Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009"

Transcripción

1 Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 009 Comisión Académica 1 Nivel Maor Problema 1. Considere 9 puntos en el interior de un cuadrado de lado 1. Pruebe que ha tres de ellos que forman un triángulo de área menor o igual a 1. 8 Subdividiendo el cuadrado original en cuatro cuadrados de lado 1 cada uno, podemos usar el principio de las casillas para encontrar un cuadrado de lado 1 con tres puntos en su interior. Mostraremos que estos tres puntos forman un triángulo de area menor a 1. 8 En el triángulo una de las rectas horizontales que pasan por los vértices, corta el lado opuesto (posiblemente en un vértice), sin pérdida de generalidad diremos que es la que pasa por el vértice A como se muestra en la figura. C A P D Q B os triángulos ADC ABD que se forman tienen base común AD de largo menor a 1. a suma de sus alturas PC+QB es menor a 1. Por lo tanto su área es menor a 1 como se pedía. 8 1

2 Problema. Encuentre la diferencia entre las longitudes de la maor la menor diagonal de un polígono regular de 9 lados cuo lado mide 1. Considere la diagonal menor AB las diagonales maores AD BC como en la figura. Se prueba que los ángulos DAB, ABC, BCD ADC miden 60 grados, esto es debido a que substienden arcos centrales de 10 grados, dado que = 40. uego los triángulos ABE CDE son equiláteros. CB AB = CB BE = CE = CD = 1. Problema 3. Sea S = a 1 a a 100 donde a 1, a,..., a 100 son números enteros positivos. Cuáles son todos los posibles valores enteros que puede tomar S? Si elegimos a k = 100k, tenemos S = 1 este es el menor valor entero que se puede obtener. Si elegimos a k = 1, tenemos S = = 5050 este es el maor valor entero que se puede obtener. Afirmamos que se pueden alcanzar todos los valores enteros intermedios. Consideremos primero un valor n 100. Podemos elegir a k = 99k si k n a n =1. a

3 suma resultante es S = n + 1. Fijemos ahora a 100 = 1 veamos las sumas que podemos obtener con los primeros 99 sumandos. El problema es similar al anterior supondremos que lo hemos resuelto (inducción). Tenemos entonces todos los valores entre para las sumas parciales. Si a estos valores le sumamos 100 a 100 obtenemos los valores de S entre que nos faltaban. Problema 4. Encuentre un entero positivo > 1 tal que todos los números de la sucesión + 1, + 1, + 1,... sean divisibles por 009. Recordemos la factorización que se tiene para todo n N impar. a n + b n = (a + b)(a n 1 a n b + a n 3 b + b n 1 ) Si es impar, el número... es impar, luego = ( + 1)( ) entonces todos los números de esta sucesión son divisibles por +1. uego, basta encontrar un impar tal que + 1 sea divisible por 009. Esto se consigue con = 4017 o bien con cualquier número de la forma = k Problema 5. Sean A B dos cubos. Se asignan los números 1,,..., 14, en cualquier orden, a las caras a los vértices del cubo A. uego se asigna a cada arista del cubo A el promedio de los números asignados a las dos caras que la contienen. Finalmente se asigna a cada cara del cubo B la suma de los números asociados a los vértices, la cara las aristas en la cara correspondiente del cubo A. Si S es la suma de los números asignados a las caras de B, encuentre el máimo mínimo valor que puede tomar S. Notemos que un número puesto en una cara del cubo A, aporta a su cara de B de la siguiente manera: como el valor de una cara, 4( ) como el valor de las aristas. uego aporta 3 para su cara correspondiente, para las otras caras adacentes aporta a cada una, es decir, 4( ). Por lo anterior el número aporta 5 a la suma de B. Un número puesto en un vértice aporta a tres de las caras de B con su propio valor, luego 3 a la suma de B. Concluimos que la suma de B es S = 5(c 1 +c +...+c 6 )+3(v 1 +v +...+v 8 ) 3

4 Donde C i son los valores asignados a las caras v i a los vértices. Notemos que S = 3(c c 6 + v v 8 ) + (c c 6 ) = 3( ) + (c c 6 ) = (c c 6 ). El menor valor se obtiene con {C 1, C,..., C 6 } = {1,,..., 6} vale ( ) = = 357 El maor valor se obtiene con {C 1, C,..., C 6 } = {14, 13,..., 9} vale ( ) = = 453 Problema 6. Se tienen n 6 puntos verdes en el plano, tal que no ha 3 de ellos colineales. Suponga además que 6 de estos puntos son los vértices de un heágono conveo. Demuestre que eisten 5 puntos verdes que forman un pentágono que no contiene ningún otro punto verde en su interior. Sin perdidad de generalidad podemos suponer que el heágono es el que contiene el menor número posible de puntos verdes en su interior. Sea I el conjunto de puntos verdes al interior del heágono. Si I = 0 entonces basta unir dos puntos del heágono para encontrar el pentágono. Si I = 1 podemos dibujar la diagonal que separa el heágono en dos cuadrilateros. Si el punto en I esta en esta línea, habrán 3 puntos colineales, lo que no es posible. Por lo tanto el punto esta en uno de los cuadrilateros. Uniendolo al otro cuadrilatero formamos el pentágono. 4

5 Si I podemos tomar los dos puntos que esten más a la izquierda (o a la derecha), digamos, trazar la recta que los une. Notemos que a la izquierda de no ha puntos de I. Sea H el conjunto de puntos del heágono a la izquierda de. I Si H 3, escogemos 3 puntos de H con, forman un pentágono. Si H = los 4 vértices del heágono a la derecha de con los puntos, forman un heágono lo que es una contradicción con la minimalidad de I. Si H = 1 los 5 vértices del heágono a la derecha de con el punto, o con el punto forman un heágono lo que es una contradicción con la minimalidad de I. 5

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009 Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 009 Comisión Académica 1 Nivel Menor Problema 1. Considere un triángulo cuyos lados miden 1, r y r. Determine

Más detalles

Soluciones Nota nº 1

Soluciones Nota nº 1 Soluciones Nota nº 1 Problemas Propuestos 1- En el paralelogramo ABCD el ángulo en el vértice A es 30º Cuánto miden los ángulos en los vértices restantes? Solución: En un paralelogramo, los ángulos contiguos

Más detalles

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP ITCR UCR UNA UNED - MICIT SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C 01 1. Un factor de la factorización completa de corresponde a mx y + 9y m x y x 4

Más detalles

Nivel: A partir de 4ESO. Solución: La relación entre la apotema y el lado del hexágono es la misma que entre la altura y

Nivel: A partir de 4ESO. Solución: La relación entre la apotema y el lado del hexágono es la misma que entre la altura y Página 1 de 9 SOLUCIONES MAYO 2017 Soluciones extraídas de los libros: XVI CONCURSO DE PRIMAVERA 2012 XVII CONCURSO DE PRIMAVERA 2013 Obtenibles en http://www.concursoprimavera.es#libros AUTORES: Colectivo

Más detalles

XXIV OLIMPIADA NACIONAL DE MATEMATICA Nivel Menor

XXIV OLIMPIADA NACIONAL DE MATEMATICA Nivel Menor XXIV OLIMPIADA NACIONAL DE MATEMATICA Nivel Menor Primera prueba de clasificación, 5 de Agosto de 01 SOLUCIONES, Comisión Académica Problema 1. La figura muestra al triángulo ABC, rectángulo en C, su circunferencia

Más detalles

TORNEOS GEOMÉTRICOS 2016 Primera Ronda. Primer Nivel - 5º Año de Escolaridad

TORNEOS GEOMÉTRICOS 2016 Primera Ronda. Primer Nivel - 5º Año de Escolaridad TORNEOS GEOMÉTRICOS 2016 Primera Ronda Primer Nivel - 5º Año de Escolaridad 1- En el triángulo rectángulo ABC cuyo ángulo en C mide 48º se trazan la bisectrices de los ángulos B y C, que se cortan en O.

Más detalles

RAZONAMIENTO GEOMÉTRICO

RAZONAMIENTO GEOMÉTRICO RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros

Más detalles

Soluciones oficiales Clasificación Olimpiada Nacional Nivel Mayor

Soluciones oficiales Clasificación Olimpiada Nacional Nivel Mayor Soluciones oficiales Clasificación Olimpiada Nacional 009 Comisión Académica Nivel Maor Problema 1. Calcule todas las soluciones m, n de números enteros que satisfacen la ecuación m n = 009 (n + 1) Solución.

Más detalles

SOLUCIONES ENERO 2018

SOLUCIONES ENERO 2018 Página 1 de 9 SOLUCIONES ENERO 018 Soluciones extraídas del libro: XVIII CONCURSO DE PRIMAVERA 014 Obtenibles en http://www.concursoprimavera.es#libros NIVEL: Segundo ciclo de la E. S. O. AUTORES: Colectivo

Más detalles

TORNEOS GEOMÉTRICOS 2016 Segunda Ronda. Soluciones 1º Nivel

TORNEOS GEOMÉTRICOS 2016 Segunda Ronda. Soluciones 1º Nivel TORNEOS GEOMÉTRICOS 2016 Segunda Ronda Soluciones 1º Nivel 1. Halla la suma de los ángulos marcados en el cuadrilátero inscripto en la circunferencia, como indica la figura. Solución: Por la propiedad

Más detalles

TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad

TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad TORNEOS GEOMÉTRICOS 2017. Primera Ronda Primer Nivel - 5º Año de Escolaridad Problema 1. El hexágono regular de la figura tiene área 6cm 2. Halla el área de la región sombreada. Solución: El triángulo

Más detalles

Seminario de problemas-eso. Curso Hoja 14

Seminario de problemas-eso. Curso Hoja 14 Seminario de problemas-eso. Curso 011-1. Hoja 14 6. Determina el valor de m tal que la ecuación en x x 4 (3m + )x + m = 0 tenga cuatro raíces en progresión aritmética. Como la suma de las cuatro raíces

Más detalles

PRIMER NIVEL. Problema 6. Facu y Nico juegan un juego con un cuadrado cuadriculado de 13

PRIMER NIVEL. Problema 6. Facu y Nico juegan un juego con un cuadrado cuadriculado de 13 PRIMER NIVEL PRIMER DÍA Problema 1. Un rectángulo, que no es un cuadrado, y que está cuadriculado en cuadritos de 1 1 se divide en exactamente 8 figuras poligonales distintas siguiendo líneas de la cuadrícula.

Más detalles

TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad Apellido Nombres DNI Tu Escuela.. Localidad Provincia

TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad Apellido Nombres DNI Tu Escuela.. Localidad Provincia Primer Nivel - 5º Año de Escolaridad Problema 1. El hexágono regular de la figura tiene área 6cm 2. Halla el área de la región sombreada. Problema 2. Usando sólo una regla sin marcas, dibujar en la cuadrícula

Más detalles

Problemas de entrenamiento

Problemas de entrenamiento Problemas de entrenamiento Revista Tzaloa, año 1, número Problema E1-6. (Principiante) Considera 50 puntos en el plano tales que no hay tres colineales. Cada uno de estos puntos se pinta usando uno de

Más detalles

III: Geometría para maestros. Capitulo 1: Figuras geométricas

III: Geometría para maestros. Capitulo 1: Figuras geométricas III: Geometría para maestros. Capitulo : Figuras geométricas SELECCIÓN DE EJERCICIOS RESUELTOS SITUACIONES INTRODUCTORIAS En un libro de primaria encontramos este enunciado: Dibuja un polígono convexo

Más detalles

1. He escrito el No he escrito el He escrito el No he escrito el 4.

1. He escrito el No he escrito el He escrito el No he escrito el 4. º Nivel. El número que está justamente entre 8 y 0 es 80 B) 0 C) 8 E) 80. Halla la suma de todos los primos comprendidos entre y 00 que verifiquen ser múltiplos de más y múltiplos de 5 menos. 8 B) 7 C)

Más detalles

TORNEOS GEOMÉTRICOS 2016 Segunda Ronda. Primer Nivel - 5º Año de Escolaridad. Apellido Nombres.. DNI Tu Escuela. Localidad Provincia

TORNEOS GEOMÉTRICOS 2016 Segunda Ronda. Primer Nivel - 5º Año de Escolaridad. Apellido Nombres.. DNI Tu Escuela. Localidad Provincia TORNEOS GEOMÉTRICOS 2016 Segunda Ronda Primer Nivel - 5º Año de Escolaridad justificar tus respuestas. hacerla cada participante. 1. Halla la suma de los ángulos marcados en el cuadrilátero inscripto en

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #3

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #3 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #3 ÁREA Y PERÍMETRO DE FIGURAS PLANAS LINEA POLIGONAL: Se llama línea poligonal a la gura formada por la unión de segmentos de

Más detalles

lado s, entonces DA=s, ED=s/2 y AE Entonces, por semejanza tenemos que

lado s, entonces DA=s, ED=s/2 y AE Entonces, por semejanza tenemos que PROBLEMA Dado un cuadrado ABCD, llamamos E al punto medio del lado CD. Unimos A con E; desde B trazamos la perpendicular a AE y esta corta a AE en F. Probar que CF=CD. Solución 1 Como ABCD es un cuadrado,

Más detalles

SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS

SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS PROBLEMAS PROPUESTOS PARA LA ETAPA DE ZONA PRIMER GRADO 1. Marcos tiene todas las letras del abecedario en tres tamaños: grandes, medianas y pequeñas: A,B,C,D,E,...,Z A,B,C,D,E,...,Z A,B,C,D,E,...,Z Usando

Más detalles

TORNEOS GEOMÉTRICOS 2016 Primera Ronda. Primer Nivel - 5º Año de Escolaridad. Apellido Nombres.. DNI Tu Escuela. Localidad Provincia

TORNEOS GEOMÉTRICOS 2016 Primera Ronda. Primer Nivel - 5º Año de Escolaridad. Apellido Nombres.. DNI Tu Escuela. Localidad Provincia Primer Nivel - 5º Año de Escolaridad 1- En el triángulo rectángulo ABC cuyo ángulo en C mide 48º se trazan la bisectrices de los ángulos B y C, que se cortan en O. Calcula la medida de los ángulos del

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

Soluciones de los problemas del taller especial

Soluciones de los problemas del taller especial Soluciones de los problemas del taller especial Este taller fue preparado para satisfacer la inquietud de los docentes que solicitaron más capacitación Olimpiada Akâ Porâ Olimpiada Nacional de Matemáticas

Más detalles

Examen Eliminatorio Estatal de la Olimpiada Mexicana de Matemáticas 2010.

Examen Eliminatorio Estatal de la Olimpiada Mexicana de Matemáticas 2010. Examen Eliminatorio Estatal de la Olimpiada Mexicana de Matemáticas 2010. Instrucciones: En la hoja de las respuestas marca la respuesta que creas correcta. Si marcas más de una respuesta en alguna pregunta

Más detalles

XXIV OLIMPIADA NACIONAL DE MATEMATICA Nivel Menor

XXIV OLIMPIADA NACIONAL DE MATEMATICA Nivel Menor XXIV OLIMPIADA NACIONAL DE MATEMATICA Nivel Menor Primera prueba de clasificación, 25 de Agosto de 2012 SOLUCIONES, Comisión Académica Problema 1. La figura muestra al triángulo ABC, rectángulo en C, su

Más detalles

EJERCICIOS ÁREAS DE REGIONES PLANAS

EJERCICIOS ÁREAS DE REGIONES PLANAS EJERCICIOS ÁREAS DE REGIONES PLANAS 1. En un triángulo equilátero se inscribe una circunferencia de radio R y otra de radio r tangente a dos de los lados y a la primera circunferencia, hallar el área que

Más detalles

Soluciones Primer Nivel

Soluciones Primer Nivel Soluciones Primer Nivel Torneos Geométricos 2017 2º Ronda 1. En un papel cuadriculado con cuadrados de un centímetro de lado, se ha dibujado un cuadrilátero con vértices en los nodos del mismo (vértices

Más detalles

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 3- Explorando el polígono. Fecha: Profesor: Fernando Viso

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 3- Explorando el polígono. Fecha: Profesor: Fernando Viso GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 3- Explorando el polígono. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Marco teórico: Trabajo individual. Sin

Más detalles

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida COLEGIO COLMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS GEOMETRÍA NOVENO GRADO PROFESORES: RAÚL MARTÍNEZ, JAVIER MURILLO Y JESÚS VARGAS CONGRUENCIA Y SEMEJANZA Cuando tenemos dos segmentos escribimos AB CD

Más detalles

PRIMERA ELIMINATORIA NACIONAL

PRIMERA ELIMINATORIA NACIONAL XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP ITCR UCR UNA UNED - MICIT PRIMERA ELIMINATORIA NACIONAL NIVEL C 01 Estimado ( estudiante: La Comisión de las Olimpiadas Costarricenses de Matemática 01 le

Más detalles

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos 1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular

Más detalles

Proceso Selectivo para la XXII IMC, Bulgaria

Proceso Selectivo para la XXII IMC, Bulgaria Proceso Selectivo para la XXII IMC, Bulgaria Facultad de Ciencias UNAM Instituto de Matemáticas UNAM SUMEM Indicaciones Espera la indicación para voltear esta hoja. Mientras tanto, lee estas instrucciones

Más detalles

DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 3. POLÍGONOS. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 3. POLÍGONOS. Departamento de Artes Plásticas y Dibujo DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 3. POLÍGONOS. Departamento de Artes Plásticas y Dibujo 1. Construir un triángulo equilátero conocida la altura. 2. Construir un triángulo isósceles conocida

Más detalles

Polígonos IES BELLAVISTA

Polígonos IES BELLAVISTA Polígonos IES BELLAVISTA Polígonos: definiciones Un polígono es la porción de plano limitada por rectas que se cortan. Polígono regular: el que tiene todos los lados y ángulos iguales. Polígono irregular:

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 246 REFLEXIONA En la inauguración de la Casa de la Cultura observamos, entre otras, las siguientes figuras: Todas ellas son polígonos. Cuáles crees que son regulares? Explica por qué crees

Más detalles

GUIA Nº3 GEOMETRIA EN EL ESPACIO

GUIA Nº3 GEOMETRIA EN EL ESPACIO GUIA Nº Obtenga las longitudes de los lados del triángulo ABC determine si éste es rectángulo, isósceles o ambos: a) A(,, ) B(,, ) C(,, ) b) A(,, ) B(,, ) C(,, ) c) A(,, ) B(,, ) C(6,, ) d) A(,, ) B(,,

Más detalles

TALLER DE ENTRENAMIENTO PARA SEMIFINAL Sábado 6 de mayo y jueves 11 de mayo Elaborado por: Gustavo Meza García. Ángulos

TALLER DE ENTRENAMIENTO PARA SEMIFINAL Sábado 6 de mayo y jueves 11 de mayo Elaborado por: Gustavo Meza García. Ángulos Ángulos Ejercicios: 1) Si un triángulo tiene 2 ángulos que miden 25 y 75 Cuánto mide el tercer ángulo? 2) Cuánto suman los ángulos internos de un cuadrilátero cualquiera? Teorema: 1) La suma de los ángulos

Más detalles

TORNEOS GEOMÉTRICOS Segunda Ronda. Primer Nivel - 5º Año de Escolaridad. Apellido Nombres. DNI Tu Escuela. Localidad Provincia

TORNEOS GEOMÉTRICOS Segunda Ronda. Primer Nivel - 5º Año de Escolaridad. Apellido Nombres. DNI Tu Escuela. Localidad Provincia TORNEOS GEOMÉTRICOS 2017. Segunda Ronda Primer Nivel - 5º Año de Escolaridad Apellido Nombres DNI Tu Escuela. Tu domicilio: Calle. Nº Piso Dpto C.P... Localidad Provincia Lee con atención: 1- Es posible

Más detalles

Potencia de un Punto

Potencia de un Punto 1 Potencia de un Punto Luis F. Cáceres Ph.D UPR-Mayagüez Propiedad 1. Las cuerdas AB y CD se cortan en P, entonces P A P B = P C P D. Demostración. El P AC = BCD pues abren el mismo arco y AP C = BP D

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 232 REFLEXIONA Para decidir el tipo de suelo que se pondrá en la Casa de la Cultura, hay varios mosaicos. Estos mosaicos tienen cinco tipos de losetas: Todas estas losetas son cuadriláteros.

Más detalles

XLV Olimpiada Matemática Española Primera Fase Primera sesión Viernes mañana, 23 de enero de 2008

XLV Olimpiada Matemática Española Primera Fase Primera sesión Viernes mañana, 23 de enero de 2008 XLV Olimpiada Matemática Española Primera Fase Primera sesión Viernes mañana, 23 de enero de 2008 SOLUCIONES 1 2 2008 1. Calcular la suma 2 h + h +... + h, 2009 2009 2009 siendo Se observa que la función

Más detalles

Polígonos Regulares: Definición de polígono:

Polígonos Regulares: Definición de polígono: 1 Polígonos Regulares: Definición de polígono: Un polígono es una figura plana cerrada, limitada por segmentos de recta llamados lados del polígono. Los puntos donde se unen dos lados consecutivos se llaman

Más detalles

Soluciones - Primer Nivel Juvenil

Soluciones - Primer Nivel Juvenil SOCIEDAD ECUATORIANA DE MATEMÁTICA ETAPA FINAL "VII EDICIÓN DE LAS OLIMPIADAS DE LA SOCIEDAD ECUATORIANA DE MATEMÁTICA" Soluciones - Primer Nivel Juvenil 04 de mayo de 010 1. Cuál es la séptima figura

Más detalles

Construcciones de cuadriláteros

Construcciones de cuadriláteros Construcciones de cuadriláteros Heriberto Cisternas Escobedo 1 Colegio Constitución Departamento de Matemática En la resolución de un problema de construcción comenzamos por suponer resuelto el problema;

Más detalles

EL LENGUAJE MATEMÁTICO

EL LENGUAJE MATEMÁTICO Actividad 1 Lee las siguientes frases con contenido matemático y averigua qué objetos matemáticos aparecen y qué símbolos matemáticos se utilizan: a) Los números dos y cuatro son números pares. b) Los

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

OLIMPÍADA JUVENIL DE MATEMÁTICA 2013 CANGURO MATEMÁTICO CUARTO AÑO

OLIMPÍADA JUVENIL DE MATEMÁTICA 2013 CANGURO MATEMÁTICO CUARTO AÑO OLIMPÍADA JUVENIL DE MATEMÁTICA 2013 CANGURO MATEMÁTICO CUARTO AÑO RESPONDE LA PRUEBA EN LA HOJA DE RESPUESTA ANEXA 1. El número 200013 2013 no es divisible entre A 2; B 3; C 5; D 7; E 11. 2. María dibujó

Más detalles

TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS.

TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS. TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS. LOS POLÍGONOS El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los vértices.

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ÁREA Y PERÍMETRO DE FIGURAS PLANAS Y TEOREMA DE PITÁGORAS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ÁREA Y PERÍMETRO DE FIGURAS PLANAS Y TEOREMA DE PITÁGORAS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ÁREA Y PERÍMETRO DE FIGURAS PLANAS Y TEOREMA DE PITÁGORAS ÁREA Y PERÍMETRO DE FIGURAS PLANAS LINEA POLIGONAL: Se llama línea poligonal

Más detalles

TORNEOS GEOMÉTRICOS 2018 Segunda Ronda. Primer Nivel - 5º Año de Escolaridad. Apellido Nombres. Calle..N Piso.Dpto..CP.. Localidad.Provincia.

TORNEOS GEOMÉTRICOS 2018 Segunda Ronda. Primer Nivel - 5º Año de Escolaridad. Apellido Nombres. Calle..N Piso.Dpto..CP.. Localidad.Provincia. TORNEOS GEOMÉTRICOS 2018 Segunda Ronda Primer Nivel - 5º Año de Escolaridad Apellido Nombres. DNI.. Tu Escuela. Tu Domicilio Calle..N Piso.Dpto..CP.. Localidad.Provincia. Lee con atención: 1- Es posible

Más detalles

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS. EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se

Más detalles

Problema 1. Cuántos triángulos rectángulos se pueden formar que tengan sus vértices en vértices de una caja?

Problema 1. Cuántos triángulos rectángulos se pueden formar que tengan sus vértices en vértices de una caja? Nota4: Soluciones problemas propuestos Problema 1. Cuántos triángulos rectángulos se pueden formar que tengan sus vértices en vértices de una caja? Solución: Consideremos primero todos aquellos triángulos

Más detalles

Nombre y Apellido:... Puntaje:... Colegio:... Grado:... Teléfono (L B):... Celular: Número de Cédula de Identidad:...

Nombre y Apellido:... Puntaje:... Colegio:... Grado:... Teléfono (L B):... Celular: Número de Cédula de Identidad:... XXII OLIMPIADA NACIONAL DE MATEMÁTICA RONDA REGIONAL 14 DE AGOSTO DE 2010 - NIVEL 1 PEGÁ TU STICKER AQUÍ Nombre y Apellido:............................................ Puntaje:......... Colegio:.......................................................

Más detalles

REAL SOCIEDAD MATEMÁTICA ESPAÑOLA. XLIV OLIMPIADA MATEMÁTICA ESPAÑOLA Comunidad de Madrid. Primera sesión, viernes 23 de noviembre de 2007

REAL SOCIEDAD MATEMÁTICA ESPAÑOLA. XLIV OLIMPIADA MATEMÁTICA ESPAÑOLA Comunidad de Madrid. Primera sesión, viernes 23 de noviembre de 2007 REL SOCIEDD MTEMÁTIC ESPÑOL XLIV OLIMPID MTEMÁTIC ESPÑOL Comunidad de Madrid Primera sesión, viernes de noviembre de 00 En la hoja de respuestas, escribe la letra que corresponde a la opción que creas

Más detalles

TEMA 6: LAS FORMAS POLIGONALES

TEMA 6: LAS FORMAS POLIGONALES EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado

Más detalles

DIBUJO TÉCNICO BACHILLERATO LÁMINAS. TEMA 7 SISTEMA DIÉDRICO II. Superficies y figuras. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO LÁMINAS. TEMA 7 SISTEMA DIÉDRICO II. Superficies y figuras. Departamento de Artes Plásticas y Dibujo DIBUJO TÉCNICO BACHILLERATO LÁMINAS TEMA 7 SISTEMA DIÉDRICO II. Superficies y figuras. Departamento de Artes Plásticas y Dibujo 1.- Construir un TETRAEDRO. Los puntos A y B son dos vértices del mismo y

Más detalles

SEGUNDO NIVEL. Problema 1 Hallar todos los números naturales a tales que para todo natural n el número n( a + n) no es un cuadrado perfecto.

SEGUNDO NIVEL. Problema 1 Hallar todos los números naturales a tales que para todo natural n el número n( a + n) no es un cuadrado perfecto. PRIMER NIVEL PRIMER DÍA Problema 1 Se tiene un tablero rectangular de 2 13. En cada casilla de la fila inferior hay una ficha y las 13 fichas están numeradas de 1 a 13, de menor a mayor; la fila superior

Más detalles

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos. Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices

Más detalles

Enunciados y Soluciones

Enunciados y Soluciones LIV Olimpiada matemática Española (Concurso Final) Enunciados Soluciones 1. Determina todos los enteros positivos x, tales que 2x + 1 sea un cuadrado perfecto, pero entre los números 2x + 2, 2x + 3,, 3x

Más detalles

Geometría Básica 43 UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL

Geometría Básica 43 UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL Geometría Básica 43 POLIGONOS UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL SEGMENTOS CONCATENADOS Y CONSECUTIVOS Consideremos los segmentos ab y bc, donde

Más detalles

LA OLIMPIADA MATEMATICA DE CENTROAMERICA Y DEL CARIBE

LA OLIMPIADA MATEMATICA DE CENTROAMERICA Y DEL CARIBE LA OLIMPIADA MATEMATICA DE CENTROAMERICA Y DEL CARIBE Las Olimpiadas Centroamericanas son, como su nombre lo indica, una competencia regional de matemáticas para todos los países de la región de Centroamérica

Más detalles

1. Encuentra cuánto vale el ángulo exterior θ en la siguiente figura si son conocidos los ángulos α y β. El ángulo θ se llama ángulo exterior en C.

1. Encuentra cuánto vale el ángulo exterior θ en la siguiente figura si son conocidos los ángulos α y β. El ángulo θ se llama ángulo exterior en C. 1. Encuentra cuánto vale el ángulo exterior θ en la siguiente figura si son conocidos los ángulos α y β. El ángulo θ se llama ángulo exterior en C. 2. En un triángulo rectángulo, los ángulos agudos están

Más detalles

30 Olimpiada Mexicana de Matemáticas en Tamaulipas

30 Olimpiada Mexicana de Matemáticas en Tamaulipas 30 Olimpiada Mexicana de Matemáticas en Tamaulipas Soluciones Jornada 2 7 de agosto de 2016 Problema N1. En cada cara de un cubo se escribe un entero mayor a cero y en cada vértice se escribe el producto

Más detalles

FORMAS POLIGONALES TEMA 8

FORMAS POLIGONALES TEMA 8 FORMAS POLIGONALES TEMA 8 1. LOS POLÍGONOS DEFINICIÓN: Un polígono es una figura geométrica plana limitada por segmentos llamados lados, y por vértices. A B C A Lado D Clasificación de los polígonos:

Más detalles

Entrenamiento de Principio de Casillas. Olimpiada de Matemáticas en Chiapas

Entrenamiento de Principio de Casillas. Olimpiada de Matemáticas en Chiapas UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE CIENCIAS EN FÍSICA Y MATEMÁTICAS Entrenamiento de Olimpiada de Matemáticas en Chiapas Mayo del 2017 Introducción La versión más simple del principio de las casillas

Más detalles

Tema 2 2 Geometría métrica en el pla no

Tema 2 2 Geometría métrica en el pla no Tema Geometría métrica en el pla no CONCEPTOS BÁSICOS Figuras básicas en el plano: puntos, rectas, semirrectas, segmentos y ángulos Los polígonos y su clasificación según los ángulos internos y según el

Más detalles

Geometría. Problemas de Semejanza. Olimpiada de Matemáticas en Tamaulipas

Geometría. Problemas de Semejanza. Olimpiada de Matemáticas en Tamaulipas Geometría Problemas de Semejanza Olimpiada de Matemáticas en Tamaulipas 1. Problemas Antes de comenzar con los problemas, es conveniente recordar o asegurarse que los olímpicos tienen presentes el tema

Más detalles

SISTEMA DIÉDRICO POLIEDROS REGULARES DIBUJO TÉCNICO 2º BACH.

SISTEMA DIÉDRICO POLIEDROS REGULARES DIBUJO TÉCNICO 2º BACH. SISTEMA DIÉDRICO POLIEDROS REGULARES DIBUJO TÉCNICO. ANA BALLESTER JIMÉNEZ 0 SISTEMA DIÉDRICO: REPRESENTACIÓN DE POLIEDROS REGULARES DEFINICIÓN DE POLIEDRO: Sólido geométrico limitado por caras planas.

Más detalles

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 20-2 Profesor: Jaime Andres Jaramillo González Parte del material ha sido tomado de documentos de los profesores

Más detalles

Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA

Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA ASIGNATURA: Cálculo Diferencial e Integral I PROFESOR: José Alexander Echeverría Ruiz CUATRIMESTRE: Segundo TÍTULO DE LA

Más detalles

Unidad Didáctica 8. Formas Poligonales

Unidad Didáctica 8. Formas Poligonales Unidad Didáctica 8 Formas Poligonales 1.- Polígonos Es una palabra de origen griego. Se compone de POLI que significa varios, y gono o ángulo. Por lo tanto un polígono es una figura geométrica plana limitada

Más detalles

1º BACH SISTEMA DIÉDRICO III

1º BACH SISTEMA DIÉDRICO III SISTEMA DIÉDRICO III ABATIMIENTOS, GIROS, CAMBIOS DE PLANO. SISTEMA DIÉDRICO III: ABATIMIENTOS, CAMBIOS DE PLANO Y GIROS 1- ABATIMIENTOS Los abatimientos se utilizan para hallar la verdadera magnitud (

Más detalles

SOLUCIONES PRIMER NIVEL

SOLUCIONES PRIMER NIVEL SOLUCIONES PRIMER NIVEL 1. Los cuatro polígonos de la figura son regulares. Halla los valores de los tres ángulos, de vértice A limitados por dos lados de los polígonos dados, indicados en la figura. Solución:

Más detalles

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS Nombre: Grado: 9 5 1. Costrucciones 2. las rectas y puntos notables de un triángulo Sabemos que los polígonos son figuras cerradas planas, de lados rectos,

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUCIÓN DE TRIÁNGULOS Resolver un triángulo consiste en determinar la longitud de sus tres lados y la amplitud de sus tres ángulos. Vamos a recordar primero la resolución para triángulos rectángulos

Más detalles

8. POLÍGONOS Y FIGURAS CIRCULARES

8. POLÍGONOS Y FIGURAS CIRCULARES 8. POLÍGONOS Y FIGURAS CIRCULARES 1. Los ángulos del triángulo ABC de la siguiente gura miden: m A = 60 o, m B = 100 o. Prolongando AB tal que BD = BC, los ángulos del triángulo CBD miden: a) B 80 o, C

Más detalles

1º BACH SISTEMA DIÉDRICO III

1º BACH SISTEMA DIÉDRICO III SISTEMA DIÉDRICO III ABATIMIENTOS DISTANCIAS VERDADERAS MAGNITUDES LINEALES 1- ABATIMIENTOS Los abatimientos se utilizan para hallar la verdadera magnitud ( v.m.) de superficies y aristas contenidas en

Más detalles

PRUEBA DE CUARTO GRADO.

PRUEBA DE CUARTO GRADO. PRUEBA DE CUARTO GRADO. Francisco tiene 10 cajas y 44 monedas. Quiere poner las monedas en las cajas repartiéndolas de modo que cada caja contenga un número distinto de monedas. Puede hacerlo? Si puede,

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

PRUEBA DE MATEMÁTICA FACSÍMIL N 1

PRUEBA DE MATEMÁTICA FACSÍMIL N 1 PRUEBA DE MATEMÁTICA FACSÍMIL N. A, B, C y D son números naturales tales que A > B, C > D, B < D y C < A. Cuál de las siguientes alternativas indica un orden creciente de estos números? A) A C D B B) B

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

Primer Nivel. Solución: Por los valores de los lados del triángulo, éste debe ser un triángulo rectángulo, y en consecuencia su área es (3 4 ) 6

Primer Nivel. Solución: Por los valores de los lados del triángulo, éste debe ser un triángulo rectángulo, y en consecuencia su área es (3 4 ) 6 Primer Nivel Problema 1- Los lados de un cuadrado de área 4cm se han dividido en cuatro partes iguales. Halla el área del cuadrado sombreado. Solución: Trazando los segmentos adicionales indicados en la

Más detalles

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 20-2 Profesor: Jaime Andrés Jaramillo González (jaimeaj@conceptocomputadores.com) Parte del material ha sido tomado

Más detalles

Problemas de entrenamiento

Problemas de entrenamiento Problemas de entrenamiento Revista Tzaloa, año 1, número 4 Problema E1-16. (Intermedio) Para cada entero positivo n, denotamos por a(n) al producto de los dígitos de n. (a) Demuestra que a(n) n. (b) Determina

Más detalles

DIBUJO GEOMÉTRICO. - Segmento: es una parte limitada de la recta comprendida entre dos puntos que por lo tanto se nombraran con mayúscula.

DIBUJO GEOMÉTRICO. - Segmento: es una parte limitada de la recta comprendida entre dos puntos que por lo tanto se nombraran con mayúscula. DIBUJO GEOMÉTRICO 1. SIGNOS Y LÍNEAS. A. El punto: es la intersección de dos rectas. Se designa mediante una letra mayúscula y se puede representar también con un círculo pequeño o un punto. A B C D X

Más detalles

Apuntes de Dibujo Técnico

Apuntes de Dibujo Técnico APUNTES DE DIBUJO TÉCNICO 1. Materiales para trazados geométricos. - La Escuadra y el Cartabón. El juego de escuadra y cartabón constituye el principal instrumento de trazado. Se deben usar de plástico

Más detalles

El ejercicio de la demostración en matemáticas

El ejercicio de la demostración en matemáticas El ejercicio de la demostración en matemáticas Demostración directa En el tipo de demostración conocido como demostración directa (hacia adelante) se trata de demostrar que A B partiendo de A y deduciendo

Más detalles

Soluciones Primer Nivel - 5º Año de Escolaridad

Soluciones Primer Nivel - 5º Año de Escolaridad Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL XXVIII OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICITT SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL (8 9 ) 06 Estimado estudiante: La Comisión de las Olimpiadas Costarricenses de

Más detalles