osciloscopio. Presenta los valores de las señales eléctricas en forma de coordenadas en una pantalla, en la que normalmente el eje X (horizontal) representa tiempos y el eje Y (vertical)representa tensiones. La imagen así obtenida se denomina oscilograma. Suelen incluir otra entrada, llamada eje THRASHER o Cilindro de Wehnelt que controla la luminosidad del haz, permitiendo resaltar o apagar algunos segmentos de la traza. Los osciloscopios, clasificados según su funcionamiento interno, pueden ser tanto analógicos como digitales, siendo el resultado mostrado idéntico en cualquiera de los dos casos, en teoría. Los primeros trabajan directamente con la señal aplicada, está una vez amplificada desvía un haz de electrones en sentido vertical proporcionalmente a su valor. En contraste los osciloscopios digitales utilizan previamente un conversor analógico-digital (A/D) para almacenar digitalmente la señal de entrada, reconstruyendo posteriormente esta información en la pantalla. Ambos tipos tienen sus ventajas e inconvenientes. Los analógicos son preferibles cuando es prioritario visualizar variaciones de la señal de entrada en tiempo real. Los osciloscopios digitales se utilizan cuando se desea visualizar y estudiar eventos no repetitivos (picos de tensión que se producen aleatoriamente). Figura 1: Imagen de un osciloscopio 1.1. Utilización En un osciloscopio existen, básicamente, dos tipos de controles que son utilizados como reguladores que ajustan la señal de entrada y permiten, consecuentemente, medir en la pantalla y de esta manera se puede ver la forma de la señal medida por el osciloscopio, esto denominado en forma técnica se puede decir que el osciloscopio sirve para observar la señal que quiera medir. Para medir se lo puede comparar con el plano cartesiano. El primer control regula el eje X (horizontal) y aprecia fracciones de tiempo (segundos, milisegundos, microsegundos, etc., según la resolución del aparato). El segundo regula el eje Y (vertical) controlando la tensión de entrada (en Voltios, milivoltios, micro voltios, etc., dependiendo de la resolución del aparato). 3

4 Estas regulaciones determinan el valor de la escala cuadricular que divide la pantalla, permitiendo saber cuánto representa cada cuadrado de ésta para, en consecuencia, conocer el valor de la señal a medir, tanto en tensión como en frecuencia. (en realidad se mide el periodo de una onda de una señal, y luego se calcula la frecuencia). Alguna funciones del osciloscopio, en general: Sistema vertical: Este control consta de un potenciómetro que permite mover verticalmente la forma de onda hasta el punto exacto que se desee.cuando se está trabajando con una sola señal el punto normalmente elegido suele ser el centro de la pantalla. Sistema vertical: Conmutador. Se trata de un conmutador con un gran número de posiciones, cada una de las cuales, representa el factor de escala empleado por el sistema vertical. Por ejemplo si el mando esta en la posición 2 voltios/div significa que cada una de las divisiones verticales de la pantalla (aproximadamente de un 1 cm.) representan 2 voltios. Las divisiones más pequeñas representaran una quinta parte de este valor, o sea, 0.4 voltios. La máxima tensión que se puede visualizar con el osciloscopio presentado y con una sonda de 10X será entonces: 10 (factor de división de la sonda) x 20 voltios/div (máxima escala) x 8 divisiones verticales = 1600 voltios. En la pantalla se representa una señal de 1Vpp tal como la veriamos en diferentes posiciones del conmutador. Sistema vertical: Mando Variable. Se trata de un potenciómetro situado de forma concéntrica al conmutador del amplificador vertical y podemos considerarlo como una especie de lupa del sistema vertical. Para realizar medidas es necesario colocarlo en su posición calibrada. Sistema vertical: Acoplamiento de la entrada. Se trata de un conmutador de tres posiciones que conecta electricamente a la entrada del osciloscopio la señal exterior. El acoplamiento DC deja pasar la señal tal como viene del circuito exterior (es la señal real).el acoplamiento AC bloquea mediante un condensador la componente continua que posea la señal exterior.el acoplamiento GND desconecta la señal de entrada del sistema vertical y lo conecta a masa, permitiendonos situar el punto de referencia en cualquier parte de la pantalla (generalmente el centro de la pantalla cuando se trabaja con una sola señal). Sistema vertical: Inversión. Es un conmutador de dos posiciones en forma de botón que permite en una de sus posiciones invertir la señal de entrada en el canal I (existen otros osciloscopios que invierten el canal II). Sistema vertical: Modo alternado - chopeado. Es un conmutador de dos posiciones, en forma de botón, que permite, cuando nos encontramos en modo DUAL, seleccionar el modo de trazado de las señales en pantalla. En el modo alternado se traza completamente la señal del canal I y después la del canal II y asi sucesivamente. Se utiliza para señales de media y alta frecuencia (generalmente cuando el mando TIMEBASE está situado en una escala de 0.5 msg. ó inferior). En el modo chopeado el osciloscopio traza una pequeña parte del canal I después otra pequeña parte del canal II, hasta completar un trazado completo y empezar de nuevo. Se utiliza para señales de baja frecuencia (con el mando TIMEBASE en posición de 1 msg. ó superior). Sistema vertical: Modo simple - dual - suma. Es un control formado por tres conmutadores de dos posiciones, en forma de botón, que permite seleccionar entres tres modos de funcionamiento: simple, dual y suma. En el modo simple actuamos tan solo sobre el conmutador etiquetado como CH I/II. Si no está pulsado visualizaremos la señal que 4

5 entra por el canal I y si lo está la señal del canal II. El modo dual se selecciona con el conmutador etiquetado DUAL. Si no está pulsado visualizaremos un solo canal (cual, dependerá del estado del conmutador CH I/II) y si lo está visualizremos simultáneamente ambos canales. El modo suma se selecciona pulsando el conmutador etiquetado I+II (si también lo está el etiquetado como DUAL) y nos permite visualizar la suma de ambas señales en pantalla. Sistema de disparo: Sentido. Este control consta de un conmutador en forma de botón que permite invertir el sentido del disparo. Si está sin pulsar la señal se dispara subiendo (flanco positivo +) y si lo pulsamos se disparará bajando (flanco negativo -).Es conveniente disparar la señal en el flanco de transición más rápida. Sistema de disparo: Nivel. Se trata de un potenciómetro que permite en el modo de disparo manual, ajustar el nivel de señal a partir del cual, el sistema de barrido empieza a actuar. Este ajuste no es operativo en modo de disparo automático. Sistema de disparo: Acoplamiento. Debido a las muy diferentes señales que se pueden presentar en electrónica, el osciloscopio presenta un conmutador con el que podemos conseguir el disparo estable de la señal en diferentes situaciones. La gama de frecuencias ó tipos de señales que abarca cada posición del conmutador depende del tipo de osciloscopio (es posible incluso que el osciloscopio tenga otras posiciones, especialmente para tratar las señales de televisión). En la siguiente figura se especifica los datos para un osciloscopio en particular. Para tu osciloscopio deberas consultar la información suministrada por el fabricante, para actualizar esta tabla. Sistema de disparo: Exterior. La situación normal es que se permita al osciloscopio quien internamente dispare la señal de entrada. Esto permite sincronizar casi todas las señales periodicas siempre que la altura de la imagen supere un cierto valor (generalemente muy pequeño, del orden de media división). Para algunas señales complicadas, es necesario dispararlas con otra señal procedente del mismo circuito de prueba. Esto puede hacerse introduciendo esta última señal por el conector etiquetado TRIG. EXT. y pulsando también el botón que le acompaña. Ajuste inicial básico de los controles del osciloscopio: 1. Después de conectar el osciloscopio a la toma de red y de alimentarlo pulsando en el interruptor de encendido: Es necesario familiarizarse con el panel frontal del osciloscopio. Todos los osciloscopios disponen de tres secciones básicas que llamaremos: Vertical, Horizontal, y Disparo. Dependiendo del tipo de osciloscopio empleado en particular, podemos disponer de otras secciones. Existen unos conectores BNC, donde se colocan las sondas de medida. 2. La mayoria de los osciloscopios actuales disponen de dos canales etiquetados normalmente como I y II (ó A y B). El disponer de dos canales nos permite comparar señales de forma muy cómoda. Algunos osciloscopios avanzados poseen un interruptor etiquetado como AUTOSET ó PRESET que ajustan los controles en un solo paso para ajustar perfectamente la señal a la pantalla. Si tu osciloscopio no posee esta caracteristica, es importante ajustar los diferentes controles del aparato a su posición standar antes de proceder a medir. 3. Ajustar el osciloscopio para visualizar el canal I. (al mismo tiempo se colocará como canal de disparo el I). 5

6 4. Ajustar a una posición intermedia la escala voltios/división del canal I (por ejemplo 1v/cm). 5. Colocar en posición calibrada el mando variable de voltios/división (potenciómetro central). 6. Desactivar cualquier tipo de multiplicadores verticales. Colocar el conmutador de entrada para el canal I en acoplamiento DC. 7. Colocar el modo de disparo en automático. 8. Desactivar el disparo retardado al mínimo ó desactivado. Situar el control de intensidad al mínimo que permita apreciar el trazo en la pantalla, y el trazo de focus ajustado para una visualización lo más nítida posible (generalmente los mandos quedaran con la señalización cercana a la posición vertical) Osciloscopio analógico La tensión a medir se aplica a las placas de desviación vertical oscilante de un tubo de rayos catódicos (utilizando un amplificador con alta impedancia de entrada y ganancia ajustable) mientras que a las placas de desviación horizontal se aplica una tensión en diente de sierra (denominada así porque, de forma repetida, crece suavemente y luego cae de forma brusca). Esta tensión es producida mediante un circuito oscilador apropiado y su frecuencia puede ajustarse dentro de un amplio rango de valores, lo que permite adaptarse a la frecuencia de la señal a medir. Esto es lo que se denomina base de tiempos. Figura 2: Representación esquemática de un osciloscopio. En la figura 2 se puede ver una representación esquemática de un osciloscopio con indicación de las etapas mínimas fundamentales. El funcionamiento es el siguiente: En el tubo de rayos catódicos el rayo de electrones generado por el cátodo y acelerado por el ánodo llega a la pantalla, recubierta interiormente de una capa fluorescente que se ilumina por el impacto de los electrones. 6

7 Si se aplica una diferencia de potencial a cualquiera de las dos parejas de placas de desviación, tiene lugar una desviación del haz de electrones debido al campo eléctrico creado por la tensión aplicada. De este modo, la tensión en diente de sierra, que se aplica a las placas de desviación horizontal, hace que el haz se mueva de izquierda a derecha y durante este tiempo, en ausencia de señal en las placas de desviación vertical, dibuje una línea recta horizontal en la pantalla y luego vuelva al punto de partida para iniciar un nuevo barrido. Este retorno no es percibido por el ojo humano debido a la velocidad a que se realiza y a que, de forma adicional, durante el mismo se produce un apagado (borrado) parcial o una desviación del rayo. Si en estas condiciones se aplica a las placas de desviación vertical la señal a medir (a través del amplificador de ganancia ajustable) el haz, además de moverse de izquierda a derecha, se moverá hacia arriba o hacia abajo, dependiendo de la polaridad de la señal, y con mayor o menor amplitud dependiendo de la tensión aplicada. Al estar los ejes de coordenadas divididos mediante marcas, es posible establecer una relación entre estas divisiones y el período del diente de sierra en lo que se refiere al eje X y al voltaje en lo referido al Y. Con ello a cada división horizontal corresponderá un tiempo concreto, del mismo modo que a cada división vertical corresponderá una tensión concreta. De esta forma en caso de señales periódicas se puede determinar tanto su período como su amplitud. El margen de escalas típico, que varía de microvoltios a unos pocos voltios y de microsegundos a varios segundos, hace que este instrumento sea muy versátil para el estudio de una gran variedad de señales. Limitaciones del osciloscopio analógico El osciloscopio analógico tiene una serie de limitaciones propias de su funcionamiento: 1. Para ver una traza estable, la señal deberia ser periódica ya que es la periodicidad de dicha señal la que refresca la traza en la pantalla. Sin embargo es posible solucionar este problema con señales de sincronismo con la señal de entrada para disparar el barrido horizontal (trigger level) o se utilizan osciloscopios con base de tiempo disparada. 2. Las señales muy rápidas reducen el brillo. Cuando se observa parte del período de la señal, el brillo se reduce debido a la baja persistencia fosfórica de la pantalla. Esto se soluciona colocando un potencial post-acelerador en el tubo de rayos catódicos. 3. Las señales lentas no forman una traza. Las señales de frecuencias bajas producen un barrido muy lento que no permite a la retina integrar la traza. Esto se solventa con tubos de alta persistencia. También existían cámaras Polaroid especialmente adaptadas para fotografiar las pantallas de osciloscopios. Manteniendo la exposición durante un periodo se obtiene una foto de la traza. Otra forma de solucionar el problema es dando distintas pendientes al diente de sierra del barrido horizontal. Esto permite que tarde más tiempo en barrer toda la pantalla, y por ende pueden visualizarse señales de baja frecuencia pero se verá un punto desplazándose a través de la pantalla debido a que la persistencia fosfórica no es elevada. 4. Sólo se pueden ver transitorios si éstos son repetitivos; pero puede utilizarse un osciloscopio con base de tiempo disparada. Este tipo de osciloscopio tiene un modo de funcionamiento denominado disparo único. Cuando viene un transitorio el osciloscopio mostrará este y sólo este, dejando de barrer una vez que la señal ya fue impresa en la pantalla Osciloscopio digital En la actualidad los osciloscopios analógicos están siendo desplazados en gran medida por los osciloscopios digitales, entre otras razones por la facilidad de poder transferir las medidas a una computadora personal o pantalla LCD. Sin embargo los dos instrumentos se utilizan en 7

8 función de las necesidades que se pretenda en la medición. En el osciloscopio digital la señal es previamente digitalizada por un conversor analógico digital. Al depender la fiabilidad de la visualización de la calidad de este componente, esta debe ser cuidada al máximo. Las características y procedimientos señalados para los osciloscopios analógicos son aplicables a los digitales. Sin embargo, en estos se tienen posibilidades adicionales, tales como el disparo anticipado (pre-triggering) para la visualización de eventos de corta duración, o la memorización del oscilograma transfiriendo los datos a un PC. Esto permite comparar medidas realizadas en el mismo punto de un circuito o elemento. Existen asimismo equipos que combinan etapas analógicas y digitales. La principal característica de un osciloscopio digital es la frecuencia de muestreo, la misma determinará el ancho de banda máximo que puede medir el instrumento, viene expresada generalmente en MS/s (millones de muestra por segundo). La mayoría de los osciloscopios digitales en la actualidad están basados en control por FPGA (del inglés Field Programmable Gate Array), el cual es el elemento controlador del conversor analógico a digital de alta velocidad del aparato y demás circuitería interna, como memoria, buffers, entre otros. Estos osciloscopios añaden prestaciones y facilidades al usuario imposibles de obtener con circuitería analógica, como los siguientes: Medida automática de valores de pico, máximos y mínimos de señal. Verdadero valor eficaz. Medida de flancos de la señal y otros intervalos. Captura de transitorios. Cálculos avanzados, como la FFT para calcular el espectro de la señal. también sirve para medir señales de tensión. 2. Generador de Señales Un generador de señales, de funciones o de formas de onda es un dispositivo electrónico de laboratorio que genera patrones de señales periódicas o no periódicas tanto analógicas como digitales. Se emplea normalmente en el diseño, prueba y reparación de dispositivos electrónicos; aunque también puede tener usos artísticos. El mismo se muestra en la figura 3. Hay diferentes tipos de generadores de señales según el propósito y aplicación que corresponderá con el precio. Tradicionalmente los generadores de señales eran dispositivos estáticos apenas configurables, pero actualmente permiten la conexión y control desde un PC. Con lo que pueden ser controlados mediante software hecho a medida según la aplicación, aumentando la flexibilidad. Las salidas más frecuentes son ondas senoidales, triangulares, cuadradas y diente de sierra. Las frecuencias de estas ondas pueden ser ajustadas desde una fracción de Hertz hasta varios cientos de kilo Hertz. Las diferentes salidas del generador se pueden obtener al mismo 8

9 Figura 3: Generador de señales. tiempo. Estos dispositivos se emplean normalmente en el diseño, prueba y reparación de dispositivos electrónicos; aunque también puede tener usos artísticos. Aunque existen multitud de generadores de funciones de mayor o menor complejidad todos incorporan ciertas funciones y controles básicos que pasamos a describir a continuación en la figura 4. Figura 4: Representación esquemática de un generador de señales. 1. Selector de funciones. Controla la forma de onda de la señal de salida. 2. Selector de rango. Selecciona el rango o margen de frecuencias de trabajo de la señal de salida. Su valor va determinado en décadas, es decir, de 1 a 10 Hz, de 10 a 100, etc. 3. Control de frecuencia. Regula la frecuencia de salida dentro del margen seleccionado mediante el selector de rango. 4. Control de amplitud. Mando que regule la amplitud de la señal de salida. 5. DC offset. Regula la tensión continua de salida que se superpone a la señal variable en el tiempo de salida. 6. Atenuador de 20dB. Ofrece la posibilidad de atenuar la señal de salida 20 db (100 veces) sobre la amplitud seleccionada con el control número Salida 600ohm. Conector de salida que entrega la señal elegida con una impedancia de 600 ohmios. 9

10 8. Salida TTL. Entrega una consecución de pulsos TTL (0-5V) con la misma frecuencia que la señal de salida Señales Una onda senoidal está determinada por un valor máximo de amplitud, llamado valor pico, y un tiempo de desarrollo llamado periodo. La frecuencia de la onda es la cantidad de veces que dicha onda se desarrolla en el tiempo t. Por ejemplo, si una onda desarrolla 1 ciclo en un tiempo t, y en ese mismo tiempo t otra onda se desarrolla 3 ciclos, ésta última tiene una frecuencia 3 veces mayor que la primera. La representación matemática es la siguiente: V = A 0 sin (wt + β) (1) donde V max es la amplitud máxima de la onda, w = 2πf es la frecuencia angular y φ es la fase. La representación gráfica se muestra en la figura 5. Figura 5: Representación gráfica de una onda sinusoidal Formas de Onda Onda Cuadrada Se conoce por onda cuadrada a la onda de corriente alterna (CA) que alterna su valor entre dos valores extremos sin pasar por los valores intermedios (al contrario de lo que sucede con la onda senoidal y la onda triangular, etc.). Se usa principalmente para la generación de pulsos eléctricos que son usados como señales (1 y 0) que permiten ser manipuladas fácilmente, un circuito electrónico que genera ondas cuadradas se conoce como generador de pulsos, este tipo de circuitos es la base de la electrónica digital. El contenido espectral de una onda cuadrada se compone exclusivamente de armónicos impares (f, 3f, 5f, etc), extendiéndose a frecuencias más elevadas cuanto más abruptos sean sus flancos. Esto tiene dos consecuencias: La capacidad y autoinductancia parásitas filtran la señal, eliminando las componentes de mayor frecuencia, con lo que la onda cuadrada se degrada, tomando un aspecto cada vez más redondeado. 10

11 Por otro lado, señales muy abruptas producen radiación de alta frecuencia, dando problemas de compatibilidad electromagnética y acoplos (diafonía) entre pistas. Por ello ciertas familias lógicas como Q-mos (Quit-mos) controlan la pendiente de los flancos de la señal, evitando que sean demasiado abruptos. La representación matemática es: { A 0 < t < T V (t) = 2 A T < t < T 2 En la figura 6 se ilustra la onda cuadrada. Figura 6: Representación gráfica de una onda cuadrada. 11

12 Onda Triangular La onda triangular es un tipo de señal periódica que presenta unas velocidades de subida y bajada constantes. Lo más habitual es que sea simétrica, es decir que, los tiempos de subida y bajada son iguales. La onda triangular tiene un contenido en armónicos muy bajo, lo que concuerda con su parecido a una onda sinusoidal. Tanto matemática como físicamente se puede obtener integrando en el tiempo una onda cuadrada: los niveles constantes alto y bajo de dicha onda se convierten en las pendientes (constantes) de los flancos de subida y bajada de la onda triangular. Sabiendo que su periodo es T y la amplitud V 0 y su pendiente a = V 0, la representación matemática es at 0 < t < T 4 T V (t) = V 0 at < t < 3T 4 4 3T V 0 + at < t < T 4 En la figura 7 se ilustra la onda triangular. T/4 Figura 7: Representación gráfica de una onda triangular. 3. Desfasajes Temporales Dadas dos señales armónicas dependientes del tiempo V 1 = V 10 cos wt V 2 = V 20 cos (wt + φ) (2) cuyos respectivos gráficos se ilustran en la figura 10, buscamos un modo simple de obtener la diferencia de fase, φ, empleando un osciloscopio y generador de funciones. Estudiaremos los dos métodos que se detallan a continuación Mediante figuras de Lissajous Podemos considerar a las expresiones de (3) como la representación para métrica de una curva en el plano XY, asociando V 1 y V 2 de las expresiones de (2) con las componentes x e y de dicha representación, de modo tal que se tiene V x = V x0 cos wt V y = V y0 cos (wt + φ) (3) 12

13 Figura 8: Dos señales armónicas desfasadas, de igual frecuencia y diferente amplitud. Figura 9: Figura de Lissajous para el caso de frecuencias iguales. cuyo gráfico se ilustra en la figura 9, Para los instantes t tales que wt = kπ con k perteneciente a los enteros resulta V x = ±V x0 = ± B 2 (4) Para t tal que wt + φ = π 2 + kπ con k perteneciente a los enteros se tiene V x = ±V x0 cos( π 2 φ) = ±V x0 sin φ = ± A 2 (5) Por lo tanto sin φ = ± A B (6) donde A y B son los señalados en la figura 2. Puede demostrarse que también vale sin φ = ± C D (7) donde C y D son los análogos a A y B, respectivamente, medidos sobre el eje V y. De las ecuaciones anteriores resulta φ = arcsin A B = arcsin C D (8) 13

14 3.2. Mediante retrasos temporales Sea t 1 un instante tal que V 2 = 0, esto es: cos(wt 1 + φ), lo que a su vez implica wt 1 + φ = π 2 + k 0 π con k 0 Z (9) Sea ahora t el lapso más breve que debe aguardarse para que V 1 sea nula, esto es: De las condiciones (8) y (9) resulta wt 1 + t = π 2 + k 0 π con k 0 Z (10) 3.3. Convención importante φ = wt (11) Dadas las expresiones (1) y (2), se dice que la señal V 2 adelanta en a V 1. Observación: Note que V 2 alcanza sus máximos, mínimos y ceros con igual pendiente, antes que V 1. Es por eso que se dice que V 2 adelanta a V Objetivos de la práctica Familiarizarse con el uso del osciloscopio y del generador de funciones. Aprender a medir frecuencia, período y amplitud de señales periódicas. 5. Desarrollo y Análisis Experimental 1) Visualización de una señal sinusoidal a) Ajustar el generador de manera que entregue una señal sinusoidal de 10 Volt PaP. Con una frecuencia de 1 Khz. Ajustar estos valores con los diales del generador. b) Verificar con el osciloscopio los valores obtenidos. Tomar nota de los ajustes de los controles del osciloscopio. c) Repetir el procedimiento para: 4Khz, 8Khz, 25 Khz, 50 Khz. d) Confeccionar la siguiente tabla: Amplificación Vertical Tensión Base de tiempo División Horizontal Período Frecuencia Cuadro 1: Tabla de mediciones. 14

15 2) Ajustar el generador de manera que entregue una señal sinusoidal de 10 Volt PaP. Con una frecuencia de 1 Khz. Ajustar este valor midiendo con el osciloscopio mientras se ajusta el generador. a) Cuál es el período que debe tener la señal? Confeccionar el cuadro 1 para este caso y comparar. b) Ajustar los controles del osciloscopio para que se observe la señal de la siguiente manera: c) Modificar la escala para que entren 5 ciclos de la señal en pantalla. Se mide mejor o peor de esta manera? Por que? d) Modificar la escala para que la señal se vea con solo una división de alto. Se mide mejor o peor de esta manera?. Por qué? e) Si la señal tuviese una amplitud de 5 Volt P a P Cuál es la máxima sensibilidad en que se puede ajustar el amplificador vertical? 3) Repetir los puntos 1 y 2 para la señal cuadrada y triangular. 4) Medidas con el osciloscopio El osciloscopio es un instrumento que sirve para visualizar señales periódicas. Nos permite, entre otras cosas, medir amplitudes, frecuencias y desfasajes entre dos señales. Si en la pantalla del osciloscopio se observa la figura 10. Figura 10: Pantalla del osciloscopio El uso de la Figura de LISSAJOUS sirve para medir frecuencias, se basa en la comparación de una señal de frecuencia desconocida (generalmente aplicada al amplificador vertical) con otra señal standard de frecuencia conocida (aplicada al amplificador horizontal). La frecuencia standard se ajusta hasta que en la pantalla del osciloscopio aparece una elipse o un circulo indicándonos que ambas señales están a la misma frecuencia. Cuando no es posible ajustar la frecuencia standard al mismo valor que la frecuencia desconocida, la frecuencia standard se ajusta a un múltiplo o sub-múltiplo de la frecuencia desconocida. En este caso en la pantalla aparece una figura estacionaria con un número determinado de picos según la dirección vertical 15

16 y horizontal. Esta razón proporciona una medida de frecuencias. Errores de Lectura y medida 1. Siempre aparece un error de observación que en términos generales es de 1 5 de división. 2. Error de calibración que oscila entre 3 y 5 %. 3. Debido a las limitaciones de frecuencias del osciloscopio. Para este caso hay que procurar el mayor ancho de banda. 4. Error producido por el efecto de carga, para el caso de medidas en AC para altas frecuencias la impedancia influirá en el valor. Para evitar este tipo de error existen puntas de prueba que reducen este efecto considerablemente. Uno de los métodos para medir el desfase es utilizar el modo X-Y del osciloscopio. Este método solo funciona de forma correcta si ambas señales son sinusoidales. Se puede deducir la fase entre las dos señales, así como su relación de frecuencias observando la siguiente figura 11. Figura 11: Desfasajes correspondientes a la figura de Lissajous Ejecute un programa o simulador que ejercite lo siguiente: 1. Mida el desfaje siguiendo los métodos estudiados en esta sección. 2. Varíe el desfaje tanto en magnitud como en signo y observe los cambios en las figuras. Asegúrese de explorar el rango de 0 a 2π. 3. Verifique si sus conclusiones se modifican al cambiar cos por sin. 4. Pruebe variar la frecuencia relativa. Las siguiente lineas evalúan dos señales temporales armónicas desfasadas y sus gráficas en función del tiempo e ilustra la correspondiente figura de Lissajous. 16

17 t = (0 : 0,01 : 2) V x = cos(2 pi t) V y = cos(2 pi t + π 6 ) figure(1) plot(t, V x, t, V y ) figure(2) plot(v x, V y ) Análisis y Reflexión 1. Debe estar centrada la elipse de la figura 2 para medir A y B? 2. Debe estar centrada para medir A o para medir B? 3. Deben estar centradas V 1 y V 2 para medir el intervalo de tiempo? 4. Cuáles son las ventajas relativas de cada uno de los dos métodos estudiados para medir? 5. Cuál de los dos métodos permite determinar con menor incerteza? 6. Bibliografía Física, Vol 2A: Electricidad y Magnetismo, Tipler y Mosca. Ed.: Reverte Física II. David halliday, Robert Resnick. Compañía editorial continental México. Electrónica: Teoría de Circuitos, R. Boylestad y L. Nashelsky. Ed.: Pearson. Circuitos magnéticos y transformadores- Staff del MIT- Editorial Reverté. Electricidad y Magnetismo, R. Serway. Ed.: Thomson Circuitos Eléctricos, J. Edminister. Serie Schaum. Ed.: Mc Graw Hill. Principios de Electrónica, A. Malvino. Ed.: Mc Graw Hill. Wikipedia. [Consulta: ] 17

ANTECEDENTES TEÓRICOS. EL OSCILOSCOPIO Puesta en funcionamiento

ANTECEDENTES TEÓRICOS. EL OSCILOSCOPIO Puesta en funcionamiento ANTECEDENTES TEÓRICOS EL OSCILOSCOPIO Puesta en funcionamiento Poner a tierra Una buena conexión a tierra es muy importante para realizar medidas con un osciloscopio. Colocar a tierra el Osciloscopio Por

Más detalles

PRÁCTICA 2 CALIBRACIÓN Y USO DEL OSCILOSCOPIO

PRÁCTICA 2 CALIBRACIÓN Y USO DEL OSCILOSCOPIO PRÁCTICA 2 CALIBRACIÓN Y USO DEL OSCILOSCOPIO OBJETIVOS: Comprender la utilidad, el principio de operación y el uso correcto del osciloscopio. ANTECEDENTES TEÓRICOS EL OSCILOSCOPIO Puesta en funcionamiento

Más detalles

UNIVERSIDAD NACIONAL DE COLOMBIA

UNIVERSIDAD NACIONAL DE COLOMBIA UNIVERSIDAD NACIONAL DE COLOMBIA FACULTAD DE MINAS CALIBRACIÓN Y USO DEL OSCILOSCOPIO CURSO DOCENTE : LABORATORIO CIRCUITOS ELÉCTRICOS : PABLO A. SEPÚLVEDA OSPINA OBJETIVOS: Comprender la utilidad, el

Más detalles

INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA. Nociones básicas sobre el manejo de LOS EQUIPOS DEL LABORATORIO

INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA. Nociones básicas sobre el manejo de LOS EQUIPOS DEL LABORATORIO INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA Esta documentación tiene como objetivo facilitar el primer contacto del alumno con la instrumentación básica de un. Como material de apoyo para el manejo de la

Más detalles

OSCILOSCOPIO FUNCIONAMIENTO:

OSCILOSCOPIO FUNCIONAMIENTO: OSCILOSCOPIO El osciloscopio es un instrumento electrónico - digital o analógico- que permite visualizar y efectuar medidas sobre señales eléctricas. Para esto cuenta con una pantalla con un sistema de

Más detalles

Preguntas teóricas de la Clase N 5

Preguntas teóricas de la Clase N 5 Preguntas teóricas de la Clase N 5 1) Respecto a la cadena de amplificación del sistema vertical (eje Y) de un osciloscopio de rayos catódicos (ORC) Qué entiende por: 1. Impedancia de entrada? Componentes

Más detalles

19 EL OSCILOSCOPIO OBJETIVO MATERIAL FUNDAMENTO TEÓRICO

19 EL OSCILOSCOPIO OBJETIVO MATERIAL FUNDAMENTO TEÓRICO 19 EL OSCILOSCOPIO OBJETIVO Familiarizarse con el manejo del osciloscopio. Medida del periodo y del valor eficaz y de pico de una señal alterna de tensión. Visualización de las figuras de Lissajous. MATERIAL

Más detalles

OSCILOSCOPIO. - Un cañón de electrones que los emite, los acelera y los enfoca. - Un sistema deflector - Una pantalla de observación S

OSCILOSCOPIO. - Un cañón de electrones que los emite, los acelera y los enfoca. - Un sistema deflector - Una pantalla de observación S OSCILOSCOPIO Objetivos - Conocer los aspectos básicos que permiten comprender el funcionamiento del osciloscopio - Manejar el osciloscopio como instrumento de medición de magnitudes eléctricas de alta

Más detalles

OSCILOSCOPIO CON PANTALLA DE LEDS Marco Antonio Nuño Morales, marco_a_nuno_m@yahoo.com.mx

OSCILOSCOPIO CON PANTALLA DE LEDS Marco Antonio Nuño Morales, marco_a_nuno_m@yahoo.com.mx OSCILOSCOPIO CON PANTALLA DE LEDS Marco Antonio Nuño Morales, marco_a_nuno_m@yahoo.com.mx 0.0) INDICE HOJA DE PRESENTACION 1 0.0 INDICE 2 1.0 RESUMEN...3 2.0 ANTECEDENTES...3 2.1 Utilización.3 2.2 Osciloscopio

Más detalles

Sesión 6 Instrumentación básica y técnicas de medida

Sesión 6 Instrumentación básica y técnicas de medida Sesión 6 Instrumentación básica y técnicas de medida Componentes y Circuitos Electrónicos Isabel Pérez /José A. Garcia Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez

Más detalles

El osciloscopio. Fundamento teórico:

El osciloscopio. Fundamento teórico: El osciloscopio El osciloscopio es básicamente un dispositivo que permite la visualización gráfica de señales eléctricas variables en el tiempo. Para tal fin, el osciloscopio dispone de una pantalla en

Más detalles

Práctica No. 6 del Curso Meteorología y Transductores. "Mediciones de valor medio y valor eficaz"

Práctica No. 6 del Curso Meteorología y Transductores. Mediciones de valor medio y valor eficaz Objetivo. Práctica No. 6 del Curso Meteorología y Transductores. "Mediciones de valor medio y valor eficaz" Graficar varias señales del generador de señales y comprobar en forma experimental el voltaje

Más detalles

CAPITULO 2 CARACTERÍSTICAS ESPECIALES

CAPITULO 2 CARACTERÍSTICAS ESPECIALES CAPITULO 2 CARACTERÍSTICAS ESPECIALES Todo lo anteriormente mencionado sobre osciloscopios es en relación a un osciloscopio básico. Es decir, existen una serie de características no mencionadas hasta ahora

Más detalles

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION Como hemos dicho anteriormente, los instrumentos de medición hacen posible la observación de los fenómenos eléctricos y su cuantificación. Ahora

Más detalles

PRÁCTICA NÚMERO 1. MANEJO DEL OSCILOSCOPIO Y DEL GENERADOR DE SEÑALES.

PRÁCTICA NÚMERO 1. MANEJO DEL OSCILOSCOPIO Y DEL GENERADOR DE SEÑALES. PRÁCTICA NÚMERO 1. MANEJO DEL OSCILOSCOPIO Y DEL GENERADOR DE SEÑALES. 1.1. Introducción Teórica. (a) El osciloscopio El osciloscopio es básicamente un dispositivo de visualización gráfica que muestra

Más detalles

:: INTRODUCCIÓN [10.1]

:: INTRODUCCIÓN [10.1] :: INTRODUCCIÓN [10.1] Si en un circuito, es de interés medir una variable eléctrica del tipo; caída de tensión, intensidad de corriente I u otra desde los terminales o a través de un elemento tal como

Más detalles

UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº

UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 4 Objetivos EL OSCILOSCOPIO Comprender el principio de funcionamiento del osciloscopio

Más detalles

Osciloscopio Funciones

Osciloscopio Funciones Uso del osciloscopio para determinar las formas de onda Uno de los procedimientos para realizar diagnósticos acertados, en las reparaciones automotrices, es el buen uso del osciloscopio. Este instrumento

Más detalles

Osciloscopios de Visualización de Dos Señales

Osciloscopios de Visualización de Dos Señales Osciloscopios de Visualización de Dos Señales 1- Osciloscopio de Doble Trazo. Los osciloscopios de Trazo múltiple permiten graficar dos ó más señales simultáneamente en la pantalla. A diferencia de un

Más detalles

INACAP ELECTRICIDAD- 2 GUIA DE LABORATORIO 1 USO DEL OSCILOSCOPIO. 2.- 3.- Curso:

INACAP ELECTRICIDAD- 2 GUIA DE LABORATORIO 1 USO DEL OSCILOSCOPIO. 2.- 3.- Curso: INACAP ELECTRICIDAD- 2 GUIA DE LABORATORIO 1 USO DEL OSCILOSCOPIO Alumnos 1.- Fecha: 2.- 3.- Curso: OBJETIVO Usar el osciloscopio como instrumento para visualizar señales y medir en ellas voltaje, frecuencia

Más detalles

Circuito RL, Respuesta a la frecuencia.

Circuito RL, Respuesta a la frecuencia. Circuito RL, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se estudia

Más detalles

AUTOMATIZACIÓN INDUSTRIAL DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS

AUTOMATIZACIÓN INDUSTRIAL DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS 3º INGENIERÍA TÉCNICA INDUSTRIAL, ESPECIALIDAD MECÁNICA AUTOMATIZACIÓN INDUSTRIAL PRÁCTICA 5 DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS OBJETIVOS DE LA PRÁCTICA Identificar sobre un montaje real

Más detalles

Introducción al osciloscopio

Introducción al osciloscopio Introducción al osciloscopio 29 de abril de 2009 Objetivos Aprender el funcionamiento y el manejo básico de un osciloscopio. Material Figura 1: Montaje de la práctica de introducción al osciloscopio. 1

Más detalles

Figura 1 Fotografía de varios modelos de multímetros

Figura 1 Fotografía de varios modelos de multímetros El Multímetro El multímetro ó polímetro es un instrumento que permite medir diferentes magnitudes eléctricas. Así, en general, todos los modelos permiten medir: - Tensiones alternas y continuas - Corrientes

Más detalles

INACAP ELECTRICIDAD 2 GUIA DE APOYO AL LABORATORIO - 1 EL OSCILOSCOPIO: ESTRUCTURA Y APLICACIONES EL OSCILOSCOPIO ESTRUCTURA BASICA

INACAP ELECTRICIDAD 2 GUIA DE APOYO AL LABORATORIO - 1 EL OSCILOSCOPIO: ESTRUCTURA Y APLICACIONES EL OSCILOSCOPIO ESTRUCTURA BASICA INACAP ELECTRICIDAD 2 GUIA DE APOYO AL LABORATORIO - 1 EL OSCILOSCOPIO: ESTRUCTURA Y APLICACIONES EL OSCILOSCOPIO ESTRUCTURA BASICA El osciloscopio es un instrumento electrónico que básicamente permite

Más detalles

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

PRACTICA Nº 4 EL OSCILOSCOPIO

PRACTICA Nº 4 EL OSCILOSCOPIO PRACTICA Nº 4 EL OSCILOSCOPIO Objetivos Comprender el principio de funcionamiento del osciloscopio analógico y estar en capacidad de identificar los diferentes bloques de controles en los instrumentos

Más detalles

Una vez conocido el manejo básico, antes de venir al Laboratorio a manejarlo, puedes practicar con un osciloscopio virtual en el enlace

Una vez conocido el manejo básico, antes de venir al Laboratorio a manejarlo, puedes practicar con un osciloscopio virtual en el enlace PRACTICA 3. EL OSCILOSCOPIO ANALOGICO 1. INTRODUCCION. El Osciloscopio es un voltímetro que nos permite representar en su pantalla valores de tensión durante un intervalo de tiempo. Es decir, nos permite

Más detalles

Asignatura: CONTROL CLÁSICO Y MODERNO Departamento de Electrónica Facultad de Ingeniería U.Na.M 2015 GUIA DE LABORATORIO Nº2

Asignatura: CONTROL CLÁSICO Y MODERNO Departamento de Electrónica Facultad de Ingeniería U.Na.M 2015 GUIA DE LABORATORIO Nº2 GUIA DE LABORATORIO Nº2 Universidad Nacional de Misiones MÉTODOS CLÁSICOS PARA MODELACIÓN DE SISTEMAS 1. Objetivo de la práctica. Modelación a través de la Respuesta en frecuencia Este laboratorio tiene

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 8: USO DEL OSCILOSCOPIO a) Aplicar las técnicas de ajuste en

Más detalles

Circuito RC, Respuesta a la frecuencia.

Circuito RC, Respuesta a la frecuencia. Circuito RC, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (13368) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se armó un

Más detalles

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO TRABAJO PRACTICO No 7 MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO INTRODUCCION TEORICA: La distorsión es un efecto por el cual una señal pura (de una única frecuencia)

Más detalles

PRÁCTICAS INTRODUCCIÓN A LA TECNOLOGÍA DE COMPUTADORES (Curso: 05/06) 1. (Práctica nº 2) Figura 1: Osciloscópio. Figura 2: Generador de Funciones

PRÁCTICAS INTRODUCCIÓN A LA TECNOLOGÍA DE COMPUTADORES (Curso: 05/06) 1. (Práctica nº 2) Figura 1: Osciloscópio. Figura 2: Generador de Funciones PRÁCTICAS INTRODUCCIÓN A LA TECNOLOGÍA DE COMPUTADORES (Curso: 05/06) 1 MANEJO DEL OSCILOSCOPIO (Práctica nº 2) 1. INSTRUMENTOS DE MEDIDA Figura 1: Osciloscópio Figura 2: Generador de Funciones Figura

Más detalles

CAPITULO VIII EL OSCILOSCOPIO

CAPITULO VIII EL OSCILOSCOPIO CAPITULO VIII EL OSCILOSCOPIO 8.1 INTRODUCCION. En la historia de las mediciones eléctricas y electrónicas, el instrumento que ha producido mayor impacto ha sido el osciloscopio, debido a que es de utilidad

Más detalles

UNIVERSIDAD DE IBAGUÉ INGENIERÍA ELECTRÓNICA MANUAL PRACTICO OSCILOSCOPIO DIGITAL HP 54600B

UNIVERSIDAD DE IBAGUÉ INGENIERÍA ELECTRÓNICA MANUAL PRACTICO OSCILOSCOPIO DIGITAL HP 54600B UNIVERSIDAD DE IBAGUÉ INGENIERÍA ELECTRÓNICA MANUAL PRACTICO OSCILOSCOPIO DIGITAL HP 54600B HAROLD A. ESQUIVEL C. TABLA DE CONTENIDO INTRODUCCION 1. ESPECIFICACIONES TECNICAS 1.1 SISTEMA VERTICAL 1.2 SISTEMA

Más detalles

EL OSCILOSCOPIO. (C) Copyright Agustin Borrego Colomer - Junio 1997 agusbo@iponet.es. Educación manejo Osciloscopio

EL OSCILOSCOPIO. (C) Copyright Agustin Borrego Colomer - Junio 1997 agusbo@iponet.es. Educación manejo Osciloscopio Educación manejo Osciloscopio EL OSCILOSCOPIO (C) Copyright Agustin Borrego Colomer - Junio 1997 agusbo@iponet.es http://www.ucm.es/info/electron/laboratorio/instrumentos/osc/osc.html [14-03-2003 17:22:31]

Más detalles

CAPITULO 4. Inversores para control de velocidad de motores de

CAPITULO 4. Inversores para control de velocidad de motores de CAPITULO 4. Inversores para control de velocidad de motores de inducción mediante relación v/f. 4.1 Introducción. La frecuencia de salida de un inversor estático está determinada por la velocidad de conmutación

Más detalles

Universidad de Pamplona Laboratorio de Electronica Li211-Li211. Manual de Funcionamiento Gw Instek Gos-6112

Universidad de Pamplona Laboratorio de Electronica Li211-Li211. Manual de Funcionamiento Gw Instek Gos-6112 Universidad de Pamplona Laboratorio de Electronica Li211-Li211 Manual de Funcionamiento Gw Instek Gos-6112 1. Objetivo. Conocer, Manejar y Aplicar el Osciloscopio Analogo gw instek gos-6112. 2. Descripción.

Más detalles

Un par de puntas de prueba que comunican el instrumento con el circuito bajo prueba.

Un par de puntas de prueba que comunican el instrumento con el circuito bajo prueba. INSTRUMENTACIÓN ELÉCTRICA Medición de tensión con diferentes instrumentos de medida MULTÍMETROS ANALOGOS De todas las herramientas y equipos que un electricista pueda poseer en su banco o en su maletín

Más detalles

QUÉ ES UN OSCILOSCOPIO? Qué podemos hacer con un osciloscopio?. Qué tipos de osciloscopios existen? Qué controles posee un osciloscopio típico?

QUÉ ES UN OSCILOSCOPIO? Qué podemos hacer con un osciloscopio?. Qué tipos de osciloscopios existen? Qué controles posee un osciloscopio típico? QUÉ ES UN OSCILOSCOPIO? El osciloscopio es básicamente un dispositivo de visualización gráfica que muestra señales eléctricas variables en el tiempo. El eje vertical, a partir de ahora denominado Y, representa

Más detalles

Osciloscopio. Primeros pasos

Osciloscopio. Primeros pasos Osciloscopio. Primeros pasos Objetivos Conocer el funcionamiento básico de un osciloscopio analógico. Aprender a medir amplitudes y periodos en un osciloscopio. Introducción. Los osciloscopios son de gran

Más detalles

El generador de señales:

El generador de señales: Pàgina 1 de 8 PRÁCTICA 1 : CONCEPTOS BÁSICOS DE ELECTRÓNICA Y ÓPTICA Para poder medir las magnitudes eléctricas y ópticas necesitamos algún tipo de detector y conversor de señal. Vamos a utilizar los materiales

Más detalles

Trabajo Practico Nº 1 El osciloscopio

Trabajo Practico Nº 1 El osciloscopio Universidad Abierta Interamericana Trabajo Practico Nº 1 Alumnos: Profesor: Campus: Turno: Andrés Martín Dellafiore Facundo Juarez Martín Castiñeira Daniel Zuccari Eduardo Sandoval Solá Marcos Manzato

Más detalles

MANUAL PARA EL OSCILOSCOPIO. Descripción, conexión y simulación con el osciloscopio de dos canales

MANUAL PARA EL OSCILOSCOPIO. Descripción, conexión y simulación con el osciloscopio de dos canales MANUAL PARA EL OSCILOSCOPIO Descripción, conexión y simulación con el osciloscopio de dos canales EL OSCILOSCOPIO INTRODUCCIÓN El osciloscopio es un instrumento que proporciona una representación visual

Más detalles

Medidas de la tensión de salida en variadores de velocidad con osciloscopios digitales ScopeMeter Serie 190 de Fluke

Medidas de la tensión de salida en variadores de velocidad con osciloscopios digitales ScopeMeter Serie 190 de Fluke Aplicación Medidas de la tensión de salida en variadores de velocidad con osciloscopios digitales ScopeMeter Serie 190 de Fluke Por Viditec La utilización de variadores de velocidad o "inversores de frecuencia"

Más detalles

PRÁCTICA Nº 4: EL OSCILOSCOPIO

PRÁCTICA Nº 4: EL OSCILOSCOPIO PRÁCTICA Nº 4: EL OSCILOSCOPIO Objetivos: Manejo del osciloscopio, medida de tensiones, tiempos, frecuencias y desfases, y caracterización del efecto de carga. Material: Osciloscopio, generador de baja

Más detalles

TRABAJO PRACTICO N 6 MEDICIONES CON OSCILOSCOPIO CON BASE DE TIEMPO DEMORADA APLICACIONES DE DOBLE TRAZO VERTICAL

TRABAJO PRACTICO N 6 MEDICIONES CON OSCILOSCOPIO CON BASE DE TIEMPO DEMORADA APLICACIONES DE DOBLE TRAZO VERTICAL TRABAJO PRACTICO N 6 MEDICIONES CON OSCILOSCOPIO CON BASE DE TIEMPO DEMORADA APLICACIONES DE DOBLE TRAZO VERTICAL INTRODUCCION TEORICA: Los osciloscopios con base de tiempo demorada permiten analizar parte

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Podemos decir que en electricidad y electrónica las medidas que con mayor frecuencia se hacen son de intensidad, tensión y

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 5 Tema: OSCILOSCOPIO MEDICIÓN DE TIEMPO, FRECUENCIA Y FASE Introducción El osciloscopio es uno de los instrumentos de medida más

Más detalles

FUENTES DE ALIMENTACION

FUENTES DE ALIMENTACION FUENTES DE ALIMENTACION INTRODUCCIÓN Podemos definir fuente de alimentación como aparato electrónico modificador de la electricidad que convierte la tensión alterna en una tensión continua. Remontándonos

Más detalles

TRABAJO PRACTICO N 1 MEDICIONES CON OSCILOSCOPIO DISPARADO USO DE PUNTAS DE PRUEBAS Y APLICACIONES

TRABAJO PRACTICO N 1 MEDICIONES CON OSCILOSCOPIO DISPARADO USO DE PUNTAS DE PRUEBAS Y APLICACIONES U..N. - F.R.M. MEDIDAS ELECRÓNICAS II RABAJO PRACICO N 1 MEDICIONES CON OSCILOSCOPIO DISPARADO USO DE PUNAS DE PRUEBAS Y APLICACIONES INRODUCCION EORICA Un Osciloscopio es un instrumento gráfico que permite

Más detalles

ANEXO Nº 2 : Introducción al Manejo del Osciloscopio Analógico ( parte A )

ANEXO Nº 2 : Introducción al Manejo del Osciloscopio Analógico ( parte A ) Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física ANEXO Nº 2 : Introducción al Manejo del Osciloscopio Analógico ( parte A ) Objetivo: La presente guía pretende dar

Más detalles

Mediciones Eléctricas

Mediciones Eléctricas Mediciones Eléctricas Grupos Electrógenos Mediciones Eléctricas Página 1 de 12 Tabla de Contenido Objetivo 1: Medidas de magnitudes eléctricas... 3 Objetivo 2: Generalidades sobre instrumentos de medición...

Más detalles

INTERFERENCIA Y REFLEXIÓN CON ONDAS DE ULTRASONIDOS. Esta práctica pretende alcanzar dos objetivos fundamentales:

INTERFERENCIA Y REFLEXIÓN CON ONDAS DE ULTRASONIDOS. Esta práctica pretende alcanzar dos objetivos fundamentales: INTERFERENCIA Y REFLEXIÓN CON ONDAS DE ULTRASONIDOS 1.- OBJETIVOS Esta práctica pretende alcanzar dos objetivos fundamentales: a) El manejo de una serie de instrumentos básicos como el osciloscopio y el

Más detalles

UNIDAD VI. También cuenta con diferentes escalas de amplitud para cada canal, así como también en la base de tiempo.

UNIDAD VI. También cuenta con diferentes escalas de amplitud para cada canal, así como también en la base de tiempo. UNIDAD VI 6.1 Plano X-Y, escalas. El osciloscopio es un medidor de indicación cartesiana x-y, es decir, grafica formas de onda en dos planos que pueden ser voltajes vs. tiempo, voltaje vs. voltaje, etc.

Más detalles

Osciloscopio TDS 220 Tektronix

Osciloscopio TDS 220 Tektronix Osciloscopio TDS 220 Tektronix Medida de tensiones tanto amplitud como frecuencia La medida se efectúa sobre la pantalla una vez que se conoce la escala tanto de amplitud,(v/div) escala vertical, como

Más detalles

Tema: Central telefónica (central office)

Tema: Central telefónica (central office) Conmutación Guía 2 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Conmutación. Tema: Central telefónica (central office) Objetivos Que el estudiante se familiarice con el funcionamiento y operación

Más detalles

Actividades con GeoGebra

Actividades con GeoGebra Conectar Igualdad - "Netbooks Uno a Uno" Actividades con GeoGebra Nociones básicas, rectas Silvina Ponce Dawson Introducción. El GeoGeobra es un programa que permite explorar nociones matemáticas desde

Más detalles

Universidad de Pamplona Laboratorio de Electronica Digital Li211 y Control Li212. Manual de Funcionamiento Agilent Technologies dso322a

Universidad de Pamplona Laboratorio de Electronica Digital Li211 y Control Li212. Manual de Funcionamiento Agilent Technologies dso322a Universidad de Pamplona Laboratorio de Electronica Digital Li211 y Control Li212 Manual de Funcionamiento Agilent Technologies dso322a 1. Objetivo Conocer, Manejar y Aplicar el Osciloscopio Digital Agilent

Más detalles

Laboratorio de Física Universitaria II. FISI 3014 Primer semestre del año académico 2003-2004 Departamento de Física y Electrónica de la UPR-H

Laboratorio de Física Universitaria II. FISI 3014 Primer semestre del año académico 2003-2004 Departamento de Física y Electrónica de la UPR-H Laboratorio de Física Universitaria II. FISI 3014 Primer semestre del año académico 2003-2004 Departamento de Física y Electrónica de la UPR-H Introducción El programa de Data Studio 1.7, es una aplicación

Más detalles

CAPITULO 4 IMPLEMENTACIÓN Y PRUEBAS EXPERIMENTALES. En este capítulo se mostrarán los resultados de la simulación del Corrector de Factor

CAPITULO 4 IMPLEMENTACIÓN Y PRUEBAS EXPERIMENTALES. En este capítulo se mostrarán los resultados de la simulación del Corrector de Factor CAPITULO 4 IMPLEMENTACIÓN Y PRUEBAS EXPERIMENTALES 4.1 INTRODUCCIÓN En este capítulo se mostrarán los resultados de la simulación del Corrector de Factor de Potencia, la cual fue realizada con el software

Más detalles

El osciloscopio digital

El osciloscopio digital El osciloscopio digital Laboratorio de Circuitos y Sistemas Dinámicos Depto. Electrotecnia y Sistemas 1 INTRODUCCIÓN... 3 2 FUNDAMENTOS TEÓRICOS... 3 2.1 CARACTERÍSTICAS GENERALES... 3 2.2 ESQUEMA DE FUNCIONAMIENTO...

Más detalles

Capítulo 10. Gráficos y diagramas

Capítulo 10. Gráficos y diagramas Capítulo 10. Gráficos y diagramas 1. Introducción Los gráficos y diagramas que se acostumbran a ver en libros e informes para visualizar datos estadísticos también se utilizan con propósitos cartográficos,

Más detalles

ÍNDICE DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ

ÍNDICE DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ ELECTRÓNICA DIGITAL DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ IES TRINIDAD ARROYO DPTO. DE ELECTRÓNICA ÍNDICE ÍNDICE... 1 1. LIMITACIONES DE LOS CONTADORES ASÍNCRONOS... 2 2. CONTADORES SÍNCRONOS...

Más detalles

VOLTIMETRO VECTORIAL

VOLTIMETRO VECTORIAL VOLTIMETRO VECTORIAL El voltímetro vectorial HP 8405 tiene un voltímetro y un fasímetro que permiten medir la amplitud y la relación de fase entre 2 componentes fundamentales de una tensión de RF. El rango

Más detalles

USO DE INSTRUMENTOS DE LABORATORIO

USO DE INSTRUMENTOS DE LABORATORIO 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). USO DE INSTRUMENTOS DE LABORATORIO Objetivo General Obtener

Más detalles

UNIVERSIDAD DON BOSCO

UNIVERSIDAD DON BOSCO CICLO 01-2015 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA GUÍA DE LABORATORIO Nº 06 NOMBRE DE LA PRACTICA: Análisis de Circuitos en Corriente Alterna

Más detalles

PRÁCTICA #1.- OSCILOSCOPIOS

PRÁCTICA #1.- OSCILOSCOPIOS 1 PRÁCTICA #1.- OSCILOSCOPIOS OBJETIVOS -Revisar el funcionamiento básico de los osciloscopios, y a partir de esta base teórica, ser capaz de manejar y realizar mediciones con el osciloscopio existente

Más detalles

Óptica. Determinación de la velocidad de la luz en el aire a partir del recorrido y la duración de un pulso corto de luz. LD Hojas de Física P5.6.2.

Óptica. Determinación de la velocidad de la luz en el aire a partir del recorrido y la duración de un pulso corto de luz. LD Hojas de Física P5.6.2. Óptica Velocidad de la luz Medición con pulsos cortos de luz LD Hojas de Física Determinación de la velocidad de la luz en el aire a partir del recorrido y la duración de un pulso corto de luz Objetivos

Más detalles

Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática. 6.002 Circuitos electrónicos Otoño 2000

Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática. 6.002 Circuitos electrónicos Otoño 2000 Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática 6.002 Circuitos electrónicos Otoño 2000 Tarea para casa 11 Boletín F00-057 Fecha de entrega: 6/12/00 Introducción

Más detalles

Figura 1: Símbolo lógico de un flip-flop SR

Figura 1: Símbolo lógico de un flip-flop SR FLIP-FLOPS Los circuitos lógicos se clasifican en dos categorías. Los grupos de puertas descritos hasta ahora, y los que se denominan circuitos lógicos secuenciales. Los bloques básicos para construir

Más detalles

PROBLEMA. Diseño de un DIMMER.

PROBLEMA. Diseño de un DIMMER. PROBLEMA Diseño de un DIMMER. Solución, como las especificaciones vistas en clase fueron muy claras el DIMMER controlara la velocidad de los disparos que se harán en la compuerta de el tiristor, es decir

Más detalles

3.2.- Fundamento teórico y de funcionamiento del instrumento. Metodología. 3.2.1.- Tests de componentes.

3.2.- Fundamento teórico y de funcionamiento del instrumento. Metodología. 3.2.1.- Tests de componentes. PRÁCTICA 3. Osciloscopios HM 604 y HM 1004 (III): Test de componentes y modulación en frecuencia. Sumario: Elementos del osciloscopio III. Test de componentes teórico/práctico. Modulación en frecuencia.

Más detalles

DALCAME Grupo de Investigación Biomédica

DALCAME Grupo de Investigación Biomédica LABORATORIO DE CIRCUITOS ELECTRÓNICOS 1. Conducta de Entrada 2. Laboratorio Funcionamiento de un condensador Observar el efecto de almacenamiento de energía de un condensador: Condensador de 1000µF Medida

Más detalles

OSCILOSCOPIO RIGOL DS1102E

OSCILOSCOPIO RIGOL DS1102E OSCILOSCOPIO RIGOL DS1102E Características: Ancho de banda de 100MHz. Dos canales analógicos. 1GSa/s en tiempo real como velocidad de pantalla. Pantalla a color LCD de 5.6 pulgadas. Varios tipos de Trigger.

Más detalles

MEDICIÓN Y AJUSTE DE LOS SISTEMAS DE REFUERZO SONORO

MEDICIÓN Y AJUSTE DE LOS SISTEMAS DE REFUERZO SONORO MEDICIÓN Y AJUSTE DE LOS SISTEMAS DE REFUERZO SONORO POR QUÉ ES NECESARIO MEDIR? QUÉ CONOCEMOS AL MEDIR UN SISTEMA DE AUDIO? QUÉ PARÁMETROS PODEMOS AJUSTAR? TIPOS DE MEDICIONES DE UN SOLO CANAL DE DOBLE

Más detalles

Descripción y manejo del Osciloscopio

Descripción y manejo del Osciloscopio PRACTICA Nº 1 EL OSCILOSCOPIO Objetivos Esta práctica persigue dos objetivos: alcanzar una comprensión adecuada del funcionamiento de un osciloscopio y, en base a esta comprensión, aprender a utilizarlo

Más detalles

Nota: antes de iniciar el experimento lea el manual de operación del osciloscopio.

Nota: antes de iniciar el experimento lea el manual de operación del osciloscopio. Colegio Vocacional Monseñor Sanabria DEPARTAMENTO DE ELECTROTECNIA PROFESOR: Lic. Luis Fernando Corrales C UNIDAD DE ESTUDIO: Corriente Directa P R A C T I C A : 1 FECHA: P R O P O S I T O : Preparar el

Más detalles

Mediciones Eléctricas I. Introducción a los instrumentos digitales

Mediciones Eléctricas I. Introducción a los instrumentos digitales Mediciones Eléctricas I Introducción a los instrumentos digitales 1 Instrumentos digitales V e Condicionador Conversor A/D Lógica Contador Contador 1999 R U I 2 Amplificador Integrador 3 Convertidor Simple

Más detalles

MODULO Nº6 TIRISTORES UNIDIRECCIONALES

MODULO Nº6 TIRISTORES UNIDIRECCIONALES MODULO Nº6 TIRISTORES UNIDIRECCIONLES UNIDD: CONVERTIDORES C - CC TEMS: Tiristores. Rectificador Controlado de Silicio. Parámetros del SCR. Circuitos de Encendido y pagado del SCR. Controlador de Ángulo

Más detalles

LECCIÓN B07: CIRCUITOS LIMITADORES Y FIJADORES

LECCIÓN B07: CIRCUITOS LIMITADORES Y FIJADORES LECCIÓN B07: CIRCUITOS LIMITADORES Y FIJADORES OBJETIVOS MATERIAL Pruebas en vacío y en carga en los circuitos limitadores. Utilización de un circuito fijador de límite superior. Utilización de un circuito

Más detalles

MEDICIONES EN AC CON EL OSCILOSCOPIO EL OSCILOSCOPIO DIGITAL

MEDICIONES EN AC CON EL OSCILOSCOPIO EL OSCILOSCOPIO DIGITAL UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 8 MEDICIONES EN AC CON EL OSCILOSCOPIO EL OSCILOSCOPIO DIGITAL Familiarizarse

Más detalles

Tipos de instalaciones

Tipos de instalaciones Tipos de instalaciones Existen este infinidad de configuraciones, pero como técnicos debemos referirnos a las normalizadas por la NTE, la cual diferencia cinco tipos basados en número de circuitos y programas,

Más detalles

PRÁCTICA Nº 1: EL VOLTÍMETRO Y EL AMPERÍMETRO

PRÁCTICA Nº 1: EL VOLTÍMETRO Y EL AMPERÍMETRO PRÁCTICA Nº 1: EL VOLTÍMETRO Y EL AMPERÍMETRO Objetivos: Utilización de un voltímetro y de un amperímetro, caracterización de aparatos analógicos y digitales, y efecto de carga. Material: Un voltímetro

Más detalles

ELECTRONICA DE POTENCIA

ELECTRONICA DE POTENCIA ELECTRONICA DE POTENCIA Compilación y armado: Sergio Pellizza Dto. Apoyatura Académica I.S.E.S. Los tiristores son una familia de dispositivos semiconductores de cuatro capas (pnpn), que se utilizan para

Más detalles

Capítulo V Resultados y conclusiones

Capítulo V Resultados y conclusiones Capítulo V Resultados y conclusiones Nadav Levanon, autor del libro Radar Principles dijo: el estudio de los radares no solo una aplicación práctica, pero también una disciplina científica madura con fundamentos

Más detalles

5. Despliegue en la PC

5. Despliegue en la PC 5 DESPLIEGUE EN LA PC 62 5.1 Conexión a la PC por medio de la tarjeta de audio La adquisición de señales analógicas es un trabajo que cada vez se hace más necesario en todos los campos relacionados con

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 4 Tema: FACTOR DE FORMA Y DE LECTURA. RESPUESTA EN FRECUENCIA DE INSTRUMENTOS. Tipos de instrumentos Según el principio en que

Más detalles

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01 ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P5:

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

4.2 Acción de Control.

4.2 Acción de Control. CAPÍTULO IV. PRUEBAS Y RESULTADOS. 4.1 Introducción. En este capítulo se exponen los resultados obtenidos después de efectuar las pruebas sobre el programa Control de Movimiento Empleando LabVIEW, que

Más detalles

LABORATORIO DE FUNDAMENTOS FÍSICOS II LEY DE INDUCCIÓN DE FARADAY

LABORATORIO DE FUNDAMENTOS FÍSICOS II LEY DE INDUCCIÓN DE FARADAY Departamento de Física ------------------------------------------------------------------------------------------------------------------------ LABORATORIO DE FUNDAMENTOS FÍSICOS II Grados TIC PRÁCTICA

Más detalles

9) UPS s: EN QUE CONSISTEN DE QUE Y COMO PROTEGEN

9) UPS s: EN QUE CONSISTEN DE QUE Y COMO PROTEGEN 9) UPS s: EN QUE CONSISTEN DE QUE Y COMO PROTEGEN En el mercado actual hay gran cantidad de diseños de UPS. Puede llegar a ser confuso determinar que tipo de equipo es el más conveniente para nuestra carga

Más detalles

PRÁCTICA 4. OSCILOSCOPIO DIGITAL HM 408: TIEMPO DE REBOTE DE UN RELÉ. MODULACIÓN EN FRECUENCIA II.

PRÁCTICA 4. OSCILOSCOPIO DIGITAL HM 408: TIEMPO DE REBOTE DE UN RELÉ. MODULACIÓN EN FRECUENCIA II. PRÁCTICA 4. OSCILOSCOPIO DIGITAL HM 408: TIEMPO DE REBOTE DE UN RELÉ. MODULACIÓN EN FRECUENCIA II. 4.1.- Objetivos. Capturas de eventos en el dominio del tiempo, modo Y-t, y en el modo X-Y. Visualización

Más detalles

No hay resorte que oscile cien años...

No hay resorte que oscile cien años... No hay resorte que oscile cien años... María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA - 1999 Resumen: En el presente trabajo nos proponemos

Más detalles

INSTITUTO TECNOLOGICO DE COSTA RICA INGENIRIA ELECTRONICA ELECTRONICA DE POTENCIA PROF. ING. JUAN CARLOS JIMENEZ TEMA: CIRCUITOS INVERSORES

INSTITUTO TECNOLOGICO DE COSTA RICA INGENIRIA ELECTRONICA ELECTRONICA DE POTENCIA PROF. ING. JUAN CARLOS JIMENEZ TEMA: CIRCUITOS INVERSORES INSTITUTO TECNOLOGICO DE COSTA RICA INGENIRIA ELECTRONICA ELECTRONICA DE POTENCIA PROF. ING. JUAN CARLOS JIMENEZ TEMA: CIRCUITOS INVERSORES Son sistemas que funcionan automáticamente, sin necesidad de

Más detalles

TRANSFORMADOR DE ALTA FRECUENCIA CON CONMUTACIÓN AUTOMÁTICA

TRANSFORMADOR DE ALTA FRECUENCIA CON CONMUTACIÓN AUTOMÁTICA ÓPTIMO RENDIMIENTO Y FLEXIBILIDAD DE USO TRANSFORMADOR DE ALTA FRECUENCIA CON CONMUTACIÓN AUTOMÁTICA Una de las muchas exigencias de los inversores modernos son unos rangos de entrada y de tensión MPP

Más detalles