Comportamiento Estructural: Propiedades Mecánicas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Comportamiento Estructural: Propiedades Mecánicas"

Transcripción

1 Comportamiento Estructural: Propiedades Mecánicas Gustavo V. Guinea Departamento de Ciencia de Materiales Universidad Politécnica de Madrid Índice Tipos de materiales Comportamiento Estático Comportamiento Dependiente del Tiempo

2 Tipos de materiales - Biomateriales: Metales, Cerámicos, Polímeros,... - Materiales Biológicos: Blandos Tracción Presión Compresión Tipos de Materiales lexión fibras tendones piel arterias cartílago Duros dientes huesos concha madera Tipos de materiales - Biomateriales - Materiales Biológicos Duros Pequeñas deformaciones ( < 10%) Pequeña o moderada dependencia del tiempo Tipos de Materiales

3 Tipos de materiales - Materiales Biológicos Blandos - ibras Biológicas Grandes deformaciones ( > 50%) Incompresibilidad Importante dependencia del tiempo Tipos de Materiales Índice Tipos de materiales Comportamiento Estático Comportamiento Dependiente del Tiempo

4 Comportamento Estático - Biomateriales y Materiales Biológicos Duros Pequeñas Deformaciones Elasticidad Plasticidad ractura e Inestabilidad Comportamiento Estático / Materiales Biológicos Duros Optimización de propiedades: Mat. Biológicos Mínimo coste energético menor masa Condiciones limitantes: Resistencia a Tracción Resistencia a Compresión Rigidez Tenacidad Comportamiento Estático / Materiales Biológicos Duros

5 Optimización de propiedades: Resistencia a Tracción Área: D 2 Tensión de rotura : σr actor de seguridad : ƒ Condición: < R / ƒ = σr D 2 / ƒ Masa: m = x D 2 x ρ D D < σr m / (ƒ x x ρ) = (σr / ρ) (m / (ƒ x )) m > (ρ / σr ) ( x ƒ x ) menor m mayor (σr / ρ) Comportamiento Estático / Materiales Biológicos Duros Optimización de propiedades: Resistencia a Compresión Carga de pandeo : P = π 2 E D 4 / (48 2 ) actor de seguridad : ƒ Masa: m = x D 2 x ρ Condición: < P / ƒ Área: D 2 < π 2 E m 2 / (48 4 ρ 2 ƒ) m > (ρ 2 / E ) ( 48 ƒ 4 / π 2 ) 1/2 D D menor m mayor (E / ρ 2 ) Comportamiento Estático / Materiales Biológicos Duros

6 Optimización de propiedades: Rigidez δ flecha : δ = 4 3 / (E D 4 ) Masa: m = x D 2 x ρ Condición: δ / < CM Área: D x D = D 2 δ / = 4 5 ρ 2 / (E m 2 ) < CM m > (ρ 2 / E ) 1/2 ( 4 5 / CM ) 1/2 menor m mayor (E / ρ 2 ) Comportamiento Estático / Materiales Biológicos Duros Optimización de propiedades: Tenacidad σ Placa: KI = σ (πa) 1/2 Tenacidad : KIC Condición: Rotura frágil : σ (πa) 1/2 = KIC σ = KIC (πa) 1/2 σ > σr 2a KIC (πa) 1/2 > σr a < (1/π) (KIC / σr ) 2 σ d como 2a d menos frágil si d << (1/π) (KIC / σr ) 2 mayor (KIC / σr ) 2 / d Comportamiento Estático / Materiales Biológicos Duros

7 Optimización de propiedades: Material σr (MPa) E (GPa) ρ (g/cm 3 ) KIC (MPam 1/2 ) d (µm) E/ρ 2 (GPa cm 6 /g 2 ) σr/ρ (MPa cm 3 /g) (KIC / σr ) 2 / d Polietileno (HD) > < 90 Acero Estructural > < 2400 Aluminio (1100-H14) > < 2600 Hormigón > < 10 Madera (Pino - ) Hueso Compacto () Esmalte Dentina Nácar Comportamiento Estático / Materiales Biológicos Duros Comportamento Estático - Materiales Biológicos Blandos y ibras Grandes Deformaciones Elasticidad No ineal Anelasticidad

8 Comportamiento Anelástico Hiperelásticos : Carga / Descarga tensión, σ (MPa) alargamiento, λ Hiperelasticidad d Sistema Reversible (,, T) Ecuación de Estado : = ƒ(, T) (, T) variables indep. δwexterior = + d = δwsistema 1er. + 2o. principios : du = δq δwsistema = T ds + d

9 Hiperelasticidad d du = T ds + d Energia Interna : du(,t) = ( U/ T) dt + ( U/ )T d Entropía : ds(,t) = ( S/ T) dt + ( S/ )T d ( U/ T) dt + ( U/ )T d = T [( S/ T) dt + ( S/ )T d] + d [( U/ T) T [( S/ T) ] dt = [ T( S/ )T ( U/ )T + ] d si (, T) variables independientes : [...]=0 ( U/ T) = T [( S/ T) = ( U/ )T T( S/ )T ( S/ )= 0 sólidos normales = ( U/ )T ( U/ )T = 0 elastómeros = T( S/ )T Hiperelasticidad Elasticidad entrópica : Cadena gaussiana (polímeros) (r << longitud cadena) S = κ B ln Ω = S 0 + κ B ln (Prob. (r)) = cte κ B (r/ρ) 2 ( S = T ) r T 2 κ B T r = + ρ 2 Prob. (r) = A e (r/ρ)2 si = cte T aumenta r disminuye si r = cte r dr T aumenta aumenta

10 Elastina Poly(VPGVG) átomos (agua) átomos (proteina) escalones de cálculo t = 0-6 ns T = 10ºC T= 40ºC Hiperelasticidad Cálculo habitual de = ƒ(, T) : d Energia ibre de Helmholtz : Ψ = U T S dψ = du T ds S dt 1er. + 2o. principios : du = T ds + d dψ = d S dt como dψ(,t) = ( Ψ/ T) dt + ( Ψ/ )T d S = ( Ψ/ T) = + ( Ψ/ )T

11 Hiperelasticidad: 1-D d A V0 = A0 0 V = A E. ibre Helmholtz por ud. volumen: ψ = Ψ / V0 = + ( Ψ/ )T = + V0 ( ψ/ )T como σ = /A y λ =/0 σ = /A = (V0 /A) ( ψ/ )T = (V0 /A) (1/0) ( ψ/ λ)t = (V0 /V) λ ( ψ/ λ)t σ = (1/J) λ ( ψ/ λ)t con J = V /V0, relación de volúmenes ψ es también conocida como Energía de Deformación Hiperelasticidad: 3-D Material Isótropo : os ejes principales de tensión coinciden con los ejes principales de deformación σ1 σ3 σ2 λ1 λ3 λ2 σ 3 σ 2 σ3 + + σ 1 σ1, λ1 σ2, λ2 σ3, λ3 σi = (1/J) λi ( ψ/ λi)t, i= 1,2,3

12 Hiperelasticidad: 3-D Material Isótropo : Incompresibilidad: J = V /V0 = ,0 2,0 3,0 = V0 = = V (1 / 1,0 ) (2 / 2,0 ) (3 / 3,0 ) = V / V0 = 1 λ1 λ2 λ3 = 1 Se pierde la unicidad de la solución de tensiones: δw = + d = + d + p dv con p arbitraria, pues dv=0 σi = λi ( ψ/ λi)t + p, i= 1,2,3 p se determina por equilibrio Hiperelasticidad: 3-D Material Isótropo : Ecuación Constitutiva: ψ = ψ (λ1, λ2, λ3) Neo Hookeano : ψ = C (λ λ λ 2 3 3) Mooney-Rivlin : ψ = C1 (λ λ λ 2 3 3) + + C2 (λ 2 1 λ 2 2+ λ 2 1 λ λ 2 2 λ 2 3 3) + + C3 (λ λ λ 2 3 3) (λ 2 1 λ 2 2+ λ 2 1 λ λ 2 2 λ 2 3 3) Yeoh : ψ = C1 (λ λ λ 2 3 3) + C2 (λ λ λ 2 3 3) C3 (λ λ λ 2 3 3) 3 Deimiray : ψ = (C1/C2) { exp [(C2/2) (λ λ λ 2 3 3) ] 1 }

13 Ensayo de tracción simple A 3 Neo Hookeano : ψ = C (λ λ λ 2 3 3) Incompresible : λ1 λ2 λ3 = 1 λ3 = / 0 = λ λ1 = λ2 = λ 1/2 1 2 σ3 = λ3 ( ψ/ λ3)t + p = 2 C λ 2 + p σ1 = λ1 ( ψ/ λ1)t + p = 2 C λ 1 + p = σ2 Equilibrio: σ3 = /A = /(A0 λ1 λ2) = /(A0 λ 1 ) σ1 = σ2 = 0 p = 2 C λ 1 = 2 C A0 (λ λ 2 ) Ensayo de tracción simple A λ = / 0 Deimiray: = C1 A0 (λ λ 2 ) exp [(C2/2) (λ 2 +2/ λ 3) ] C1= 2C ; C2= 1 Neo Hookeano Neo Hookeano: = 2 C A0 (λ λ 2 ) Si λ = 1 + /0, << 0 2 C A0 3 ( /0) = E A0 ( /0), con E = 6C

14 Ensayo de tracción simple Deimiray : σ = C 1 (λ 2 1/λ) exp[c 2 (λ 2 + 2/λ 3)] C1= 64kPa, C2= 2 A λ = / 0 Aorta Ascendente Comportamiento Dependiente del Tiempo Modelos Viscoelásticos Relajación y luencia Carga cíclica

15 Relajación y luencia - Ensayo de relajación ε ε0 σ t=0 t t=0 σ = ε0 G(t) t σ σ 0 ε - Ensayo de fluencia t t=0 t t=0 ε = σ0 J(t) G(t) : Módulo de relajación J(t) : Módulo de fluencia Comportamiento Dinámico / Materiales Biológicos Blandos Carga cíclica - Carga oscilante sinusoidal - Régimen estacionario desfase entre tensiones y deformaciones δ tensión, σ σ t deformación, ε ε ε = ε0 sinωt σ = σ0 sin(ωt+δ) = ε0 (G sinωt + G cosωt) ; tanδ = G /G G (ω) : Módulo de almacenamiento G (ω) : Módulo de pérdidas energía disipada por ciclo Comportamiento Dinámico / Materiales Biológicos Blandos

16 Modelos Viscoelásticos σ(t) ε(t) σ(ε(t),t) = G(t) * ε(t) = G(t τ) ( ε/ τ) dτ ε(σ(t),t) = J(t) * ε(t) = J(t τ) ( σ/ τ) dτ t t Existe relaciones biunívocas G(t) - J(t) - G (ω), G (ω) : Ej. G (ω)+ i G (ω) = G( ) + iω [G(s) - G( )] e iωs ds 0 Comportamiento Dinámico / Materiales Biológicos Blandos Carga cíclica Poco sensible a la frecuencia Dog arteries G' (MPa) Sheep arteries Carotid artery emoral artery Abdominal Aorta Thoracic Aorta Comportamiento Dinámico / Materiales Biológicos Blandos (Bergel 1961)

Materiales-G704/G742. Jesús Setién Marquínez Jose Antonio Casado del Prado Soraya Diego Cavia Carlos Thomas García. Lección 2.

Materiales-G704/G742. Jesús Setién Marquínez Jose Antonio Casado del Prado Soraya Diego Cavia Carlos Thomas García. Lección 2. -G704/G742 Lección 2. Ley de Hooke Jesús Setién Marquínez Jose Antonio Casado del Prado Soraya Diego Cavia Carlos Thomas García Departamento de Ciencia e Ingeniería del Terreno y de los Este tema se publica

Más detalles

TEMA 5. PROPIEDADES MECÁNICAS ESTRUCTURA DEL TEMA CTM PROPIEDADES MECÁNICAS

TEMA 5. PROPIEDADES MECÁNICAS ESTRUCTURA DEL TEMA CTM PROPIEDADES MECÁNICAS TEMA 5. PROPIEDADES MECÁNICAS Prácticamente todos los materiales, cuando están en servicio, están sometidos a fuerzas o cargas externas El comportamiento mecánico del material es la respuesta a esas fuerzas;

Más detalles

Medidas de deformación y tensión

Medidas de deformación y tensión Índice Introducción 1 Introducción 2 Medidas de deformación y tensión Densidad de potencia y energía libre Principios de las ecuaciones constitutivas 3 4 Viscoelasticidad Daño 5 Índice Introducción 1 Introducción

Más detalles

COMPORTAMIENTO MECÁNICO DE BIOPOLÍMEROS

COMPORTAMIENTO MECÁNICO DE BIOPOLÍMEROS CAPÍTULO 4 COMPORTAMIENTO MECÁNICO DE BIOPOLÍMEROS 4.1. Introducción Son muchos los modelos propuestos para definir el comportamiento mecánico que puede experimentar un material, ya que su relación tensión-deformación

Más detalles

Contenido PRESENTACIÓN...V CONTENIDO...VII NOMENCLATURA...XIII ABREVIATURAS...XVII OPERADORES...XVIII UNIDADES...XIX

Contenido PRESENTACIÓN...V CONTENIDO...VII NOMENCLATURA...XIII ABREVIATURAS...XVII OPERADORES...XVIII UNIDADES...XIX Contenido Contenido PRESENTACIÓN...V CONTENIDO...VII NOMENCLATURA...XIII ABREVIATURAS...XVII OPERADORES...XVIII UNIDADES...XIX INTRODUCCIÓN... 1 1 PRINCIPIOS CONSTITUTIVOS...2 1.1 El Principio del Determinismo...3

Más detalles

Propiedades elástica de los materiales Introducción a la Teoría de la Elasticidad. Introducción a la Teoría de la Elasticidad. Introducción - Tracción

Propiedades elástica de los materiales Introducción a la Teoría de la Elasticidad. Introducción a la Teoría de la Elasticidad. Introducción - Tracción Propiedades elástica de los materiales Introducción a la Teoría de la Elasticidad S. Gil UNSM -8 Mayo 6 - Clase 1 UNSM - isica 1- BUC - S. Gil 1 Introducción a la Teoría de la Elasticidad Propiedades elastica

Más detalles

2- Propiedades Mecánicas de los Materiales

2- Propiedades Mecánicas de los Materiales 2- Propiedades Mecánicas de los Materiales Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil 1 Contenido 2. Propiedades mecánicas de los materiales 2.1 Ensayos de materiales para conocer sus

Más detalles

8) ENSAYOS MECÁNICOS: INTRODUCCIÓN

8) ENSAYOS MECÁNICOS: INTRODUCCIÓN A.08. 1 8) ENSAYOS MECÁNICOS: INTRODUCCIÓN Las propiedades mecánicas de los polímeros dependen fuertemente de la temperatura T y de la escala temporal de la deformación. En general, y debido a los diferentes

Más detalles

Resistencia de Materiales Ensayo de tracción uniaxial

Resistencia de Materiales Ensayo de tracción uniaxial Resistencia de Materiales 15153 Ensayo de tracción uniaxial Dr. Ing. Claudio M. García-Herrera Ing. Claudio A. Bustos Universidad de Santiago de Chile (USACH) Facultad de Ingeniería - Departamento de Ingeniería

Más detalles

MMCs reforzados por partículas

MMCs reforzados por partículas MMCs reforzados por partículas 2003-04 Escuela Superior de Ingenieros UNIVERSIDAD DE NAVARRA MMCs reforzados por partículas Introducción Partículas de refuerzo Propiedades mecánicas Módulo elástico Resistencia

Más detalles

Resistencia de Materiales TRACCIÓN Y COMPRESIÓN

Resistencia de Materiales TRACCIÓN Y COMPRESIÓN Resistencia de Materiales TRCCIÓN Y COMRESIÓN Resistencia de Materiales TRCCIÓN Y COMRESIÓN Introducción. Tracción y compresión. Tensiones y alargamientos. Deformaciones de piezas de peso no despreciable.

Más detalles

Capítulo 6 Resultados experimentales. p 0 p 01. Ensayo: IWS - OC pto. de fluencia de los gráficos : e : p ; ε 1 : q. superficies de fluencia

Capítulo 6 Resultados experimentales. p 0 p 01. Ensayo: IWS - OC pto. de fluencia de los gráficos : e : p ; ε 1 : q. superficies de fluencia Succi n matricial, (u a -u w ) MPa 0 0.10 2 8 6 4 2 8 6 4 2 Ψ 87 MPa A LC (inicial) B LC final (Ψ 87) 1 1.5 Ensayo: IWS - OC - 87 p 0 p 01 C : δε p s 0.5 pto. de fluencia de los gráficos : e : p ; ε 1

Más detalles

Tema 1. Mecánica de sólidos y fluidos. John Stanley

Tema 1. Mecánica de sólidos y fluidos. John Stanley Tema 1 Mecánica de sólidos y fluidos John Stanley Tema 1: Mecánica de sólidos y fluidos 1. Sólidos, líquidos y gases: densidad 2. Elasticidad en sólidos: tensión y deformación Elasticidad en fluidos: presión

Más detalles

Criterios de plasticidad y de rotura

Criterios de plasticidad y de rotura Lección 5 Criterios de plasticidad y de rotura Contenidos 5.1. Criterio de plasticidad para materiales sujetos a un estado triaxial de tensiones................... 64 5.2. Criterio de plasticidad de Von

Más detalles

Selección de materiales II. Índice de performance

Selección de materiales II. Índice de performance Selección de materiales II Índice de performance Propiedades de los materiales El diseñador no busca un material, sino un perfil de propiedades (una combinación específica), por eso piensa al material

Más detalles

Para la ciencia de los materiales la capacidad de compresión se define

Para la ciencia de los materiales la capacidad de compresión se define COMPORTAMIENTO PLÁSTICO ELÁSTICO DEL EPS Introducción Este documento describe el comportamiento esfuerzo-deformación (reología) en función del tiempo, con el objetivo de entender mejor las propiedades

Más detalles

Tema 2: Propiedades de los Materiales Metálicos.

Tema 2: Propiedades de los Materiales Metálicos. Tema 2: Propiedades de los Materiales Metálicos. 1. Propiedades mecánicas. 2. Mecanismos de deformación (Defectos). 3. Comportamiento elasto-plástico. 4. Comportamiento viscoso (fluencia y relajación).

Más detalles

9. PROPIEDADES MECÁNICAS EN SÓLIDOS

9. PROPIEDADES MECÁNICAS EN SÓLIDOS 9. PROPIEDADES MECÁNICAS EN SÓLIDOS MATERIALES I 12/13 Introducción Bloque I Teoría Elástica Tensión-deformación Propiedades mecánicas Bloque II Desgaste Dureza 2 Resistencia de Materiales Cantidad de

Más detalles

Sistema Circulatorio Estructura y Composición Propiedades Mecánicas Ejemplos

Sistema Circulatorio Estructura y Composición Propiedades Mecánicas Ejemplos Vasos Sanguíneos Sistema Circulatorio Estructura y Composición Propiedades Mecánicas Ejemplos Sistema Circulatorio Sistema Circulatorio Función de los Vasos Sanguíneos 6 mmhg 15 mmhg 5 mmhg Transporte

Más detalles

PROPIEDADES ESTRUCTURALES I SEMINARIO Nº 7: FRACTURA GUÍA DE REPASO

PROPIEDADES ESTRUCTURALES I SEMINARIO Nº 7: FRACTURA GUÍA DE REPASO PROPIEDADES ESTRUCTURALES I - 2013 SEMINARIO Nº 7: FRACTURA GUÍA DE REPASO Problema 1. A partir de los datos de la figura 1: a) Obtenga los valores aproximados de tenacidad a la fractura K IC para un acero

Más detalles

Sabiendo que las constantes del material son E = Kg/cm 2 y ν = 0.3, se pide:

Sabiendo que las constantes del material son E = Kg/cm 2 y ν = 0.3, se pide: Elasticidad resistencia de materiales Tema 2.3 (Le de Comportamiento) Nota: Salvo error u omisión, los epígrafes que aparecen en rojo no se pueden hacer hasta un punto más avanzado del temario Problema

Más detalles

A los efectos de la mecánica de materiales, usaremos una definición funcional de falla (Muchos autores prefieren hablar de estado limite).

A los efectos de la mecánica de materiales, usaremos una definición funcional de falla (Muchos autores prefieren hablar de estado limite). MECANICA AVANZADA DE MATERIALES Dr. Luis A. Godoy 2005 6. ANALISIS DE FALLAS ESTRUCTURALES A los efectos de la mecánica de materiales, usaremos una definición funcional de falla (Muchos autores prefieren

Más detalles

Grado en Ingeniería Mecánica EXAMEN FINAL DE MECÁNICA DE SÓLIDOS (20/01/2014) Nombre y Apellidos: NIA:

Grado en Ingeniería Mecánica EXAMEN FINAL DE MECÁNICA DE SÓLIDOS (20/01/2014) Nombre y Apellidos: NIA: Grado en Ingeniería Mecánica EXAMEN FINAL DE MECÁNICA DE SÓLIDOS (20/01/2014) Nombre y Apellidos: NIA: Problema 1 (Duración 45 minutos) (Puntuación máxima: 2.5 puntos) La estructura de la figura está compuesta

Más detalles

V. Corrientes eléctricas

V. Corrientes eléctricas V. orrientes eléctricas 5. es Gabriel ano Gómez, G 009/0 Dpto. Física F Aplicada (U. Sevilla) ampos Electromanéticos ticos niero de Telecomunicación Gabriel ano G Gómez, 09/0 V. orrientes eléctricas. ntroducción.

Más detalles

MODELO DE COMPORTAMIENTO MECÁNICO DEL HUESO BAJO CARGAS CÍCLICAS

MODELO DE COMPORTAMIENTO MECÁNICO DEL HUESO BAJO CARGAS CÍCLICAS Capítulo 2 MODELO DE COMPORTAMIENTO MECÁNICO DEL HUESO BAJO CARGAS CÍCLICAS 2.1. Introducción En este capítulo se describirá el modelo de comportamiento mecánico del tejido óseo que se utilizará en este

Más detalles

ɛ = ᶩ / ᶩ, de donde se deduce, teniendo en

ɛ = ᶩ / ᶩ, de donde se deduce, teniendo en TRABAJO PRÁCTICO N 12 Determinación del módulo de elasticidad E de un acero utilizando un extensómetro. CONSIDERACIONES TEÓRICAS GENERALES. Según la ley de Hooke las deformaciones unitarias son proporcionales

Más detalles

Tema 2: Propiedades de los Materiales Metálicos.

Tema 2: Propiedades de los Materiales Metálicos. Tema 2: Propiedades de los Materiales Metálicos. 1. Propiedades mecánicas. 2. Mecanismos de deformación (Defectos). 3. Comportamiento elasto-plástico. 4. Comportamiento viscoso (fluencia y relajación).

Más detalles

Elementos básicos de mecánica de

Elementos básicos de mecánica de Elementos básicos de mecánica de sólidos Ignacio Romero ignacio.romero@upm.es Escuela Técnica Superior de Ingenieros Industriales Universidad Politécnica de Madrid Curso 2015/16 1. Tensión El vector tensión

Más detalles

000 INTRODUCCION Verónica Veas B. Gabriela Muñoz S.

000 INTRODUCCION Verónica Veas B. Gabriela Muñoz S. 000 INTRODUCCION Verónica Veas B. Gabriela Muñoz S. ESTRUCTURAS 2 Prof.: Verónica Veas Ayud.: Preeti Bellani ESTRUCTURAS 1 ESTRUCTURAS 2 ESTRUCTURAS 3 3º semestre 5º semestre 7º semestre Estática Deformaciones

Más detalles

Propiedades físicas y mecánicas de los materiales Parte II

Propiedades físicas y mecánicas de los materiales Parte II Propiedades físicas y mecánicas de los materiales Parte II Propiedades físicas y mecánicas de los materiales 2.5. Propiedades mecánicas de los materiales 2.5.1 Tensión y Deformación 2.5.2 Elasticidad 2.5.3

Más detalles

Por métodos experimentales se determina el estado biaxial de tensiones en una pieza de aluminio en las direcciones de los ejes XY, siendo estas:

Por métodos experimentales se determina el estado biaxial de tensiones en una pieza de aluminio en las direcciones de los ejes XY, siendo estas: Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDAD DE JAÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

V. Corrientes eléctricas

V. Corrientes eléctricas V. Corrientes eléctricas. Leyes de la corriente eléctrica Gabriel Cano Gómez, G 29/1 Dpto. Física F Aplicada III (U. Sevilla) Campos Electromagnéticos ticos Ingeniero de Telecomunicación Gabriel Cano G

Más detalles

Notación. Mayúsculas latinas. Minúsculas latinas

Notación. Mayúsculas latinas. Minúsculas latinas Notación Mayúsculas latinas A A c A s E E a E c E cm E p E s I K M M fis M u N N 0 N u N ext N d P k P k T V u V u1 V u2 V cu V su W W h Área Área de hormigón Área de acero Módulo de deformación Módulo

Más detalles

Comportamiento del Suelo

Comportamiento del Suelo Comportamiento del Suelo A. Lizcano Geotechnical Research Group Department of Civil & Environmental Engineering Bogotá, Colombia December 2007 Motivación Motivación Comportamiento mecánico Comportamiento

Más detalles

Sesión 1: Introducción SALOME-MECA y CODE ASTER

Sesión 1: Introducción SALOME-MECA y CODE ASTER Sesión 1: Introducción SALOME-MECA y CODE ASTER R. López-Cancelos 1, I. Viéitez 2 1 Departamento de Ingeniería de los Materiales, Mecánica Aplicada y Construcción, E. de Ing. Industrial, Universidad de

Más detalles

CAPITULO 3 PLASTICIDAD

CAPITULO 3 PLASTICIDAD MECANICA AVANZADA DE MATERIALES Dr. Luis A. Godoy 2005 CAPITULO 3 PLASTICIDAD Temario: 1. La física de la plasticidad. 2. Diversidad de comportamientos que se asocian con plasticidad. 3. Factores que afectan

Más detalles

Seguridad Estructural (64.17)

Seguridad Estructural (64.17) TRABAJO PRACTICO 4 Resuelva los siguientes problemas calculando el índice de confiabilidad β de Hasofer y Lind. Salvo cuando se indique lo contrario expresamente, considere que las variables aleatorias

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO siempre mayor que el real (σ nz /ε z > E). 1-9-99 UNIDAD DOCENTE DE ELASTICIDAD Y RESISTENCIA DE MATERIALES PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-000 3.1.- Un eje de aluminio

Más detalles

ENSAYO DE TENSIÓN PARA METALES. Determinar el comportamiento de un metal cuando es sometido a esfuerzos axiales de tensión.

ENSAYO DE TENSIÓN PARA METALES. Determinar el comportamiento de un metal cuando es sometido a esfuerzos axiales de tensión. ENSAYO DE TENSIÓN PARA METALES 1. OBJETIVO 1.1 Objetivo general. Determinar el comportamiento de un metal cuando es sometido a esfuerzos axiales de tensión. 1.2 Objetivos Específicos Conocer las normas

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

UNIDAD 11 Características térmicas de los materiales

UNIDAD 11 Características térmicas de los materiales UNIDAD 11 Características térmicas de los materiales 11.1 CUESTIONES DE AUTOEVALUACIÓN 1. La conductividad térmica de un metal o aleación aumenta al: a) Aumentar la temperatura. b) Aumentar el grado de

Más detalles

INTRODUCCIÓN A LA ELASTICIDAD Y A LA RESISTENCIA DE MATERIALES

INTRODUCCIÓN A LA ELASTICIDAD Y A LA RESISTENCIA DE MATERIALES Resistencia de Materiales INTRODUCCIÓN A LA ELASTICIDAD Y A LA RESISTENCIA DE MATERIALES Introducción. Sólido rígido, elástico y real. Nuevas variables: tensión, deformación, esfuerzos. Equilibrio estático

Más detalles

Unidad 3 - Modos Normales de una barra y Análisis de Fourier Conceptos:

Unidad 3 - Modos Normales de una barra y Análisis de Fourier Conceptos: Unidad 3 - Modos Normales de una barra y Análisis de Fourier Conceptos: 1. Tensión y deformación 2. Movimiento ondulatorio simple 3. Ondas periódicas 4. Ondas estacionarias Tensión y deformación Objeto

Más detalles

Materiales de construcción

Materiales de construcción Materiales de construcción 1º de Grado en Ingeniería Civil PRÁCTICAS DE LABORATORIO SESIÓN 2 - Ensayo de dureza sobre metales - Ensayo de flexotracción y compresión de mortero - Ensayo de tracción sobre

Más detalles

Ing. Industrial / Ing. Químico / Materiales II convocatoria septiembre 2007

Ing. Industrial / Ing. Químico / Materiales II convocatoria septiembre 2007 Ing. Industrial / Ing. Químico / Materiales II convocatoria septiembre 007. Un cubo de lado L de un material de la clase cristalográfica m se somete a compresión hidrostática homogénea en todo su volumen,

Más detalles

σ =Eε =Ex/d Fractura Elástica

σ =Eε =Ex/d Fractura Elástica Fractura Elástica Material Elástico lineal perfecto No existen fisuras ni defectos Separación es por rotura de enlaces atómicos en el plano m-n Fuerzas de atracción y repulsión son función de la solicitación

Más detalles

TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES.

TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES. Félix C. Gómez de León Antonio González Carpena TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES. Curso de Resistencia de Materiales cálculo de estructuras. Clases de tensiones. Índice. Tensión simple

Más detalles

PROCESADO DE MATERIALES POLIMÉRICOS MACROPOROSOS PARA MEDICINA REGENERATIVA

PROCESADO DE MATERIALES POLIMÉRICOS MACROPOROSOS PARA MEDICINA REGENERATIVA PROCESADO DE MATERIALES POLIMÉRICOS MACROPOROSOS PARA MEDICINA REGENERATIVA TRABAJO FINAL DE GRADO KARIM H. SHEHADEH ALANDETE DIRECTORA: GLORIA GALLEGO FERRER 1.- Antecedentes INDICE 2.- Objetivos 4.-

Más detalles

Andrés García Rodríguez. I.E.S. Enrique Nieto Tecnología Industrial II

Andrés García Rodríguez. I.E.S. Enrique Nieto Tecnología Industrial II 1 2 a) El módulo de Young es la relación constante entre las tensiones unitarias (σ) en la zona de proporcionalidad y los alargamientos unitarios (ε): E = σ ε La tensión unitaria (σ) se define como el

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 3. Propiedades mecánicas 3.1 Ensayos de esfuerzo - deformación unitaria Materiales Ley de esfuerzo cortante - deformación

Más detalles

UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA

UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA Proyecto de Ingeniería en Gas INTRODUCCIÓN A LOS MATERIALES Elaborado por: Ing. Roger Chirinos. MSc Cabimas, Abril 2011 FUNDAMENTACIÓN Asignatura:

Más detalles

Código: Titulación: Ingeniero Técnico Industrial, Especialidad Mecánica Curso: 2º

Código: Titulación: Ingeniero Técnico Industrial, Especialidad Mecánica Curso: 2º ASIGNATURA: ELASTICIDAD Y RESISTENCIA DE MATERIALES Código: 128212002 Titulación: Ingeniero Técnico Industrial, Especialidad Mecánica Curso: 2º Profesor(es) responsable(s): - José Luís Morales Guerrero

Más detalles

BIOMECÁNICA MEJOR DESEMPEÑO

BIOMECÁNICA MEJOR DESEMPEÑO BIOMECÁNICA Componentes Biológicos Componentes Mecánicos Considerac. Anatómicas Considerac. Fisiológicas Considerac. Histológicas Sólidos Líquidos TEJIDOS Músculos Tendón Cartílago Hueso Ligamentos Cuerpos

Más detalles

CARGAS EN COMPONENTES ESTRUCTURALES ESTRUCTURAS DE AERONAVES MATERIALES

CARGAS EN COMPONENTES ESTRUCTURALES ESTRUCTURAS DE AERONAVES MATERIALES CARGAS EN COMPONENTES ESTRUCTURALES ESTRUCTURAS DE AERONAVES MATERIALES RECORDATORIO TIPOS BÁSICOS DE CARGAS Tensión( esfuerzo) σ = PA Deformación ε =ΔLL Módulo deyoung o módulo de Elasticidad Ley de Hooke

Más detalles

1. MATERIALES Estructuras cristalinas

1. MATERIALES Estructuras cristalinas Dpto. Tecnología. IES Carmen Conde 2017/18 Tecnología Industrial I 1. MATERIALES 1.1. Estructuras cristalinas 1. Conteste brevemente a las siguientes cuestiones: a) Qué es una red cúbica centrada en el

Más detalles

1. MATERIALES Estructuras cristalinas

1. MATERIALES Estructuras cristalinas Dpto. Tecnología. IES Carmen Conde 2017/18 Tecnología Industrial I 1. MATERIALES 1.1. Estructuras cristalinas 1. Conteste brevemente a las siguientes cuestiones: a) Qué es una red cúbica centrada y una

Más detalles

Tema 4 Comportamiento plástico de los sólidos cristalinos

Tema 4 Comportamiento plástico de los sólidos cristalinos Tema 4 Comportamiento plástico de los sólidos cristalinos 1 Tema 4: Comportamiento plástico de los sólidos cirstalinos 1. Fenomenología de la deformación plástica. Ensayo de tracción: límite elástico,

Más detalles

Elementos de Física de los Medios Continuos

Elementos de Física de los Medios Continuos Elementos de Física de los Medios Continuos Martín Rivas e-mail:martin.rivas@ehu.es http://tp.lc.ehu.es/martin.htm Departamento de Física Teórica e Historia de la Ciencia UPV/EHU Leioa, Mayo 2014 En la

Más detalles

UTN-FRBB Cátedra: Elementos de Máquinas. Profesor: Dr. Ing. Marcelo Tulio Piovan

UTN-FRBB Cátedra: Elementos de Máquinas. Profesor: Dr. Ing. Marcelo Tulio Piovan APENDICE 4 MATERIALES Y SUS PROPIEDADES 1. Introducción El presente apéndice tiene por objetivo suministrar al alumno información compendiada para evitar dispersión de tiempo en la búsqueda de material

Más detalles

2. COMPORTAMIENTO A TRACCIÓN

2. COMPORTAMIENTO A TRACCIÓN 2. COMPORTAMIENTO A TRACCIÓN En los ensayos de tracción lo que se evalúa realmente es la resistencia del material, es decir, las tensiones que es capaz de soportar antes de comenzar a sufrir deformaciones

Más detalles

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras. Ingeniería Estructural. Introducción

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras. Ingeniería Estructural. Introducción Departamento de Mecánica de Medios Continuos y Teoría de Estructuras Ingeniería Estructural Introducción Puede definirse, en general, una estructura como:...conjunto de elementos resistentes capaz de mantener

Más detalles

2. a) Qué se conoce como efecto Bauschinger? A qué se debe? Qué quiere decir en términos de las tensiones críticas de deslizamiento cristalográfico?

2. a) Qué se conoce como efecto Bauschinger? A qué se debe? Qué quiere decir en términos de las tensiones críticas de deslizamiento cristalográfico? ESTRUCTURA Y COMPORTAMIENTO MECÁNICO Cuestiones y ejercicios de exámenes 1. a) Tienen relación la anisotropía elástica y la anisotropía plástica de un material policristalino?. (Razone la respuesta exponiendo

Más detalles

Ejercicio N 5. Estructuras Metálicas Facultad de Ingeniería. Estructuras de Acero Liviano Curso 2002

Ejercicio N 5. Estructuras Metálicas Facultad de Ingeniería. Estructuras de Acero Liviano Curso 2002 Ejercicio N 5. Verificar la aptitud de las correas de un sistema de cubiertas que se ajusta al siguiente esquema. Las correas se confeccionaron con perfiles C 00x50x5x.0mm de chapa plegada en calidad IRAM-IAS

Más detalles

T P Nº 7: TENSIONES Y DEFORMACIONES AXIALES

T P Nº 7: TENSIONES Y DEFORMACIONES AXIALES ESTATICA Y RESISTENCIA DE MATERIALES (QUIMICA Y MINAS) T P Nº 7: TENSIONES Y DEFORMACIONES AXIALES 1) Dos cables de acero, AB y BC, sostiene una lámpara que pesa 15 lb. El cable AB tiene un ángulo α =

Más detalles

8. Diseño y selección de materiales 8.1. Introducción 8.2. Metodología del diseño 8.3. Propiedades de los distintos tipos de materiales 8.4.

8. Diseño y selección de materiales 8.1. Introducción 8.2. Metodología del diseño 8.3. Propiedades de los distintos tipos de materiales 8.4. 8. Diseño y selección de materiales 8.1. Introducción 8.2. Metodología del diseño 8.3. Propiedades de los distintos tipos de materiales 8.4. Índice de material y mapas de selección 8.5. Ejemplos de diseño

Más detalles

Estructuras de Materiales Compuestos

Estructuras de Materiales Compuestos Estructuras de Materiales Compuestos Análisis de falla progresiva Ing. Gastón Bonet - Ing. Cristian Bottero - Ing. Marco Fontana Estructuras de Materiales Compuestos Análisis de falla progresiva Repaso

Más detalles

Introducción a las Estructuras

Introducción a las Estructuras Introducción a las Estructuras Capítulo once: Dimensionado UNO 1. Introducción. 1.1. Para el control de las elásticas. En este capítulo presentamos la metodología a seguir para establecer las dimensiones

Más detalles

Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II

Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II Rubén Pérez Departamento de Física Teórica de la Materia Condensada Universidad Autónoma de Madrid Curso 2010-2011 Índice

Más detalles

6 Propiedades elásticas de los materiales

6 Propiedades elásticas de los materiales Propiedades elásticas de los materiales 1 6 Propiedades elásticas de los materiales 6.0 Introducción En el resto del capítulo de mecánica se ha estudiado como las fuerzas actúan sobre objetos indeformables.

Más detalles

En esta sección se define el significado de la simbología utilizada en el documento. Existen símbolos repetidos, en cada caso se da una explicación.

En esta sección se define el significado de la simbología utilizada en el documento. Existen símbolos repetidos, en cada caso se da una explicación. Simbología En esta sección se define el significado de la simbología utilizada en el documento. Existen símbolos repetidos, en cada caso se da una explicación. a parámetro del modelo, ecuación 5.12 a parámetro

Más detalles

TERMODINÁMICA y FÍSICA ESTADÍSTICA I

TERMODINÁMICA y FÍSICA ESTADÍSTICA I TERMODINÁMICA y FÍSICA ESTADÍSTICA I Tema 3 - CALORIMETRÍA Y TRANSMISIÓN DEL CALOR Capacidad calorífica y su medida. Calor específico. Calor latente. Transmisión del calor. Conductividad térmica. Ley de

Más detalles

Módulo 1 Termodinámica

Módulo 1 Termodinámica Módulo 1 Termodinámica 1er cuatrimestre del 2012 Dra. Noelia Burgardt Termodinámica de equilibrio - Sistemas, paredes, procesos, función de estado - Repaso de gases ideales y reales - Trabajo y calor -

Más detalles

Deformación técnica unitaria (in/in)

Deformación técnica unitaria (in/in) UNIVERSIDAD DON BOSCO CIENCIA DE LOS MATERIALES FACULTAD DE INGENIERÍA UNIDAD 2: PROPIEDADES MECANICAS ESCUELA DE INGENIERÍA MECANICA JULIO DE 2010 PROBLEMAS: 1.- La siguiente tabla de datos de un ensayo

Más detalles

TEMA 8: PROPIEDADES DE LOS MATERIALES. ENSAYOS DE MEDIDA

TEMA 8: PROPIEDADES DE LOS MATERIALES. ENSAYOS DE MEDIDA TEMA 8: PROPIEDADES DE LOS MATERIALES. ENSAYOS DE MEDIDA 1.- Propiedades de los materiales Propiedades mecánicas Plasticidad es la propiedad mecánica de un material de adquirir deformaciones permanentes

Más detalles

EJERCICIOS TEMA 2: PROPIEDADES DE LOS MATERIALES. ENSAYOS DE MEDIDA

EJERCICIOS TEMA 2: PROPIEDADES DE LOS MATERIALES. ENSAYOS DE MEDIDA Ejercicio 1 EJERCICIOS TEMA 2: PROPIEDADES DE LOS MATERIALES. ENSAYOS DE MEDIDA A la vista de la siguiente gráfica tensión-deformación obtenida en un ensayo de tracción: a) Explique qué representan los

Más detalles

Tema II: Elasticidad

Tema II: Elasticidad TEMA II Elasticidad LECCIÓN 2 Ley de Hooke 1 2.1 TENSIÓN Comparación de la resistencia mecánica a tracción de dos materiales distintos: Cuál de los dos materiales es más resistente? 2 Tensión ingenieril

Más detalles

CIENCIA E INGENIERÍA DE MATERIALES. Grado en Ingeniería de Organización Industrial. Curso 2014/15 3ª RELACIÓN DE EJERCICIOS

CIENCIA E INGENIERÍA DE MATERIALES. Grado en Ingeniería de Organización Industrial. Curso 2014/15 3ª RELACIÓN DE EJERCICIOS CIENCIA E INGENIERÍA DE MATERIALES Grado en Ingeniería de Organización Industrial. Curso 2014/15 3ª RELACIÓN DE EJERCICIOS 1. Se aplica una carga de 20 kn a una barra de hierro con una sección transversal

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES I GRUPOS M1 YT1 CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES I GRUPOS M1 YT1 CURSO PROBLEMAS DE RESISTENCIA DE MATERIALES I GRUPOS M1 YT1 CURSO 2010-11 9.1.- Una viga indeformable de longitud 4 m, de peso despreciable, está suspendida por dos hilos verticales de 3 m de longitud. La viga

Más detalles

MECANICA DEL SOLIDO REAL / Construcción

MECANICA DEL SOLIDO REAL / Construcción 1 MECANICA DEL SOLIDO REAL / Construcción PRACTICAS DE LABORATORIO. Curso 2011-12 Nº 1: MUESTRA DE MATERIALES Nº 2: CARACTERIZACION MECANICA DE UN MATERIAL ISOTROPO MEDIANTE ENSAYO DE TRACCION SOBRE PROBETA

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL ASIGNATURA: RESISTENCIA DE MATERIALES CÓDIGO: 1102 UNIDADES: 6 Teoría: 5 horas/semana REQUISITOS: 1101,0254-0255

Más detalles

TEMA 4: Aspectos generales

TEMA 4: Aspectos generales Tema 4: Aspectos generales 1/1 MÓDULO II: CONFORMADO PLÁSTICO DE METALES TEMA 4: Aspectos generales TECNOLOGÍAS DE FABRICACIÓN N Y TECNOLOGÍA A DE MÁQUINAS DPTO. DE INGENIERÍA A MECÁNICA Universidad del

Más detalles

Figura 1.1: Máquina de Ensayo de Tracción.

Figura 1.1: Máquina de Ensayo de Tracción. Capítulo 1 Ensayo de Tracción Para conocer las cargas que pueden soportar los materiales, se efectúan ensayos para medir su comportamiento en distintas situaciones. El ensayo destructivo más importante

Más detalles

Qué se busca al restaurar?

Qué se busca al restaurar? Aleaciones Qué se busca al restaurar? Estética y función Devolver la armonía óptica Devolver la forma anatómica Evitar la formación de nuevas lesiones Restablecer el comportamiento biomecánico Qué se busca

Más detalles

COMPORTAMIENTO MECÁNICO DE MATERIALES

COMPORTAMIENTO MECÁNICO DE MATERIALES COMPORTAMIENTO MECÁNICO DE MATERIALES CURSO ACADÉMICO 2009/2010 T4. Fatiga 4.1 Características de la fractura por fatiga Fatiga: rotura gradual de una estructura por la aplicación de esfuerzos (o deformaciones)

Más detalles

COMPORTAMIENTO MECANICO DE UNA VALVULA CARDIACA

COMPORTAMIENTO MECANICO DE UNA VALVULA CARDIACA COMPORTAMIENTO MECANICO DE UNA VALVULA CARDIACA A. Juárez y E.Sánchez Inst. Cardiología G. Cruz, A. Olvera, G. García, A. Minzoni IIMAS UNAM G. Pulos IIM UNAM Agosto de 2010 Instituto de Cardiología (Dr.

Más detalles

MECÁNICA DE SÓLIDOS. Curso 2017/18. Grado en Ingeniería Mecánica. José Antonio Rodríguez Martínez Jorge Zahr Viñuela. Titulación: Profesores:

MECÁNICA DE SÓLIDOS. Curso 2017/18. Grado en Ingeniería Mecánica. José Antonio Rodríguez Martínez Jorge Zahr Viñuela. Titulación: Profesores: MECÁNICA DE SÓLIDOS Curso 2017/18 Titulación: Grado en Ingeniería Mecánica Profesores: José Antonio Rodríguez Martínez Jorge Zahr Viñuela MECÁNICA DE SÓLIDOS Curso 2016/17 Tabla de Contenidos de la Asignatura

Más detalles

PROBLEMA 38 TEMA: VISCOELASTICIDAD. Relajación del acero en armaduras activas según la Instrucción de Hormigón Estructural (EHE)

PROBLEMA 38 TEMA: VISCOELASTICIDAD. Relajación del acero en armaduras activas según la Instrucción de Hormigón Estructural (EHE) PROBLMA 38 TMA: VISCOLASTICIDAD. Relajación del acero en armaduras activas según la Instrucción de Hormigón structural (H) n un Anexo al problema se reproduce el apartado 38.9 (páginas y ) de la Instrucción

Más detalles

PROPIEDADES MECÁNICAS

PROPIEDADES MECÁNICAS La selección de un material significa adecuar sus propiedades mecánicas a las condiciones de servicio requeridas para el componente. Se requiere analizar la aplicación a fin de determinar las características

Más detalles

Nudos Longitud (m) Inercia respecto al eje indicado. Longitud de pandeo (m) (3) Coeficiente de momentos

Nudos Longitud (m) Inercia respecto al eje indicado. Longitud de pandeo (m) (3) Coeficiente de momentos Barra N3/N4 Perfil: IPE 300, Perfil simple Material: Acero (S275) Z Y Inicial Nudos Final Longitud (m) Área (cm²) Características mecánicas I y I z I t N3 N4 5.000 53.80 8356.00 603.80 20.12 Notas: Inercia

Más detalles

MATERIALIDAD I. Cátedra Arq. Elio Di Bernardo LAS FUERZAS DE LA NATURALEZA: EL EFECTO DE LA GRAVEDAD SOLICITACIONES, ESFUERZOS Y TENSIONES

MATERIALIDAD I. Cátedra Arq. Elio Di Bernardo LAS FUERZAS DE LA NATURALEZA: EL EFECTO DE LA GRAVEDAD SOLICITACIONES, ESFUERZOS Y TENSIONES MATERIALIDAD I Cátedra Arq. Elio Di Bernardo LAS FUERZAS DE LA NATURALEZA: EL EFECTO DE LA GRAVEDAD SOLICITACIONES, ESFUERZOS Y TENSIONES ESTRUCTURAS RESISTENTES MASA Y PESO SISTEMA DE ELEMENTOS VINCULADOS

Más detalles

Curso: RESISTENCIA DE MATERIALES 1

Curso: RESISTENCIA DE MATERIALES 1 Curso: RESISTENCIA DE MATERIALES 1 Módulo 2: Fuerza axial y dimensionado Luis Segura (lsegura@fing.edu.uy) 2º Semestre - 2015 Universidad de la República - Uruguay Módulo 2 2º Semestre 2015 Luis Segura

Más detalles

El cuerpo negro. Imaginemos un cuerpo que absorbe toda la radiación que le llega.

El cuerpo negro. Imaginemos un cuerpo que absorbe toda la radiación que le llega. El cuerpo negro Imaginemos un cuerpo que absorbe toda la radiación que le llega. Típicamente la eficiencia no es tan grande (a~.99), pero se puede encontrar algo que se comporta casi igual: Un agujero

Más detalles

Teórica nº2. Compresión y Tracción

Teórica nº2. Compresión y Tracción Teórica nº2 Compresión y Tracción En la clase anterior vimos la primera de las exigencias estructurales básicas, la falta de movimiento, es decir, el EQUILIBRIO, donde se aplican las leyes de Newton (sumatoria

Más detalles

Dimensionado y comprobación de secciones

Dimensionado y comprobación de secciones péndice B Dimensionado y comprobación de secciones El Código Técnico de la Edificación (CTE), en el Documento Básico-Seguridad Estructural cero (DB-SE- cero), hace una clasificación de las secciones atendiendo

Más detalles

CAPÍTULO 2. RESISTENCIAS PASIVAS

CAPÍTULO 2. RESISTENCIAS PASIVAS CAÍTULO 2. RESISTENCIAS ASIVAS 2.1. Introducción Son aquellas internas o externas a los elementos que constituyen un mecanismo, que de una forma u otra, se oponen al movimiento relativo de los mismos.

Más detalles

M/Al 2 OTEMA 3 V: PLASTICIDAD. FLUENCIA A ALTA TEMPERATURA. Pedro Miranda González. Asignatura: PROPIEDADES MECÁNICAS II

M/Al 2 OTEMA 3 V: PLASTICIDAD. FLUENCIA A ALTA TEMPERATURA. Pedro Miranda González. Asignatura: PROPIEDADES MECÁNICAS II Gru po Es pe cializado de Ma Mate riale s UEx M/Al 2 OTEMA 3 V: PLASTICIDAD. FLUENCIA A ALTA TEMPERATURA Asignatura: PROPIEDADES MECÁNICAS II Titulación: Ingeniero de Materiales Tipo: Troncal Curso: 4º

Más detalles