= = 0.40 (40%) 500 Por el teorema de Carnot, no es posible que lo que afirma el inventor sea posible.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "= = 0.40 (40%) 500 Por el teorema de Carnot, no es posible que lo que afirma el inventor sea posible."

Transcripción

1 TEMA 5 EL SEGUNDO PRINCIPIO DE LA TERMODINÁMICA. I. Resolución de problemas a. Problemas de Nivel I 1. Un inventor sostiene que ha desarrollado un ciclo de potencia capaz de producir un trabajo neto de 410 kj a partir de un consumo de energía, por transferencia de calor, de 1000 kj. El sistema que realiza el ciclo recibe el calor de un flujo de gases calientes cuya temperatura es de 500 K y descarga calor a la atmósfera a 300 K. Evalúe si lo que afirma el inventor puede ser posible. Utilizando los valores suministrados por el inventor el rendimiento térmico del ciclo es: 410 0,41 (41%) (40%) 500 Por el teorema de Carnot, no es posible que lo que afirma el inventor sea posible. 2. Una combinación de dos máquinas térmicas se muestra en la figura. Determinar el rendimiento térmico del conjunto en función de los rendimientos térmicos de cada una de las máquinas. 78

2 +!! 1 "# $ $ +! +! "# +! +! (1 ) % &'()*(+' %,-. + %,-/ (. %,-. ) 3. Un aire acondicionado descarga 5,1 kw al ambiente que lo rodea y utiliza una potencia de entrada de 1,5 kw. Determinar la velocidad de enfriamiento ( ) y el rendimiento del aire acondicionado. + 1,5 (5,1) 0 1 2, 3 45 $678$9 7$ 9779 % >?@ &'(A>&>'(A' /, B 3,6 ; (1,5 ) 2,4 79

3 4. Los datos de la lista siguiente corresponden a ciclos de potencia que operan entre dos focos a 727ºC y 127ºC. Para cada caso determinar si el ciclo es irreversible, reversible o imposible. a) 1000, 7C 650 b) 2000, 800 c) 1000, 7C 1600 d) 1600, 30% e) 300, 7C 160, 140 f) 300, 7C 180, 120 g) 300, 7C 170, 140 a) F F ,65 $G$H7C$ , > por el teorema de Carnot, este ciclo es imposible. b) (800) Este ciclo es reversible. c) (1000) ,615 > por el teorema de Carnot, este ciclo es imposible. d) 30% 0,30 80

4 Este ciclo es irreversible e) 300, 7C 160, 140 Hay que verificar que esos valores sean posibles (140) 160 f) g) ,53 Este ciclo es irreversible 300, 7C 180, 120 Hay que verificar que esos valores sean posibles (120) ,60 Este ciclo es reversible 300, 7C 170, 140 Hay que verificar que esos valores sean posibles (140) 160 Este ciclo es imposible porque viola el primer principio 5. Se transfiere calor directamente desde un depósito de calor a 282 ºC a otro 4 ºC. Si la cantidad de calor transferido es J. Cuál es el cambio total de entropía que resulta de este proceso? Las temperaturas de los depósitos de calor son: F F El calor transferido es J (LMNOP PQRSPMTO TQN TQUóWSRO M MNRM) (LMNOP XYQ QZRPM MN TQUóWSRO M [M\M) ]^ ]^ F 191 F ]^ F +383 F ]^C ]^ + ]^ /F ab +'+c.d/ e/f 81

5 b. Problemas de Nivel II 6. Un refrigerante a baja temperatura circula en situación estacionaria a través de los conductos insertados en las paredes del compartimiento de un congelador. El ciclo frigorífico mantiene una temperatura de -5º C en el congelador cuando la temperatura del aire que rodea la instalación es de 22º C. La transferencia de calor desde el congelador al refrigerante es 8000 kj/h y la potencia requerida para accionar el ciclo frigorífico es de 3200 kj/h. Determine para el frigorífico su rendimiento y compárelo con el ciclo frigorífico reversible que funcionara entre las mismas temperaturas. %?@g?>h@?a'? 8000 /h (3200 /, j h ) %?@g?>h@?a'? /, j En un ciclo reversible: $G$H7C$ ( + ) 1 (1 + k l) 268 %?@m@?n>1c@ d, d/ %?@m@?n>1c@ d, d/ 82

6 7. Una vivienda requiere 5 x 10 5 kj por día para mantener su temperatura a 20ºC cuando la temperatura exterior es de 0 ºC. a) Si se emplea un ciclo de bomba de calor para suministrar dicha energía, determínese el trabajo teórico mínimo para un día de operación en kj. b) Suponiendo un coste de la electricidad de 0,09 euros por KWh, determinar el coste teórico mínimo de funcionamiento de la bomba de calor, en /día. a) o éo7 qr s qt o éo7 oáv $G$H7C$ $G$H7C$ oí7o ( + ) o éo7 oáv 5 zí(>z' 2, B {. B 4e/Aí b) 0,09 ~t ( + 1) 1 Fh 1 (3600W) 3600 ( + ) 5 x 10 y /TíM LOWRQ ízs O k 3,4 x 10 ~ l k0,09 l 0,85 /TíM 9í ƒ ~ &'n+@ zí(>z', j /Aí ( + ) 83

7 8. Una planta de energía, cuya fuente de energía es combustible nuclear o fósil, es una máquina térmica que funciona entra las temperaturas de un reactor o de un horno y el ambiente, generalmente representado por un río o por otra masa de agua. Considere una planta moderna de energía nuclear que genera kw para la cual la temperatura del reactor es 316 ºC y se dispone de un río en el cual la temperatura del agua es de 21 ºC. a) Cuál es rendimiento máximo posible de la planta y cuál es la mínima cantidad de calor que debe descargarse al río? b) Si el rendimiento de la planta es el 60 % de la máxima, cuánto calor debe descargarse al río y cuál será el aumento de temperatura del río si tiene un caudal de 164 m 3 /s? Considere para el agua: L 4,1868 kj/(kgºc), ˆ8# 1000 ~8 o a) oáv7o Š sq 1 s s F F oáv7o ,5 % zá{>z', j + < 0 (1 1) b) Cuando es máximo es mínimo oí7o Ž 1 1 oí7o Ž Ž ,5 W 0 1 zí(>z' j 4e n Ž Ž 1 0,60 oáv7o Ž ,60(0,50) W 0 1. j 4e n L L L Ž164 ƒ W - /, jj W (1000 2,55 kj ƒ)( 4,1868 kg ) 84

8 9. El motor de un automóvil entrega 136 hp de potencia con un rendimiento térmico del 30 %. La combustión del combustible libera kj/kg. Determinar el flujo de calor liberado al ambiente y la velocidad de consumo de combustible. Nota: 1 hp 0,7355 kw o (136)0, o 0, gc*)' A@ &c'? c>1@?a' c z1>@(+@ 0 1 /22 45 LOZWY O TQ LO [YWRS[NQ &'(n*z' A@ &'z1*n+>1c@, dj 4h/n 333 W ,0095 /W 10. Dos combustibles diferentes pueden ser usados en una máquina térmica operando reversiblemente entre la temperatura de combustión del combustible y una temperatura baja de 350 K. El combustible A arde a 2200 K, su combustión libera kj/kg y tiene un costo de 1,50 U$D /kg. El combustible B arde a 1200 K, su combustión libera kj/kg y tiene un costo de 1,30 U$D/kg. Qué combustible compraría? Justifique su respuesta. Combustible A: (0,84) Ž30000 $ ,50 U$D kg $œ 0,

9 Combustible B: ,708 (0,708) Ž $ 1,30 U$D $œ kg Compraría el combustible B porque produce más trabajo por U$D invertido, aunque tiene eficiencia menor. El combustible B también produce más trabajo por kg de combustible y al trabajar a una T alta menor es más segura de operar la máquina térmica. 11. Nos propones calentar una casa con una bomba térmica. La casa es mantenida a 20ºC todo el tiempo. Cuando la temperatura ambiente afuera es -10 ºC, la velocidad a la cual la casa pierde calor es de 25 kw. Cuál es la mínima potencia eléctrica requerida para la bomba térmica? La mínima potencia eléctrica se da cuando la bomba térmica trabaja reversiblemente. Como estamos en estado estacionario: $ F F 293 $G$H7C$ ,77 $G$H7C$ oí7o oí7o 25 oí7o 2.56 $G$H7C$ 9,77 5 zí(>z' /. j3 n>h(' A@ z@('n >(A>& c n>n+@z 86

10 12. Si se mezclan adiabáticamente y a presión constante 2kg de agua líquida a 90ºC con 3 kg de agua líquida a 10 ºC, Cuál es el cambio total de entropía que resulta en este proceso? Considere el L 4184 ~8. Las dos masas de agua intercambian calor con las condiciones de presión constantes hasta alcanzar la misma temperatura final T. 8# C7$$ C7$$ L ( ) 8# 6í 6í L ( ) C7$$ L ( ) + 6í L ( ) 0 6í L + C7$$ L 6í L + C7$$ L 6í L + C7$$ L 6í + C7$$ C7$$ + 6í 6í + C7$$ F F C7$$ + 6í 6í + C7$$ 2 (363) + 3 (283) 5 En un proceso a presión constante: L T X T Y por definición T^ 9 r TW T X TW L T W L ln 6 7 W C7$$ Ž( )(ln F 363 ) 593,4 F W 67 Ž( )(ln F 283 ) 448,2 F 315 F ^C ^C7$$ + ^6í C7$$ W C7$$ + 6í W 67 ^C (2 ) Ž593,4 + (3 ) Ž448,2 F F 157,8 F b +'+c.j, e f 87

11 c. Problemas de Nivel III 13. La figura muestra un sistema que capta radiación solar y la utiliza para producir electricidad mediante un ciclo de potencia. El colector solar recibe 0,315 kw de radiación solar por metro cuadrado de superficie instalada y cede dicha energía a un reservorio cuya temperatura permanece constante e igual a 500 K. El ciclo de potencia recibe energía por transferencia de calor desde el reservorio térmico, genera electricidad con una potencia de 1000 kw y descarga energía por transferencia de calor al entorno a 20º C. Determine: a) La superficie mínima del colector solar b) La superficie mínima del colector solar, en m 2, para eficiencias del colector igual a 1,0, 0,75 y 0,5. Considere la eficiencia del colector definida como la fracción de energía incidente que se almacena. a) ^YUQP SLSQ ízs M C$ oí7o oí7o 88

12 7C oí7o oí7o oí7o (1000 )(500 F) oí7o 2415,5 ( )F 2415,5 ^YUQP SLSQ ízs M LONQLROP !! b*ÿ@?g>&>@ zí(>z &'c@&+'? 33 z / b) Q SLSQZLSM TQN LONQLROP Q $8í Co$9 $8í 779$$ b*ÿ@?g>&>@ zí(>z &'c@&+'? 33 z / j (2415,5 ) ^YUQP SLSQ ízs M LONQLROP Q 0,315! b*ÿ@?g>&>@ zí(>z &'c@&+'?. //B z / j (2415,5 ) ^YUQP SLSQ ízs M LONQLROP Q 0,315! b*ÿ@?g>&>@ zí(>z &'c@&+'?.j22 z / (2415,5 ) 0,75 0,315! (2415,5 ) 0,5 0,315! 14. Una botella de acero de V0,1 m 3 contiene refrigerante R-134a a 20ºC y 200 kpa. Es colocada en un freezer donde es enfriada a -20 ºC. El freezer está en una habitación con una temperatura ambiente de 20º C y tiene una temperatura interior de -20 ºC. Determinar la cantidad de energía que el freezer debe remover del refrigerante y el trabajo extra que debe ser entregado al freezer para realizar el proceso. 89

13 Considere su sistema el refrigerante contenido en la botella. R-134a a 20ºC y 200kPa, corresponde a vapor sobrecalentado. (Y! Y )!! El proceso es a volumen constante.! ª! 0 «0,1 ƒ 0, ,11436 ƒ Y 395,27 / 90

14 En el estado final (2):! 0,11436 o < ~8 8 0,14649 o ~8, equilibrio líquido vapor! 6 0, , x! 0,77951 ( 8 6 ) 0,14576 Y! Y 6 + x! Y 8 Y 6 173,65 + 0,77951(192,85) 323,98 /! (Y! Y ) (0,87443 ) Ž323,98 0. / 3/, 22 4e 395,27 El signo de menos indica que es calor que sale del sistema. Considere que el freezer como un refrigerador reversible: $G$H7C$ (20) ,338 62, $G$H7C$ d j3 e (trabajo que entra al freezer) 91

15 INGENIERO EN ENERGÍAS RENOVABLES kg/h de agua circulan por un intercambiador de calor, entrando como líquido saturado a 200 kpa y saliendo como vapor saturado. El calor requerido es suministrado por una bomba térmica operando reversiblemente con un reservorio a temperatura baja T b 16 ºC. Determinar la potencia que es necesario suministrar a la bomba térmica. Considere como volumen de control el intercambiador. 9 9 Š + kh + Š ± ² + ³! l! kh! + Š ² ² + ³!!l 0 + (h )! (h! ) 0! (h! h ) 60 h 0,01667 W El punto 1 corresponde a líquido saturado a 200 kpa. h 504,68 / El punto 2 corresponde a vapor saturado a 200 kpa. h! 2706,63 / (h! h ) 0,01667 W (2706,63 504,68 ) 36,7 W 36,7 92

16 Asumiendo que es una bomba térmica operando reversiblemente: $G$H7C$ H ( ) 120, ,15 393,38 F ,15 289,15 F 393,38 $G$H7C$ 393,38 289,15 3,77 $G$H7C$ 36,7 $G$H7C$ 3,77 5 d, ,73 93

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica Trabajo Práctico N : PROCESOS Y CICLOS DE POTENCIA DE VAPOR Procesos con vapor ) En un cierto proceso industrial se comprimen

Más detalles

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot)

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) 1. Deducir qué forma adopta la primera ley de la termodinámica aplicada a un gas ideal para

Más detalles

PROBLEMAS. Segundo Principio. Problema 1

PROBLEMAS. Segundo Principio. Problema 1 PROBLEMAS Segundo Principio Problema 1 La figura muestra un sistema que capta radiación solar y la utiliza para producir electricidad mediante un ciclo de potencia. El colector solar recibe 0,315 kw de

Más detalles

GUÍA DE RESUELTOS: SEGUNDA LEY DE LA TERMODINÁMICA Y ENTROPÍA

GUÍA DE RESUELTOS: SEGUNDA LEY DE LA TERMODINÁMICA Y ENTROPÍA Universidad Nacional Experimental Politécnica de la Fuerza Armada Bolivariana Núcleo Valencia Extensión La Isabelica Ingeniería Petroquímica IV semestre Período 1-2012 Termodinámica I Docente: Lcda. Yurbelys

Más detalles

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( )

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) a = aceleración (m/s 2 ) Peso P= peso (newton) ( ) g = gravedad (9.087 m/s 2 ) Trabajo ( ) 1 Joule = 1( N * m) W = trabajo (newton

Más detalles

PROBLEMAS DE MÁQUINAS. SELECTIVIDAD

PROBLEMAS DE MÁQUINAS. SELECTIVIDAD PROBLEMAS DE MÁQUINAS. SELECTIVIDAD 77.- El eje de salida de una máquina está girando a 2500 r.p.m. y se obtiene un par de 180 N m. Si el consumo horario de la máquina es de 0,5 10 6 KJ. Se pide: a) Determinar

Más detalles

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la parte de la física que se ocupa de las relaciones existentes entre el calor y el trabajo. El calor es una

Más detalles

Termodinámica: Segunda Ley

Termodinámica: Segunda Ley Termodinámica: Segunda Ley Presenta: M. I. Ruiz Gasca Marco Antonio Instituto Tecnológico de Tláhuac II Octubre, 2015 Marco Antonio (ITT II) México D.F., Tláhuac Octubre, 2015 1 / 20 1 Introducción y objetivo

Más detalles

Capítulo 10: ciclos de refrigeración. El ciclo de refrigeración por compresión es un método común de transferencia de calor de una

Capítulo 10: ciclos de refrigeración. El ciclo de refrigeración por compresión es un método común de transferencia de calor de una Capítulo 0: ciclos de refrigeración El ciclo de refrigeración por compresión es un método común de transferencia de calor de una temperatura baja a una alta. ENTRA IMAGEN capítulo 0-.- CAOR ambiente 2.-

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

Ejemplos de temas V, VI, y VII

Ejemplos de temas V, VI, y VII 1. Un sistema de aire acondicionado que emplea refrigerante R-134a como fluido de trabajo es usado para mantener una habitación a 23 C al intercambiar calor con aire exterior a 34 C. La habitación gana

Más detalles

LA ENERGÍA. Transferencia de energía: calor y trabajo

LA ENERGÍA. Transferencia de energía: calor y trabajo LA ENERGÍA Transferencia de energía: calor y trabajo La energía es una propiedad de un sistema por la cual éste puede modificar su situación o estado, así como actuar sobre otro sistema, transformándolo

Más detalles

VI. Segunda ley de la termodinámica

VI. Segunda ley de la termodinámica Objetivos: 1. Introducir la segunda ley de la. 2. Identificar los procesos validos como aquellos que satisfacen tanto la primera ley como la segunda ley de la. 3. Discutir fuentes y sumideros de energía

Más detalles

III Tema Segunda ley de la termodinámica

III Tema Segunda ley de la termodinámica UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA PESQUERA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA III Tema Segunda ley de

Más detalles

Física 2 (Biólogos y Geólogos) SERIE 8

Física 2 (Biólogos y Geólogos) SERIE 8 Física 2 (Biólogos y Geólogos) SERIE 8 i) Máquinas térmicas 1. Un mol de gas ideal (C v = 3 / 2 R) realiza el siguiente ciclo: AB) Se expande contra una presión exterior constante, en contacto térmico

Más detalles

Tema 3. Máquinas Térmicas II

Tema 3. Máquinas Térmicas II Asignatura: Tema 3. Máquinas Térmicas II 1. Motores Rotativos 2. Motores de Potencia (Turbina) de Gas: Ciclo Brayton 3. Motores de Potencia (Turbina) de Vapor: Ciclo Rankine Grado de Ingeniería de la Organización

Más detalles

2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D.

2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D. 2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D. Dirección de los procesos Termodinámicos Todos los procesos termodinámicos que se dan en la naturaleza son procesos irreversibles, es decir los que

Más detalles

Capítulo 4 Segunda ley de la Termodinámica y Entropia

Capítulo 4 Segunda ley de la Termodinámica y Entropia Capítulo 4 Segunda ley de la Termodinámica y Entropia Índice 4.1. Segunda ley de la termodinámica.............................. 78 4.1.1. Conceptos fundamentales............................... 79 4.1.2.

Más detalles

TERMODINÁMICA CICLOS III. CICLO DE CARNOT

TERMODINÁMICA CICLOS III. CICLO DE CARNOT TERMODINÁMICA CICLOS III. CICLO DE CARNOT GIRALDO TORO REVISÓ PhD. CARLOS A. ACEVEDO PRESENTACIÓN HECHA EXCLUIVAMENTE CON EL FIN DE FACILITAR EL ESTUDIO. MEDELLÍN 2016 CICLOS DE CARNOT. GIRALDO T. 2 Ciclo

Más detalles

PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE FUGA DE CALOR:

PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE FUGA DE CALOR: PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE FUGA DE CALOR: ciclo doble / simple etapa ORC con un innovador motor rotativo termovolumetrico patentada de alta eficiencia 0.Resumen Se presentan algunos resultados

Más detalles

(Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 2: Segundo principio de la termodinámica. Entropía.

(Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 2: Segundo principio de la termodinámica. Entropía. Física 3 (Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 2: Segundo principio de la termodinámica. Entropía. 1. Demostrar que: (a) Los postulados del segundo principio de Clausius

Más detalles

MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA.

MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA. 1 MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA. Una máquina térmica es un dispositivo que trabaja de forma cíclica o de forma continua para producir trabajo mientras se le da y cede calor,

Más detalles

TRABAJO DE FÍSICA ELECTIVO CUARTO NIVEL

TRABAJO DE FÍSICA ELECTIVO CUARTO NIVEL Liceo Bicentenario Teresa Prats de Sarratea Departamento de Física TRABAJO DE FÍSICA ELECTIVO CUARTO NIVEL Este trabajo consta de 15 preguntas de desarrollo, referidas a los temas que a continuación se

Más detalles

TEMPERATURA. E c partículas agitación térmica Tª

TEMPERATURA. E c partículas agitación térmica Tª TEMPERATURA Y CALOR TEMPERATURA Temperatura: de un cuerpo es la magnitud que expresa la agitación térmica de sus partículas que lo forman relacionado con su energía cinética, E c. E c partículas agitación

Más detalles

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO TERMOINÁMI PROLEMS I: PRIMER PRINIPIO Problema 1 Un gas ideal experimenta un proceso cíclico ---- como indica la figura El gas inicialmente tiene un volumen de 1L y una presión de 2 atm y se expansiona

Más detalles

SEGUNDA LEY DE LA TERMODINAMICA

SEGUNDA LEY DE LA TERMODINAMICA U n i v e r s i d a d C a t ó l i c a d e l N o r t e E s c u e l a d e I n g e n i e r í a Unidad 4 SEGUNDA EY DE A ERMODINAMICA Segunda ey a 2 ey de la ermodinámica nos permite establecer la direc ción

Más detalles

FÍSICA Usando la convención gráfica según la cual una máquina simple que entrega trabajo positivo se representa como en la figura:

FÍSICA Usando la convención gráfica según la cual una máquina simple que entrega trabajo positivo se representa como en la figura: FÍSICA 4 PRIMER CUARIMESRE DE 05 GUÍA : SEGUNDO PRINCIPIO, MÁUINAS ÉRMICAS. Demostrar que: (a) Los postulados del segundo principio de Clausius y de Kelvin son equivalentes (b) Ninguna máquina cíclica

Más detalles

Funcionamiento del ciclo de absorción reversible en bombas de calor con solución de amoniaco y agua, a llama directa de gas

Funcionamiento del ciclo de absorción reversible en bombas de calor con solución de amoniaco y agua, a llama directa de gas Funcionamiento del ciclo de absorción reversible en bombas de calor con solución de amoniaco y agua, a llama directa de gas El ciclo que se describe en este apartado ofrece la peculiaridad de ser el único

Más detalles

CASOS DE ÉXITO CON BIOMASA

CASOS DE ÉXITO CON BIOMASA JORNADAS HISPANO-AUSTRIACAS AUSTRIACAS DE EFICIENCIA ENERGÉTICA Y EDIFICACIÓN N SOSTENIBLE Eficiencia energética con Biomasa CASOS DE ÉXITO CON BIOMASA Ponente: David Poveda Madrid, 06 de marzo de 2013

Más detalles

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1 1.1. PROBLEMAS DE CONVECCIÓN 1 Convección 1.1. Problemas de convección Problema 1 Una placa cuadrada de 0,1 m de lado se sumerge en un flujo uniforme de aire a presión de 1 bar y 20 C con una velocidad

Más detalles

LA BOMBA DE CALOR. Una bomba de calor es un aparato cuyo funcionamiento se basa en la termodinámica.

LA BOMBA DE CALOR. Una bomba de calor es un aparato cuyo funcionamiento se basa en la termodinámica. Bomba de calor LA BOMBA DE CALOR Una bomba de calor es un aparato cuyo funcionamiento se basa en la termodinámica. Consiste en transportar energía en forma de calor de un ambiente (que puede ser aire,

Más detalles

Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO

Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés TRANSFERENCIA

Más detalles

ASPECTOS ENERGÉTICOS Y AMBIENTALES EN SISTEMAS DE CALEFACCIÓN

ASPECTOS ENERGÉTICOS Y AMBIENTALES EN SISTEMAS DE CALEFACCIÓN DR. Ing. ROBERTO SANTANDER MOYA DEPARTAMENTO DE INGENIERÍA MECÁNICA UNIVERSIDAD DE SANTIAGO DE CHILE ASPECTOS ENERGÉTICOS Y AMBIENTALES EN SISTEMAS DE CALEFACCIÓN SISTEMAS DE CALEFACCIÓN Y REQUERIMIENTOS

Más detalles

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS 1. LA MÁQUINA TÉRMICA MÁQUINA DE FLUIDO: Es el conjunto de elementos mecánicos que permite intercambiar energía mecánica con el exterior, generalmente a través de un eje, por variación de la energía disponible

Más detalles

Procesos reversibles e irrevesibles

Procesos reversibles e irrevesibles Procesos reversibles e irrevesibles Procesos reversibles e irrevesibles tiempo Máquinas térmicas y la segunda ley de la termodinámica La segunda ley de la termodinámica establece cuáles procesos pueden

Más detalles

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II 44) En la instalación de la figura la bomba gira a 1700rpm, entregando un caudal de agua a 20 o C de 0.5m 3 /s al tanque elevado. La cañería es de acero galvanizado, rígida y de 500mm de diámetro y cuenta

Más detalles

Hibridación de generadores y combinación con sistemas de emisión específicos.

Hibridación de generadores y combinación con sistemas de emisión específicos. Hibridación de generadores y combinación con sistemas de emisión específicos. Sonia Cabarcos Sánchez. El consumo energético en la edificación (I) En Europa la energía utilizada en el sector residencial

Más detalles

UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS

UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS 1. Una Cámara de refrigeración para almacenamiento de Kiwi tiene las siguientes dimensiones: 3,6 m x 8 m x 28 m. Fue diseñado para operar

Más detalles

Capítulo 5: la segunda ley de la termodinámica. La segunda ley de la termodinámica establece que los procesos ocurren en una cierta

Capítulo 5: la segunda ley de la termodinámica. La segunda ley de la termodinámica establece que los procesos ocurren en una cierta Capítulo 5: la segunda ley de la termodinámica a segunda ley de la termodinámica establece que los procesos ocurren en una cierta dirección, no en cualquiera. os procesos de naturaleza física pueden dirigirse

Más detalles

2. LA PRIMERA LEY DE LA TERMODINÁMICA

2. LA PRIMERA LEY DE LA TERMODINÁMICA 1. CONCEPTOS BÁSICOS Y DEFINICIONES l. 1. Naturaleza de la Termodinámica 1.2. Dimensiones y unii2acles 1.3. Sistema, propiedad y estado 1.4. Densidad, volumen específico y densidad relativa 1.5. Presión

Más detalles

COMPRESORES REFRIGERACION INDUSTRIAL. BIBLIOGRAFÍA: W. Stoecker: Industrial Refrigeration Handbook, ASHRAE: Handbook of Fundamentals, 1997

COMPRESORES REFRIGERACION INDUSTRIAL. BIBLIOGRAFÍA: W. Stoecker: Industrial Refrigeration Handbook, ASHRAE: Handbook of Fundamentals, 1997 REFRIGERACION INDUSTRIAL COMPRESORES BIBLIOGRAFÍA: W. Stoecker: Industrial Refrigeration Handbook, 1998. ASHRAE: Handbook of Fundamentals, 1997 1 Unidad común de potencia: Tonelada de refrigeración (ton

Más detalles

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA OBJETIVO GENERAL: Familiarizar al alumno con los sistemas de torres de refrigeración para evacuar el calor excedente del agua. OBJETIVOS ESPECÍFICOS: Investigar

Más detalles

Código: Titulación: INGENIERO TÉCNICO INDUSTRIAL Curso: 2º. Descriptores de la asignatura según el Plan de Estudios:

Código: Titulación: INGENIERO TÉCNICO INDUSTRIAL Curso: 2º. Descriptores de la asignatura según el Plan de Estudios: ASIGNATURA: TERMOTECNIA Código: 128212010 Titulación: INGENIERO TÉCNICO INDUSTRIAL Curso: 2º Profesor(es) responsable(s): - JOAQUÍN ZUECO JORDÁN (TEORÍA Y PRÁCTICAS) - FERNANDO ILLÁN GÓMEZ (TEORÍA) - JOSÉ

Más detalles

1.- CONSIDERACIONES PREVIAS

1.- CONSIDERACIONES PREVIAS ACTIVIDADES DE RECUPERACIÓN TECNOLOGIA INDUSTRIAL-I 1º BTO JUNIO 2016 ALUMNO: 1º BTO RECUPERACIÓN SEPTIEMBRE ÁREA: TECNOLOGIA INDUSTRIAL -I 1.- CONSIDERACIONES PREVIAS El alumno/a debe estudiar de los

Más detalles

TECHO BIOSOLAR. Fundación Mujeres y Tecnología ENIAC. Agustín V 1

TECHO BIOSOLAR. Fundación Mujeres y Tecnología ENIAC. Agustín V 1 TECHO BIOSOLAR Agustín V 1 TECHO BIOSOLAR. CONTENIDOS 1. Principios teóricos. 2. Planificación de los techos Biosolares. 3. Implementación e instalación. 4. Mantenimiento y cuidado. Agustín V 2 SINERGIA

Más detalles

AUDENIA Auditoría de la energía y el ahorro _ c/ Mallorca 27, 2º-1º Barcelona _ t _ AUDITORIA

AUDENIA Auditoría de la energía y el ahorro _ c/ Mallorca 27, 2º-1º Barcelona _ t _ AUDITORIA 4 AUDITORÍA 1. INSTALACIONES Los sistemas técnicos eléctricos y térmicos son objeto del estudio energético Se realiza un inventario de las instalaciones y equipos principales La auditoría comprende el

Más detalles

Sistemas de refrigeración: compresión y absorción

Sistemas de refrigeración: compresión y absorción Sistemas de refrigeración: compresión y absorción La refrigeración es el proceso de producir frío, en realidad extraer calor. Para producir frío lo que se hace es transportar calor de un lugar a otro.

Más detalles

TEMPERATURA Y CALOR. Oxford 2º ESO

TEMPERATURA Y CALOR. Oxford 2º ESO TEMPERATURA Y CALOR Oxford 2º ESO TEMPERATURA Temperatura: de un cuerpo es la magnitud que expresa la agitación térmica de sus partículas que lo forman relacionado con su energía cinética, E c. E c partículas

Más detalles

Ayudas visuales para el instructor. Contenido

Ayudas visuales para el instructor. Contenido Page 1 of 7 UN PANORAMA DE LA TERMODINÁMICA ENERGÍA, TRABAJO Y CALOR Por F. A. Kulacki Profesor de ingeniería mecánica Laboratorio de Termodinámica y Transferencia de Calor Departamento de Ingeniería Mecánica

Más detalles

ENERGIA TERMOELECTRICA. Daniela Serrano Lady Alejandra Moreno Valentina Bohórquez Andrea Matías

ENERGIA TERMOELECTRICA. Daniela Serrano Lady Alejandra Moreno Valentina Bohórquez Andrea Matías ENERGIA TERMOELECTRICA Daniela Serrano Lady Alejandra Moreno Valentina Bohórquez Andrea Matías Es la forma de energía que resulta de liberar el agua de un combustible para mover un alternador y producir

Más detalles

OPTIMIZACION DE LA TEMPERATURA DEL ELECTROLITO EN EL PROCESO DE ELECTROREFINACION DEL COBRE REFINERÍA DE ILO

OPTIMIZACION DE LA TEMPERATURA DEL ELECTROLITO EN EL PROCESO DE ELECTROREFINACION DEL COBRE REFINERÍA DE ILO Ing. Abraham Gallegos Fuentes Jefe General de Planta Electrolítica Ing. Ángel Villanueva Díaz Jefe de Control de Producción TEMARIO 1. INTRODUCCIÓN 2. CONTROLES EN EL PROCESO DE LA ELECTROREFINACIÓN

Más detalles

EFICIENCIA ENERGÉTICA

EFICIENCIA ENERGÉTICA EFICIENCIA ENERGÉTICA MESA REDONDA COMERCIALIZADORES 9 de Mayo de 2008 Ana Castelblanque Delegada Zona Levante Cepsa Gas Comercializadora Página 1 de 17 Índice Generalidades Cambio de combustible por gas

Más detalles

DESHUMECTACIÓN CON BOMBA DE CALOR Y RECUPERACIÓN DE CALOR EN GIMNASIOS Y PISCINAS. Miguel Miguel Zamora Zamora García

DESHUMECTACIÓN CON BOMBA DE CALOR Y RECUPERACIÓN DE CALOR EN GIMNASIOS Y PISCINAS. Miguel Miguel Zamora Zamora García DESHUMECTACIÓN CON BOMBA DE CALOR Y RECUPERACIÓN DE CALOR EN GIMNASIOS Y PISCINAS Miguel Miguel Zamora Zamora García ÍNDICE 1. INTRODUCCIÓN 2. SISTEMAS DE RECUPERACIÓN DE CALOR EN GIMNASIOS Y PISCINAS

Más detalles

TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6.

TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6. TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6. CICLO DE CARNOT 7. DIAGRAMAS ENTRÓPICOS 8. ENTROPIA Y DEGRADACIÓN ENERGÉTICA INTRODUCCIÓN

Más detalles

Ejemplos de máquina térmica son: los motores de combustión interna, las plantas de potencia de vapor, entre otras.

Ejemplos de máquina térmica son: los motores de combustión interna, las plantas de potencia de vapor, entre otras. TERMODINÁMICA II Unidad : Ciclos de potencia y refrigeración Objetivo: Estudiar los ciclos termodinámicos de potencia de vapor UNEFA Ext. La Isabelica Ing. Petroquímica 5to Semestre Materia: Termodinámica

Más detalles

Microcogenarción: Caso práctico Hotel spa A Quinta da Agua, de Santiago de Compostela. Alberto Jiménez Jefe de Formación y Soporte Técnico

Microcogenarción: Caso práctico Hotel spa A Quinta da Agua, de Santiago de Compostela. Alberto Jiménez Jefe de Formación y Soporte Técnico Microcogenarción: Caso práctico Hotel spa A Quinta da Agua, de Santiago de Compostela Alberto Jiménez Jefe de Formación y Soporte Técnico Gases de combustión Cómo funciona? Calor ~70% Electricidad ~ 30

Más detalles

DISEÑO DE CÁMARAS FRIGORÍFICAS

DISEÑO DE CÁMARAS FRIGORÍFICAS DISEÑO DE CÁMARAS FRIGORÍFICAS OBJETIVO Velocidad de extracción de Calor velocidad de ingreso de calor El aire en el interior debe ser mantenido a temperatura constante de diseño. El evaporador es diseñado

Más detalles

La geotermia. La geotermia junto con otras energías renovables puede ser en un futuro muy cercano una alternativa a los combustibles fósiles.

La geotermia. La geotermia junto con otras energías renovables puede ser en un futuro muy cercano una alternativa a los combustibles fósiles. El origen de la palabra geotermia es griega. Deriva de las palabras geos, que significa tierra, y de thermos, que significa calor. El calor de la tierra. Cuando hablamos de geotermia nos referimos tanto

Más detalles

Máquinas térmicas y segunda ley de la termodinámica. Física II Comisión 2k1/2S1 Prof. López Avila

Máquinas térmicas y segunda ley de la termodinámica. Física II Comisión 2k1/2S1 Prof. López Avila Máquinas térmicas y segunda ley de la termodinámica Física II Comisión 2k1/2S1 Prof. López Avila 1 Procesos Espontáneos 2 Procesos Espontáneos 3 Procesos Espontáneos Vacío Espontáneo No Espontáneo 4 Procesos

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

TRANSFERENCIA DE MASA II OPERACIONES DE HUMIDIFICACION

TRANSFERENCIA DE MASA II OPERACIONES DE HUMIDIFICACION TRANSFERENCIA DE MASA II OPERACIONES DE HUMIDIFICACION OPERACIONES DE HUMIDIFICACIÓN Las operaciones consideradas se ocupan de la transferencia de masa interfacial y de energía, que resultan cuando un

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

GUIA N o 2: TRANSMISIÓN DE CALOR Física II

GUIA N o 2: TRANSMISIÓN DE CALOR Física II GUIA N o 2: TRANSMISIÓN DE CALOR Física II Segundo Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería Sede Caseros II Buenos

Más detalles

Tema 5 Tratamientos térmicos EUETI Escola Universitaria de Enxeñería Técnica Industrial

Tema 5 Tratamientos térmicos EUETI Escola Universitaria de Enxeñería Técnica Industrial Tratamiento de Residuos Tema 5 Tratamientos térmicos EUETI Escola Universitaria de Enxeñería Técnica Industrial INCINERACIÓN DE RESIDUOS Definición: Es el procesamiento térmico de los residuos sólidos

Más detalles

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc Ejercicio 1: La densidad a 4 ºC de una solución acuosa de NaCl al 20% en peso es 1,155 g/cc a) Calcule la fracción molar de NaCl b) Calcule la concentración másica volumétrica de NaCl La masa molecular

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Unidad I: ropiedades y Leyes de la ermodinámica! Ciclos de potencia! Ciclo de refrigeración 8/7/0 Ctenido! Ciclos termodinámicos!! Ciclo Rankine! ariantes del Ciclo Rankine! Ciclos

Más detalles

Sistemas termodinámicos. Temperatura

Sistemas termodinámicos. Temperatura Sistemas termodinámicos. Temperatura 1. Se desea construir una escala termométrica que opere en grados Celsius, mediante una varilla que presenta una longitud de 5.00 cm a la temperatura de fusión del

Más detalles

La segunda ley de La termodinámica se puede establecer de tres formas diferentes.

La segunda ley de La termodinámica se puede establecer de tres formas diferentes. La segunda ley de La termodinámica se puede establecer de tres formas diferentes. 1.- La energía calorífica fluye espontáneamente desde un objeto mas caliente a uno más frio, pero no en sentido inverso.

Más detalles

TEMA 1. INTERCAMBIADORES DE CALOR

TEMA 1. INTERCAMBIADORES DE CALOR TEMA 1. INTERCAMBIADORES DE CALOR 1 Índice Clasificación. Regeneradores. Mezcladores o de contacto directo. Intercambiadores de lecho compacto. Intercambiadores de llama directa. Clasificación de los recuperadores.

Más detalles

Ejemplos del temas VII

Ejemplos del temas VII 1. Metano líquido es comúnmente usado en varias aplicaciones criogénicas. La temperatura crítica del metano es de 191 K, y por lo tanto debe mantenerse por debajo de esta temperatura para que este en fase

Más detalles

La experiencia de los colectores solares en el Parque de Vacaciones UTE ANTEL

La experiencia de los colectores solares en el Parque de Vacaciones UTE ANTEL La experiencia de los colectores solares en el Parque de Vacaciones UTE ANTEL La energía solar térmica en el mundo. Capacidad instalada en kwth cada 1000 habitantes La energía solar térmica en la Unión

Más detalles

BLOQUE B PRINCIPIOS DE MÁQUINAS

BLOQUE B PRINCIPIOS DE MÁQUINAS PRINCIPIOS MÁQUINAS PARTAMENTO 1.- El motor de un automóvil suministra una potencia de 90 CV a 5000 r.p.m. El vehículo se encuentra subiendo una pendiente, por lo que tiene que vencer una fuerza de 1744,5

Más detalles

FORMAS DE ENERGÍA La energía puede manifestarse de diversas maneras, todas ellas interrelacionadas y transformables entre sí:

FORMAS DE ENERGÍA La energía puede manifestarse de diversas maneras, todas ellas interrelacionadas y transformables entre sí: : Capacidad que tienen los cuerpos para producir cambios en sí mismos o en otros cuerpos. La energía se manifiesta en todos los cambios que se producen en la materia: Tanto en CAMBIOS FÍSICOS (ej: Evaporación

Más detalles

Práctica No 13. Determinación de la calidad de vapor

Práctica No 13. Determinación de la calidad de vapor Práctica No 13 Determinación de la calidad de vapor 1. Objetivo general: Determinar la cantidad de vapor húmedo generado a presión atmosférica. 2. Marco teórico: Entalpía del sistema: Si un sistema consiste

Más detalles

Ahorro energético y económico en equipos A/C

Ahorro energético y económico en equipos A/C Ahorro energético y económico en equipos A/C Oscar Maciá Ingeniero Industrial Dpt. Dirección Técnica El ahorro energético Ahorro energético = Aumento del coste de adquisición El ahorro energético El ahorro

Más detalles

F. Aclarando conceptos sobre termodinámica

F. Aclarando conceptos sobre termodinámica IES Antonio Glez Glez Principios de máquinas Página 1 F. Aclarando conceptos sobre termodinámica Termodinámica La termodinámica es la parte de la física que analiza los fenómenos en los que interviene

Más detalles

GENIA hybrid. Sistemas híbridos. Ahorra hasta el 65% Con radiadores, fancoils y suelo radiante. Energía gratuita, energía renovable

GENIA hybrid. Sistemas híbridos. Ahorra hasta el 65% Con radiadores, fancoils y suelo radiante. Energía gratuita, energía renovable GENIA hybrid Sistemas híbridos Un sistema híbrido es un conjunto de elementos que ofrecen calefacción, agua caliente sanitaria (ACS) y refrigeración utilizando como generador principal una bomba de calor

Más detalles

Universidad nacional de ingeniería. Recinto universitario Pedro Arauz palacios. Facultad de tecnología de la industria. Ingeniería mecánica

Universidad nacional de ingeniería. Recinto universitario Pedro Arauz palacios. Facultad de tecnología de la industria. Ingeniería mecánica Universidad nacional de ingeniería Recinto universitario Pedro Arauz palacios Facultad de tecnología de la industria Ingeniería mecánica DEPARTAMENTO DE energética REFRIGERACIÓN Y AIRE ACONDICIONADO Tema:

Más detalles

H - CALEFACCIÓN Y REFRIGERACIÓN

H - CALEFACCIÓN Y REFRIGERACIÓN AC 03.1 - DEMOSTRACIÓN DE BOMBA DE CALOR (pag. H - 1) CV 04.1 - DEMOSTRACION DE CALDERAS DE CALEFACCIÓN Y ACS (pag. H - 3) CV 04.2 - MODULO DISIPACIÓN TÉRMICA (pag. H - 5) RF 01.1 - CÁMARA FRIGORÍFICA

Más detalles

El propósito principal de la deshidratación de alimentos es prolongar la durabilidad

El propósito principal de la deshidratación de alimentos es prolongar la durabilidad 1.1 INTRODUCCIÓN El propósito principal de la deshidratación de alimentos es prolongar la durabilidad del producto final. El objetivo primordial del proceso de deshidratación es reducir el contenido de

Más detalles

Tema 1: FUNDAMENTOS DE LA PRODUCCIÓN DE FRÍO POR COMPRESIÓN MECÁNICA

Tema 1: FUNDAMENTOS DE LA PRODUCCIÓN DE FRÍO POR COMPRESIÓN MECÁNICA Tema 1: FUNDAMENTOS DE LA PRODUCCIÓN DE FRÍO POR COMPRESIÓN MECÁNICA 1. Introducción 2. Fundamentos sobre fluidos 3. Ciclos de compresión mecánica simple 1. Introducción Sector Aplicaciones Uso Comercial

Más detalles

PROBLEMAS DE MOTORES TÉRMICOS

PROBLEMAS DE MOTORES TÉRMICOS PROBLEMAS DE MOTORES TÉRMICOS 1. Según los datos del fabricante, el motor de un coche tiene las siguientes características: Número de cilindros: 4 Calibre: 86 mm Carrera: 86 mm. Relación de compresión:

Más detalles

AGRADECIMIENTOS DEDICATORIA ABSTRACT

AGRADECIMIENTOS DEDICATORIA ABSTRACT INDICE GENERAL AGRADECIMIENTOS DEDICATORIA RESUMEN ABSTRACT i ii iii iv CAPITULO 1 Descripción Del Problema. 1 Introducción 2 1.1 Antecedentes y motivación 3 1.2 Descripción del problema 3 1.3 Solución

Más detalles

XXXIII REUNION ASADES, 2010

XXXIII REUNION ASADES, 2010 XXXIII REUNION ASADES, 2010 CAFAYATE 15/18 de NOVIEMBRE del 2010 CONFERENCIA LAS CENTRALES SOLARES TERMICAS Luis. Saravia**, Instituto de Investigacion en Energías No Convencionales(INENCO) Instituto Unsa-CONICET

Más detalles

EQUIPO DE REFRIGERACIÓN

EQUIPO DE REFRIGERACIÓN EQUIPO DE REFRIGERACIÓN 1. Unidades condensadoras 2. Evaporadores 3. Condensadores Remotos 4. Unidades motocompresoras 1. UNIDADES CONDENSADORAS Características: Unidad Condensadora con gabinete para instalación

Más detalles

Ciclo de Otto (de cuatro tiempos)

Ciclo de Otto (de cuatro tiempos) Admisión Inicio compresión Fin de compresión Combustión Expansión Escape de gases 0 Admisión (Proceso Isobárico): Se supone que la circulación de los gases desde la atmósfera al interior del cilindro se

Más detalles

OFERTA TÉCNICO-ECONÓMICA PRODUCCIÓN DE BIOFERTILIZANTES. La instalación para obtener biofertilizantes y biogás

OFERTA TÉCNICO-ECONÓMICA PRODUCCIÓN DE BIOFERTILIZANTES. La instalación para obtener biofertilizantes y biogás OFERTA TÉCNICO-ECONÓMICA PRODUCCIÓN DE BIOFERTILIZANTES La instalación para obtener biofertilizantes y biogás Cliente: Elaborador: Rosbiogás, OOO Denominación de la obra: La instalación de biogás IK27

Más detalles

TECNICAS DE ENFRIAMIENTO DE EFLUENTES CON ALTAS TEMPERATURAS. Técnica Diseñada para la regulación dela temperatura

TECNICAS DE ENFRIAMIENTO DE EFLUENTES CON ALTAS TEMPERATURAS. Técnica Diseñada para la regulación dela temperatura TECNICAS DE ENFRIAMIENTO DE EFLUENTES CON ALTAS TEMPERATURAS Técnica Diseñada para la regulación dela temperatura DESCRIPCIÓN Las torres de enfriamiento son equipos diseñados para disminuir la temperatura

Más detalles

Termotecnia y Mecánica de Fluidos (DMN) Mecánica de Fluidos y Termodinámica (ITN) TD. T6.- Ciclos de Refrigeración

Termotecnia y Mecánica de Fluidos (DMN) Mecánica de Fluidos y Termodinámica (ITN) TD. T6.- Ciclos de Refrigeración Termotecnia y Mecánica de Fluidos (DMN) Mecánica de Fluidos y Termodinámica (ITN) TD. T6.- Ciclos de Refrigeración Las trasparencias son el material de apoyo del profesor para impartir la clase. No son

Más detalles

2.- Calcula la energía que posee un balón de baloncesto que pesa 1,5 kg, y se encuentra en el alero de un tejado situado a 6 metros de altura.

2.- Calcula la energía que posee un balón de baloncesto que pesa 1,5 kg, y se encuentra en el alero de un tejado situado a 6 metros de altura. SOLUCIONES EJERCICIOS AUTOEVALUACIÓN 1.- Que energía cinética acumula un ciclista que tiene una masa de 75 kg y se desplaza a una velocidad de 12 metros por segundo. Aplicando la definición de energía

Más detalles

FUNDAMENTOS DE REFRIGERACION

FUNDAMENTOS DE REFRIGERACION FUNDAMENTOS DE REFRIGERACION PRESENTACION EN ESPAÑOL Mayo 2010 Renato C. OLvera Index ESTADOS DE LA MATERIA LOS DIFERENTES ESTADOS DE LA MATERIA SON MANIFESTACIONES DE LA CANTIDAD DE ENERGIA QUE DICHA

Más detalles

QUÉ ES UN PROYECTO DE EFICIENCIA ENERGÉTICA?

QUÉ ES UN PROYECTO DE EFICIENCIA ENERGÉTICA? QUÉ ES UN PROYECTO DE EFICIENCIA ENERGÉTICA? QUÉ ES UN PROYECTO DE EE? Los proyectos de eficiencia energética (EE) tienen por objeto mejorar el uso de la energía utilizada en un proceso o un edificio,

Más detalles

ENERGIAS DE LIBRE DISPOSICION

ENERGIAS DE LIBRE DISPOSICION Térmica -Energía Solar La energía solar térmica aprovecha directamente la energía emitida por el sol. Su calor es recogido en colectores líquidos o de gas que son expuestos a la radiación solar absorbiendo

Más detalles

MAQUINAS HIDRAULICAS Y TERMICAS Motores de Combustión Interna Alternativos Introducción. Elementos Constructivos. Clasificación

MAQUINAS HIDRAULICAS Y TERMICAS Motores de Combustión Interna Alternativos Introducción. Elementos Constructivos. Clasificación INTRODUCCIÓN A LOS MOTORES DE COMBUSTIÓN INTERNA ALTERNATIVOS INTRODUCCIÓN A LOS MOTORES TÉRMICOS MOTOR DE COMBUSTIÓN INTERNA ALTERNATIVO CARACTERÍSTICAS PRINCIPALES ELEMENTOS CONSTRUCTIVOS DE LOS M.C.I.A.

Más detalles

Guía Teórica Experiencia Motor Stirling

Guía Teórica Experiencia Motor Stirling Universidad de Chile Escuela de Verano 2009 Curso de Energía Renovable Guía Teórica Experiencia Motor Stirling Escrito por: Diego Huarapil Enero 2009 Introducción El Motor Stirling es un motor térmico,

Más detalles

La energía interna. Nombre Curso Fecha

La energía interna. Nombre Curso Fecha Ciencias de la Naturaleza 2.º ESO Unidad 10 Ficha 1 La energía interna La energía interna de una sustancia está directamente relacionada con la agitación o energía cinética de las partículas que la componen.

Más detalles

Condensación por aire Serie R Enfriadora con compresor de tornillo

Condensación por aire Serie R Enfriadora con compresor de tornillo Condensación por aire Serie R Enfriadora con compresor de tornillo Modelo RTAD 085-100-115-125-145-150-165-180 270 a 630 kw (50 Hz) Versión con recuperación de calor Unidades fabricadas para los mercados

Más detalles

Sistemas de vacío de múltiples etapas a chorro de vapor operando en circuito cerrado alcalino (Alkaline Closed Loop - ACL)

Sistemas de vacío de múltiples etapas a chorro de vapor operando en circuito cerrado alcalino (Alkaline Closed Loop - ACL) Sistemas de vacío de múltiples etapas a chorro de vapor operando en circuito cerrado alcalino (Alkaline Closed Loop - ACL) Sistemas de vacío de múltiples etapas a chorro de vapor Los sistemas de vacío

Más detalles

SEGUNDA LEY DE LA TERMODINÁMICA

SEGUNDA LEY DE LA TERMODINÁMICA EGUND LEY DE L TERMODINÁMIC EXPERIENCI: Q Dos consecuencias empíricas y el sentido de evolución de los procesos: iempre se observa transferencia de energía térmica desde un sistema de mayor temperatura

Más detalles

Módulo 2: Termodinámica. mica Temperatura y calor

Módulo 2: Termodinámica. mica Temperatura y calor Módulo 2: Termodinámica mica Temperatura y calor 1 Termodinámica y estado interno Para describir el estado externo de un objeto o sistema se utilizan en mecánica magnitudes físicas como la masa, la velocidad

Más detalles