Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis"

Transcripción

1 Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis

2 Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José Mª Sorando, ampliando y adaptando las diapositivas de la Editorial SM

3 Muestra y población Población: es el conjunto de todos los elementos que poseen una determinada característica. En general supondremos que la población es muy grande. Muestra: es un subconjunto de la población. Muestreo: es el proceso mediante el cual se escoge una muestra de la población. Inferencia estadística: proceso a través del cual se obtienen conclusiones sobre una población, a través de la información que proporciona una muestra. La confianza de tal extrapolación dependerá de la representatividad de la muestra. Razones para usar muestras: economía, observación destructiva, etc. La representatividad de la muestra depende de dos cosas: a) Del mecanismo de selección: que ha de garantizar que no hay un elemento de la población con más probabilidad que otro de entrar en la muestra. Si no, sería una muestra sesgada. b) Del tamaño de la muestra: si el mecanismo de selección es correcto, cuanto más grande sea la muestra mayor será la probabilidad de que se parezca a la población.

4 Tipos de muestreo Ejemplo. Tres empresas están investigando el nivel adquisitivo de las personas que acuden a un determinado concierto de música clásica. Para ello, cada una elige una muestra de la siguiente manera: primeras personas que entren en el auditorio personas elegidas al azar de las que se ubican en la platea baja personas elegidas al azar de todas las asistentes. Muestreo aleatorio Muestreo no aleatorio Ventajas y desventajas

5 Tipos de muestreo aleatorio Muestreo aleatorio simple: todos los elementos de la población tienen la misma probabilidad de ser elegidos para formar parte de la muestra. Muestreo aleatorio estratificado: la población se divide en grupos homogéneos que llamamos estratos. La proporción de cada estrato en la población se mantiene en la muestra. Cada uno de los estrato de la muestra se obtiene por muestreo aleatorio simple sobre el estrato correspondiente de la población. Estrato 1 Estrato 2 Población Muestra

6 Tipos de muestreo aleatorio (II) Muestreo aleatorio sistemático: se selecciona al azar un elemento de la población y a partir de él se seleccionan de k en k los elementos siguientes. Muestreo por conglomerados y áreas: se divide la población en distintas secciones o conglomerados. Se eligen al azar unas pocas de estas secciones y se toman todos los elementos de las secciones elegidas para formar la muestra. Para dividir la población en secciones podemos usar las provincias.

7 Tipos de muestreo no aleatorio Muestras erráticas o casuales Muestras intencionadas o racionales Muestras por cuotas Muestras bola de nieve

8

9 Distribución en el muestreo de la media Supongamos que en una población una variable aleatoria se distribuye con media μ y desviación típica σ. Al tomar diferentes muestras de igual tamaño en la población y calcular sus medias y sus desviaciones típicas, obtendremos x 1, x 2,..., x n y s 1, s 2,..., s n Los distintos valores de x i dan lugar a una variable aleatoria que representamos por X y se llama media muestral. La distribución de los valores de X se llama distribución en el muestreo de la media. La variable aleatoria X tiene las siguientes características: 1. Media : 2. Desviación típica: n 3. A medida que n crece, la distribución de X se aproxima a la normal. Si σ es desconocida, se aproxima con s n / (n 1) Apuntes

10 Distribución en el muestreo de la media Se supone que la distribución de la temperatura del cuerpo humano en la población tiene una media μ = 37º y una desviación típica σ = 0,85º. Se elige una muestra de 105 personas. Se desea obtener la probabilidad de la media de la muestra sea menor que 36,9º. Al ser n = 105, consideramos que la variable aleatoria media muestral es normal. La variable aleatoria X se distribuye como una N( n ) = N (37, 0,083) Por tanto: p( X X 37 36, ,9) = p 0,083 0,083 = p( Z 1,20) = 1 p(z 1,20) = 1 0,8849 = = 0,115 Se debe recordar que para una variable aleatoria continua se tiene que: p(z a) = p(z < a)

11 Teorema central del límite: idea intuitiva Muchos fenómenos se pueden considerar como suma de efectos parciales independientes, pudiendo ocurrir que aunque los efectos no se ajusten a la normal, el fenómeno resultante tienda asintóticamente a la normal. Una simulación con ordenador nos puede ayudar a entender esto: 1000 lanzamientos de un dado 1000 medias de dos dados 1000 medias de 4 dados 1000 medias de 10 dados

12 Ya dijimos que Teorema central del límite Sea X una variable aleatoria de una población de media y desviación típica, entonces se verifica que 1. La variable aleatoria media muestral (con muestras de tamaño n) tiene media y desviación típica n 2. La variable aleatoria media muestral se aproxima a una normal a medida que crece el tamaño de la muestra n Qué se entiende por "cuando crece n"? Si la población de partida es normal, la distribución de las medias muestrales es normal, cualquiera que sea n. Si la distribución de partida no es normal, la distribución de las medias muestrales es normal si n 30.

13 Teorema central del límite: visión gráfica Normal Uniforme Sesgada Distribución de la población de partida Distribución de las medias muestrales para n = 5 Distribución de las medias muestrales para n = 10 Distribución de las medias muestrales para n = 30

14

15 Distribución en el muestreo de una proporción Supongamos que en una población la proporción de elementos con una determinada característica es p. En una muestra cualquiera la proporción de individuos con dicha característica será ^p. Los distintos valores de ^p dan lugar a una variable aleatoria que representamos por ^P, y que recibe el nombre de proporción muestral. La distribución de ^P se llama distribución en el muestreo de una proporción. La variable aleatoria ^P tiene las siguientes características: 1. Media : p p(1 p) 2. Desviación típica: n 3. A medida que n crece, la distribución de ^P se aproxima a la normal, siempre que p no se acerque ni a 0 ni a 1. En cualquier caso, se considera normal si n 30.

16 Distribuciones en el muestreo de una proporción Un nuevo medicamento ha curado al 85 % de los enfermos a los que se les ha aplicado. Determinar las distribuciones en el muestreo de la proporción de enfermos curados para muestras de tamaño 30, 100 y 1000 personas. En nuestro caso p = 0,85 Tamaño de la muestra: n Media: p Desviación típica: p(1 p) n Distribución muestral p(1 p) N(p, ) n 30 0, , ,85 0,85(1 0,85) 30 0,85(1 0,85) 100 0,85(1 0,85) 1000 = 0,065 N(0,85; 0,065) = 0,036 N(0,85; 0,036) = 0,011 N(0,85; 0,011) Conviene observar cómo, a medida que el tamaño de la muestra crece, la desviación típica disminuye.

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales TEORÍA DE MUESTRAS Índice: 1. Introducción----------------------------------------------------------------------------------------- 2 2. Muestras y población-------------------------------------------------------------------------------

Más detalles

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07 TEMA 2: Estimadores y distribuciones en el muestreo 1) Introducción 2) Tipos de muestreos 3) Estadísticos INDICE 4) Estimadores y propiedades 5) Distribución muestral 6) Teorema Central del Límite 7) Distribuciones

Más detalles

Tema 8. Muestreo. Indice

Tema 8. Muestreo. Indice Tema 8. Muestreo Indice 1. Población y muestra.... 2 2. Tipos de muestreos.... 3 3. Distribución muestral de las medias.... 4 4. Distribución muestral de las proporciones.... 6 Apuntes realizados por José

Más detalles

Técnicas de Muestreo Métodos

Técnicas de Muestreo Métodos Muestreo aleatorio: Técnicas de Muestreo Métodos a) unidad muestral elemental: a.1) muestreo aleatorio simple a.2) muestreo (seudo)aleatorio sistemático a.3) muestreo aleatorio estratificado b) unidad

Más detalles

Muestreo y Distribuciones en el Muestreo

Muestreo y Distribuciones en el Muestreo Muestreo y Distribuciones en el Muestreo Departamento de Estadística-FACES-ULA 03 de Abril de 2013 Introducción al Muestreo En algunas ocaciones es posible y práctico examinar a cada individuo en el Universo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA INFERENCIA ESTADÍSTICA 1. DEFINICIÓN DE INFERENCIA ESTADÍSTICA Llamamos Inferencia Estadística al proceso de sacar conclusiones generales para toda una población a partir del estudio de una muestra, así

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

2. Distribuciones de Muestreo

2. Distribuciones de Muestreo 2. Distribuciones de Muestreo Conceptos básicos Para introducir los conceptos básicos consideremos el siguiente ejemplo: Supongamos que estamos interesados en determinar el número medio de televisores

Más detalles

Resumen teórico de los principales conceptos estadísticos

Resumen teórico de los principales conceptos estadísticos Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Muestreo aleatorio simple Resumen teórico Resumen teórico de los principales conceptos estadísticos Muestreo aleatorio

Más detalles

Curso: 2º Grupo: B Día: 18 - IV CURSO

Curso: 2º Grupo: B Día: 18 - IV CURSO 3ª EVALUACIÓN Curso: º Grupo: B Día: 18 - IV - 008 CURSO 007-08 EJERCICIO 1 (1.75 puntos) Sea la población {1, 5, 7}. Escriba todas las muestras de tamaño, mediante muestreo aleatorio simple, y calcule

Más detalles

Muestreo de variables aleatorias

Muestreo de variables aleatorias Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como

Más detalles

Universidad Autónoma del Estado de México

Universidad Autónoma del Estado de México Universidad Autónoma del Estado de México Facultad de Arquitectura y Diseño Administración y Promoción de la Obra Urbana Material Didáctico: Sólo Visión (Proyectables) Título: Población y Muestra Autor:

Más detalles

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales Teoría de muestras Distribución de variables aleatorias en el muestreo 1. Distribución de medias muestrales Dada una variable estadística observada en una población, se puede calcular se media y su desviación

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Distribuciones muestrales. Distribución muestral de Medias

Distribuciones muestrales. Distribución muestral de Medias Distribuciones muestrales. Distribución muestral de Medias TEORIA DEL MUESTREO Uno de los propósitos de la estadística inferencial es estimar las características poblacionales desconocidas, examinando

Más detalles

Capítulo 8 Métodos de Muestreo y el Teorema de Límite Central

Capítulo 8 Métodos de Muestreo y el Teorema de Límite Central Capítulo 8 Métodos de Muestreo y el Teorema de Límite Central Objetivos: Al terminar este capítulo podrá: 1. Explicar por qué una muestra es la única forma posible de tener conocimientos acerca de una

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

Tipos de Muestreo. Juan José Hernández Ocaña

Tipos de Muestreo. Juan José Hernández Ocaña Tipos de Muestreo Juan José Hernández Ocaña jujo386@hotmail.com Censo Censo es un proceso en que se recolecta la información contenido en el total de una población Básicamente podemos decir que son TODOS

Más detalles

UNIDAD V Distribuciones Muestrales

UNIDAD V Distribuciones Muestrales UNIDAD V Distribuciones Muestrales UNIDAD 5 BASE CONCEPTUAL Hoy la estadística está considerada como la teoría de la información, no solo como función descriptiva, si o con el objeto básico de hacer estimaciones

Más detalles

INFERENCIA DE LA PROPORCIÓN

INFERENCIA DE LA PROPORCIÓN ESTADISTICA INFERENCIA DE LA PROPORCIÓN DISTRIBUCIÓN MUESTRAL DE PROPORCIONES En una población la proporción de elementos (personas, animales, cosas o entes) que posee una cierta característica es p. En

Más detalles

Teoría de la decisión

Teoría de la decisión Unidad 7.. Definiciones. Muestreo aleatorio y estadístico. Estadísticos importantes. Técnica de muestreo. Transformación integral Muestreo: selección de un subconjunto de una población ) Representativo

Más detalles

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M.

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la estimación mediante Intervalos de Confianza, que es otro de los tres grandes

Más detalles

EJERCICIOS DE SELECTIVIDAD

EJERCICIOS DE SELECTIVIDAD EJERCICIOS DE SELECTIVIDAD INFERENCIA 1998 JUNIO OPCIÓN A Un fabricante de electrodomésticos sabe que la vida media de éstos sigue una distribución normal con media μ = 100 meses y desviación típica σ

Más detalles

Probabilidad y Estadística Descripción de Datos

Probabilidad y Estadística Descripción de Datos Descripción de Datos Arturo Vega González a.vega@ugto.mx Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 28 Contenido 1 Probabilidad

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Intervalos de confianza Álvaro José Flórez 1 Escuela de Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

POBLACIÓN Y MUESTRA DEL ESTUDIO. Autora: Patricia Villaciervos-Moreno

POBLACIÓN Y MUESTRA DEL ESTUDIO. Autora: Patricia Villaciervos-Moreno MÓDULO 2 ALFABETIZACIÓN CIENTÍFICA: POBLACIÓN Y MUESTRA DEL ESTUDIO POBLACIÓN Y MUESTRA DEL ESTUDIO Índice de contenidos: o o o o o o 1. Conceptualización/ Definiciones Básicas 2. Criterios de selección

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

DRA ELEONORA ESPINOZA UIC Noviembre 2016

DRA ELEONORA ESPINOZA UIC Noviembre 2016 DRA ELEONORA ESPINOZA UIC Noviembre 2016 Es el conjunto de elementos (finito o infinito) definido por una o más características, de las que gozan todos los elementos que lo componen. Bien definido (se

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo GUICEN041MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo GUICEN041MT22-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo Desafío Una población estadística está compuesta de cuatro números enteros consecutivos, siendo n el menor de ellos. La desviación

Más detalles

Teorema del límite central

Teorema del límite central TEMA 6 DISTRIBUCIONES MUESTRALES Teorema del límite central Si se seleccionan muestras aleatorias de n observaciones de una población con media y desviación estándar, entonces, cuando n es grande, la distribución

Más detalles

CURSO DE MÉTODOS CUANTITATIVOS I

CURSO DE MÉTODOS CUANTITATIVOS I CURSO DE MÉTODOS CUANTITATIVOS I TEMA VI: INTRODUCCIÓN AL MUESTREO Ing. Francis Ortega, MGC Concepto de Población y Muestra POBLACIÓN (N) Es el conjunto de todos los elementos de interés en un estudio

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

UNIVERSIDAD AUTÓNOMA DE MADRID PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS Convocatoria 2017

UNIVERSIDAD AUTÓNOMA DE MADRID PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS Convocatoria 2017 INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: Escoja entre una de las dos opciones A o B. Lea con atención y detenimiento los enunciados de las cuestiones y responda de manera razonada a los puntos

Más detalles

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] =

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] = El peso en kg de los estudiantes universitarios de una gran ciudad se supone aproximado por una distribución normal con media 60kg y desviación típica 8kg. Se toman 100 muestras aleatorias simples de 64

Más detalles

Métodos de muestreo. Muestreo: técnica de selección de una muestra a partir de una población

Métodos de muestreo. Muestreo: técnica de selección de una muestra a partir de una población Métodos de muestreo Muestreo: técnica de selección de una muestra a partir de una población Dra. Marta Alperin (alperin@fcnym.unlp.edu.ar) Ms. Sc. Carlos Skorupka (skcharlie@fcnym.unlp.edu.ar) www.fcnym.unlp.edu.ar/catedras/estadistica

Más detalles

Estadística Inferencial

Estadística Inferencial Estadística Inferencial 1 Sesión No.2 Nombre: Distribuciones muestrales Contetualización Toda cantidad que se obtiene de una muestra con el propósito de estimar un parámetro poblacional se llama estadístico

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 10 Estadísticos muestrales y sus aplicaciones Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir las propiedades de los estadísticos muestrales.

Más detalles

REALIDO POR: YESENIA CAMACHO LARA

REALIDO POR: YESENIA CAMACHO LARA Se define como aquel sector de la población, cuyas características son comunes a ella. Es el subgrupo de la población es el que será sometido al análisis estadístico de la investigación. Es la parte representativa

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 2008) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 2008) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 28) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dadas las matrices A = y B = 1 1 2 1 1 n 1 1 1, X = a) Hallar los valores

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Población de estudio y muestra

Población de estudio y muestra Población de estudio y muestra Curso de Metodología de la Investigación Unidad Docente de MFyC Patricio Suárez Gil La Fresneda (Asturias), 2011 Población de estudio Conjunto de individuos al que se refiere

Más detalles

Intervalos de Confianza

Intervalos de Confianza Intervalos de Confianza Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Intervalo de Confianza Se puede hacer una estimación puntual de

Más detalles

Cap. 5 : Distribuciones muestrales

Cap. 5 : Distribuciones muestrales Cap. 5 : Distribuciones muestrales Alexandre Blondin Massé Departamento de Informática y Matematica Université du Québec à Chicoutimi 18 de junio del 2015 Modelado de sistemas aleatorios Ingeniería de

Más detalles

Ejemplos Resueltos Tema 4

Ejemplos Resueltos Tema 4 Ejemplos Resueltos Tema 4 2012 1. Contraste de Hipótesis para la Media µ (con σ conocida) Dada una muestra de tamaño n y conocida la desviación típica de la población σ, se desea contrastar la hipótesis

Más detalles

Prof. Evy Andreina Guerrero

Prof. Evy Andreina Guerrero Prof. Evy Andreina Guerrero Son Son las entidades : personas, instituciones, documentos, regiones, objetos, plantas, animales, productos, entre otros, que poseen el evento de estudio. POBLACIÓN MUESTRA

Más detalles

2.- Tablas de frecuencias

2.- Tablas de frecuencias º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 3.- ESTADÍSTICA DESCRIPTIVA PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

Estadística. Conceptos Básicos. L.A. y M.C.E. Emma Linda Diez Knoth

Estadística. Conceptos Básicos. L.A. y M.C.E. Emma Linda Diez Knoth Estadística Conceptos Básicos 1 Universo y Población Algunos autores no establecen diferencias entre los conceptos de universo y población. Por ejemplo, Pardo Merino, propone la siguiente definición: Una

Más detalles

Tema 1: Distribuciones en el muestreo

Tema 1: Distribuciones en el muestreo Tema 1: Distribuciones en el muestreo 1 (transparencias de A. Jach http://www.est.uc3m.es/ajach/) Muestras aleatorias Estadísticos Concepto de distribución muestral Media muestral Distribución muestral

Más detalles

Área Académica: Gestión Tecnológica. Asignatura (Estadística para el Desarrollo Tecnológico, 3er Semestre) Tema: Muestra y Muestreo

Área Académica: Gestión Tecnológica. Asignatura (Estadística para el Desarrollo Tecnológico, 3er Semestre) Tema: Muestra y Muestreo Área Académica: Gestión Tecnológica. Asignatura (Estadística para el Desarrollo Tecnológico, 3er Semestre) Tema: Muestra y Muestreo Profesor: Dr. Ernesto Bolaños Rodríguez Periodo: Enero-Junio de 01 Tema:Sample

Más detalles

R E S O L U C I Ó N. a) El intervalo de confianza de la media poblacional viene dado por: I. C. z

R E S O L U C I Ó N. a) El intervalo de confianza de la media poblacional viene dado por: I. C. z Un estudio realizado sobre 100 usuarios revela que un automóvil recorre anualmente un promedio de 15.00 Km con una desviación típica de.50 Km. a) Determine un intervalo de confianza, al 99%, para la cantidad

Más detalles

Teoría de la decisión

Teoría de la decisión Unidad 7.. Definiciones. Muestreo aleatorio y estadístico. Estadísticos importantes. Técnica de muestreo. Transformación integral 1 Muestreo: selección de un subconjunto de una población 1) Representativo

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Mag. María del Carmen Romero 2014 romero@econ.unicen.edu.ar Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Intervalo para la media si se conoce la varianza

Intervalo para la media si se conoce la varianza 178 Bioestadística: Métodos y Aplicaciones nza para la media (caso general): Este se trata del caso con verdadero interés práctico. Por ejemplo sirve para estimar intervalos que contenga la media del colesterol

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población),

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 6 (A partir de tema 5.9)

PROBABILIDAD Y ESTADÍSTICA. Sesión 6 (A partir de tema 5.9) PROBABILIDAD Y ESTADÍSTICA Sesión 6 (A partir de tema 5.9) 5.9 Muestreo: 5.9.1 Introducción al muestreo 5.9.2 Tipos de muestreo 5.10 Teorema del límite central 5.11 Distribución muestral de la media 5.12

Más detalles

Tema 4: Variables Aleatorias

Tema 4: Variables Aleatorias Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.

Más detalles

Tipos de Muestreo. Muestreos probabilísticos. Muestreo probabilístico.

Tipos de Muestreo. Muestreos probabilísticos. Muestreo probabilístico. Muestreo probabilístico. Tipos de Muestreo Cada elemento del universo tiene una probabilidad conocida y no nula de figurar en la muestra, es decir, todos los elementos del universo pueden formar parte

Más detalles

Tema 9: Introducción al problema de la comparación de poblaciones

Tema 9: Introducción al problema de la comparación de poblaciones Tema 9: Introducción al problema de la comparación de poblaciones Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 9: Introducción al problema

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

EJERCICIOS UNIDAD 10: MUESTREO E INFERENCIA ESTADÍSTICA

EJERCICIOS UNIDAD 10: MUESTREO E INFERENCIA ESTADÍSTICA EJERCICIOS UNIDAD 10: MUESTREO E INFERENCIA ESTADÍSTICA 1. (2012-M3;Sept-B-4) El peso de las calabazas de una determinada plantación sigue una ley Normal con desviación típica 1200 g. a) (2 puntos) Halle

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

La distribución normal

La distribución normal La Distribución Normal Es una distribución continua que posee, entre otras, las propiedades siguientes: Su representación gráfica tiene forma de campana ( campana de Gauss ) -6-4 -2 0 2 4 6 2 4 6 8 10

Más detalles

Curso: Inferencia Estadística (ICO 8306) Profesores: Esteban Calvo Ayudantes: José T. Medina DISEÑO DE MUESTREO Y APLICACIONES

Curso: Inferencia Estadística (ICO 8306) Profesores: Esteban Calvo Ayudantes: José T. Medina DISEÑO DE MUESTREO Y APLICACIONES DISEÑO DE MUESTREO Y APLICACIONES MUESTREO ALEATORIO (10 MINUTOS) Como vimos en la primera clase, la estadística que estamos aprendiendo en este curso se basa en hacer inferencias de una muestra para sacar

Más detalles

Tema I. Introducción. Ciro el Grande ( A.C.)

Tema I. Introducción. Ciro el Grande ( A.C.) 1.1. La ciencia de la estadística:. El origen de la estadística:. Ciencia descriptiva. Evaluación de juegos de azar Ciro el Grande (560-530 A.C.) Si tengo 1 As y 2 reyes, que descarte es mas conveniente

Más detalles

Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos.

Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. MATEMÁTICAS I Contenidos. Aritmética y álgebra: Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. Resolución e interpretación gráfica de ecuaciones e

Más detalles

Tema 8: Contraste de hipótesis

Tema 8: Contraste de hipótesis Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste

Más detalles

CAPÍTULO I. INTRODUCCIÓN. Cuando se requiere obtener información de una población, y se desean obtener los mejores

CAPÍTULO I. INTRODUCCIÓN. Cuando se requiere obtener información de una población, y se desean obtener los mejores CAPÍTULO I. INTRODUCCIÓN I.1 Breve Descripción Cuando se requiere obtener información de una población, y se desean obtener los mejores y más completos resultados, el censo es una opción para dar una respuesta

Más detalles

9.1. Nociones básicas.

9.1. Nociones básicas. TEMA 9. ESTADÍSTICA 9.1. ociones básicas. Población y muestra. Fases y tareas de un estudio estadístico. Tipos de muestreo. Representatividad de las muestras. 9.2. Variable discreta y continua. Tablas

Más detalles

8 Resolución de algunos ejemplos y ejercicios del tema 8.

8 Resolución de algunos ejemplos y ejercicios del tema 8. INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 29 8 Resolución de algunos ejemplos y ejercicios del tema 8. 8.1 Ejemplos. Ejemplo 49 Supongamos que el tiempo que tarda en dar respuesta a un enfermo el personal

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

PROCESO DE MUESTREO MERCADOTECNIA II

PROCESO DE MUESTREO MERCADOTECNIA II PROCESO DE MUESTREO MERCADOTECNIA II PROCESO DE MUESTREO El proceso de diseño del muestreo incluye cinco etapas. Estas etapas están interrelacionadas en forma cercana y relevante con todos los aspectos

Más detalles

RECOPILACIÓN DE LA INFORMACIÓN

RECOPILACIÓN DE LA INFORMACIÓN RECOPILACIÓN DE LA INFORMACIÓN CONCEPTOS DE ESTADÍSTICA Y SU CLASIFICACIÓN ESTADÍSTICA. Es la ciencia que estudia los medios para derivar información válida a partir de un conjunto de datos. Es decir,

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA 5)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA 5) TEMA 5 NOCIONES BÁSICAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer los conceptos de experimento aleatorio y espacio muestral. Distinguir los distintos tipos de sucesos que forman parte del espacio

Más detalles

ESTIMACION DE TAMAÑOS MUESTRALES: ENCUESTA AL PERSONAL.

ESTIMACION DE TAMAÑOS MUESTRALES: ENCUESTA AL PERSONAL. ESTIMACION DE TAMAÑOS MUESTRALES: ENCUESTA AL PERSONAL. MARCO CONCEPTUAL Dado que en la mayoría de los casos no es posible examinar cada uno de los elementos o individuos que componen una población, ya

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL PROGRAMA: ESTADISTICA II CÓDIGO ASIGNATURA: 1215-22 PRE-REQUISITO: 1215-311 SEMESTRE: CUARTO UNIDADES DE

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

UNIVERSIDAD MARÍA AUXILIADORA UMA

UNIVERSIDAD MARÍA AUXILIADORA UMA CARRERA PROFESIONAL DE ENFERMERIA SÍLABO DE BIOESTADÍSTICA I. DATOS GENERALES: 1.1. Carreras profesionales : Enfermería 1.2. Semestre académico : 2015 - I 1.3. Ciclo : III 1.4. Pre-requisito : Matemática

Más detalles

Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León

Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León Distribuciones Muestrales 1. Sea una población de 5 números: 2,

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M.

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la Estimación Puntual, que es uno de los tres grandes conjuntos de técnicas que

Más detalles

APROXIMACIÓN A UNA DISTRIBUCIÓN NORMAL

APROXIMACIÓN A UNA DISTRIBUCIÓN NORMAL Autor: Mª Isabel Conde Collado APROXIMACIÓN A UNA DISTRIBUCIÓN NORMAL Mediante el estudio de dos ejemplos concretos de distribuciones se intentará un acercamiento al ajuste de distribuciones a una distribución

Más detalles

BLOQUE DE EJERCICIOS. ESTADÍSTICA Y PROBABILIDAD.

BLOQUE DE EJERCICIOS. ESTADÍSTICA Y PROBABILIDAD. BLOQUE DE EJERCICIOS. ESTADÍSTICA Y PROBABILIDAD. Estadística Unidimensional 1. Se quieren realizar los siguientes estudios: Eficacia de un medicamento en 120 pacientes. Resistencia que presentan a la

Más detalles

EJERCICIOS DE ESTADÍSTICA:

EJERCICIOS DE ESTADÍSTICA: EJERCICIOS DE ESTADÍSTICA: 1º/ Una biblioteca desea estimar el porcentaje de libros infantiles que posee. La biblioteca está compuesta de 4 salas (orte, Sur, Este y Oeste) con 2500, 2740, 4000 y 6900 libros,

Más detalles

ACTIVIDAD 2: La distribución Normal

ACTIVIDAD 2: La distribución Normal Actividad 2: La distribución Normal ACTIVIDAD 2: La distribución Normal CASO 2-1: CLASE DE BIOLOGÍA El Dr. Saigí es profesor de Biología en una prestigiosa universidad. Está preparando una clase en la

Más detalles

PROBLEMAS DE DISTRIBUCIÓN NORMAL Y INTERVALOS DE CONFIANZA MATEMÁTICAS APLICADAS A LAS CC.SOCIALES II

PROBLEMAS DE DISTRIBUCIÓN NORMAL Y INTERVALOS DE CONFIANZA MATEMÁTICAS APLICADAS A LAS CC.SOCIALES II PROBLEMAS DE DISTRIBUCIÓN NORMAL Y INTERVALOS DE CONFIANZA MATEMÁTICAS APLICADAS A LAS CC.SOCIALES II 1.- Las tallas de una muestra de 1000 personas siguen una distribucióormal de media 1,76 metros y desviación

Más detalles

DOCUMENTO CÁLCULO DE MUESTRA (FÓRMULAS) EL TAMAÑO DE LA MUESTRA MEDIANTE FÓRMULAS

DOCUMENTO CÁLCULO DE MUESTRA (FÓRMULAS) EL TAMAÑO DE LA MUESTRA MEDIANTE FÓRMULAS DOCUMENTO 1 CÁLCULO DE MUESTRA (FÓRMULAS) EL TAMAÑO DE LA MUESTRA MEDIANTE FÓRMULAS Para determinar el tamaño de muestra mediante fórmulas es necesario entender los siguientes términos y sus definiciones:

Más detalles

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación

Más detalles

SEPTIEMBRE Opción A

SEPTIEMBRE Opción A Septiembre 010 (Prueba Específica) SEPTIEMBRE 010 Opción A 1.- Se considera el sistema de ecuaciones: x y = 3x+ y = 4 4x + y = a a) Clasifica el sistema en función de sus posibles soluciones para los distintos

Más detalles

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004 Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/004 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta (0,5 puntos c/u): 1. (V F) Los contrastes de hipótesis de dos muestras

Más detalles